nips nips2009 nips2009-129 knowledge-graph by maker-knowledge-mining

129 nips-2009-Learning a Small Mixture of Trees


Source: pdf

Author: M. P. Kumar, Daphne Koller

Abstract: The problem of approximating a given probability distribution using a simpler distribution plays an important role in several areas of machine learning, for example variational inference and classification. Within this context, we consider the task of learning a mixture of tree distributions. Although mixtures of trees can be learned by minimizing the KL-divergence using an EM algorithm, its success depends heavily on the initialization. We propose an efficient strategy for obtaining a good initial set of trees that attempts to cover the entire observed distribution by minimizing the α-divergence with α = ∞. We formulate the problem using the fractional covering framework and present a convergent sequential algorithm that only relies on solving a convex program at each iteration. Compared to previous methods, our approach results in a significantly smaller mixture of trees that provides similar or better accuracies. We demonstrate the usefulness of our approach by learning pictorial structures for face recognition.

Reference: text


Summary: the most important sentenses genereted by tfidf model

sentIndex sentText sentNum sentScore

1 Within this context, we consider the task of learning a mixture of tree distributions. [sent-7, score-0.464]

2 Although mixtures of trees can be learned by minimizing the KL-divergence using an EM algorithm, its success depends heavily on the initialization. [sent-8, score-0.637]

3 We propose an efficient strategy for obtaining a good initial set of trees that attempts to cover the entire observed distribution by minimizing the α-divergence with α = ∞. [sent-9, score-0.716]

4 We formulate the problem using the fractional covering framework and present a convergent sequential algorithm that only relies on solving a convex program at each iteration. [sent-10, score-0.592]

5 Compared to previous methods, our approach results in a significantly smaller mixture of trees that provides similar or better accuracies. [sent-11, score-0.76]

6 We demonstrate the usefulness of our approach by learning pictorial structures for face recognition. [sent-12, score-0.218]

7 A natural way to alleviate the deficiencies of tree distributions is to use a mixture of trees [21]. [sent-21, score-0.959]

8 Mixtures of trees can be employed as accurate models for several interesting problems such as pose estimation [11] and recognition [5, 12]. [sent-22, score-0.505]

9 Note that the mixture can be learned by minimizing the Kullback-Leibler (KL) divergence with respect to the observed distribution using an expectation-maximization (EM) algorithm [21]. [sent-24, score-0.457]

10 An intuitive solution to both these problems is to obtain an initial set of trees that covers as much of the observed distribution as possible. [sent-26, score-0.591]

11 To this end, we pose the learning problem as that of obtaining a set of trees that minimize a suitable α-divergence [25]. [sent-27, score-0.493]

12 As the value of α keeps increasing, the divergence measure becomes more and more inclusive [8], that is it tries to cover as much of the observed distribution as possible [22]. [sent-33, score-0.262]

13 We formulate the minimization of α-divergence with α = ∞ within the fractional covering framework [24]. [sent-35, score-0.551]

14 However, the standard iterative algorithm for solving fractional covering is not readily applicable to our problem due to its small stepsize. [sent-36, score-0.551]

15 Each iteration of our approach adds one tree to the mixture and only requires solving a convex optimization problem. [sent-38, score-0.534]

16 In practice, our strategy converges within a small number of iterations thereby resulting in a small mixture of trees. [sent-39, score-0.304]

17 We demonstrate the effectiveness of our approach by providing a comparison with state of the art methods and learning pictorial structures [6] for face recognition. [sent-40, score-0.252]

18 2 Related Work The mixture of trees model was introduced by Meila and Jordan [21] who highlighted its appeal by providing simple inference and sampling algorithms. [sent-41, score-0.749]

19 They also described an EM algorithm that learned a mixture of trees by minimizing the KL divergence. [sent-42, score-0.807]

20 This is evident in the fact that their experiments required a large mixture of trees to explain the observed distribution, due to random initialization. [sent-44, score-0.832]

21 Several works have attempted to obtain a good set of trees by devising algorithms for minimizing the KL divergence [8, 13, 19, 26]. [sent-45, score-0.595]

22 In contrast, our method uses α = ∞, thereby providing a set of trees that covers the entire observed distribution. [sent-46, score-0.652]

23 It has been shown that mixture of trees admit a decomposable prior [20]. [sent-47, score-0.744]

24 In other words, one can concisely specify a certain prior probability for each of the exponential number of tree structures for a given set of random variables. [sent-48, score-0.257]

25 Kirschner and Smyth [14] have also proposed a method to handle a countably infinite mixture of trees. [sent-49, score-0.253]

26 Researchers have also considered mixtures of trees in the log-probability space. [sent-51, score-0.545]

27 Unlike a mixture in the probability space considered in this paper (which contains a hidden variable), mixtures of trees in log-probability space still define pairwise Markov networks. [sent-52, score-0.832]

28 Such mixtures of trees have been used to obtain upper bounds on the log partition function [27]. [sent-53, score-0.545]

29 However, in this case, the mixture is obtained by considering subgraphs of a given graphical model instead of minimizing a divergence measure with respect to the observed data. [sent-54, score-0.423]

30 Finally, we note that semi-metric distance functions can be approximated to a mixture of tree metrics using the fractional packing framework [24]. [sent-55, score-0.846]

31 This allows us to approximate semi-metric probabilistic models to a simpler mixture of (not necessarily tree) models whose pairwise potentials are defined by tree metrics [15, 17]. [sent-56, score-0.572]

32 T deg(a)−1 va ∈V θa (xa ) 1 Z(θ T ) (1) T T Here θa (·) refers to unary potentials whose values depend on one variable at a time, and θab (·, ·) refers to pairwise potentials whose values depend on two neighboring variables at a time. [sent-64, score-0.299]

33 As the name suggests, a mixture of trees is defined by a set of trees along with a probability distribution over them, that is θM = {(θT , ρT )} such that mixture coefficients ρT > 0 for all T and T ρT = 1. [sent-68, score-1.462]

34 Given a set of samples {xi , i = 1, · · · , m} along with their probabilities ∗ ˆ P (xi ), our task is to learn a mixture of trees θM such that ˆ ∗ P (xi ) θ M = arg min max log M i Pr(xi |θM ) θ = arg max min i θM Pr(xi |θM ) ˆ P (xi ) . [sent-82, score-0.891]

35 We define T = {θTj } to be the set of all t tree distributions that are defined over n variables. [sent-84, score-0.244]

36 It follows that the probability of a labeling for any mixture of trees can be written as ρj Pr(x|θ Tj ), Pr(x|θ M ) = (7) j for suitable values of ρj . [sent-85, score-0.768]

37 ai ρ ≥ λρ bi , ∀i ρ ∈ P, (10) where λρ = mini ai ρ/bi due to the form of the above LP. [sent-93, score-0.285]

38 The above formulation suggests that a natural way to attack the problem would be to use the fractional covering framework [24]. [sent-94, score-0.551]

39 We begin by briefly describing fractional covering in the next section. [sent-95, score-0.551]

40 3 4 Fractional Covering Given an m× t matrix A and an m× 1 vector b > 0, the fractional covering problem is to determine whether there exists a vector ρ ∈ P such that Aρ ≥ b. [sent-96, score-0.551]

41 The only restriction on the polytope P is that Aρ ≥ 0 for all ρ ∈ P, which is clearly satisfied by our learning problem (since ai ρ is the probability of xi specified by the mixture of trees corresponding to ρ). [sent-97, score-0.957]

42 However, if λ∗ ≥ 1, then the fractional covering problem requires us to find an ǫ-optimal solution, that is find a ρ such that Aρ ≥ (1 − ǫ)λ∗ b, (12) where ǫ > 0 is a user-specified tolerance factor. [sent-100, score-0.593]

43 The above solution provides an α-divergence of 0 but at the cost of introducing m trees in the mixture (where m is the number of samples provided). [sent-104, score-0.793]

44 We would like to find an ǫ-optimal solution with a smaller number of trees by solving the LP (10). [sent-105, score-0.495]

45 This is due to the fact that each of its m constraints is defined over an infinite number of unknowns (specifically, the mixture coefficients for each of the infinite number of tree distributions defined over the n random variables). [sent-107, score-0.535]

46 In order to obtain a solution to problem (10), we solve the following related problem: min Φ(y) ≡ y⊤ b, ρ∈P 1 ai ρ yi = exp −β bi bi s. [sent-111, score-0.354]

47 (14) The objective function Φ(y) is called the potential function for fractional covering. [sent-114, score-0.376]

48 [24] showed that minimizing Φ(y) solves the original fractional covering problem. [sent-116, score-0.637]

49 5 Modifying Fractional Covering The above algorithm provides an elegant way to solve the general fractional covering problem. [sent-139, score-0.596]

50 Nevertheless, we show that appropriate modifications can be made to obtain a small and accurate mixture of trees. [sent-141, score-0.296]

51 We begin by identify the deficiencies of the fractional covering algorithm for our learning problem. [sent-142, score-0.551]

52 1 Drawbacks of the Algorithm There are two main drawbacks of fractional covering. [sent-144, score-0.431]

53 Second, the update step provides singleton trees, that is trees with a probability of 1 for one labeling and 0 for all others. [sent-147, score-0.712]

54 In other words, we obtain a single tree distribution θT such that ∗ ′ yi Pr(xi |θT ) . [sent-151, score-0.261]

55 θT = arg max θT (19) i The optimal tree distribution for the above problem concentrates the entire mass on the sample ′ xi′ where i′ = arg maxi yi . [sent-152, score-0.475]

56 Such singleton trees are not desirable as they also result in slow convergence of the algorithm. [sent-153, score-0.572]

57 Furthermore, the learned mixture only provides a non-zero probability for the samples used during training. [sent-154, score-0.332]

58 Hence, the mixture cannot be used for previously unseen samples, thereby rendering it practically useless. [sent-155, score-0.304]

59 In order to overcome this difficulty, they suggest approximating problem (18) by ∗ θ T = arg max θT ′ yi log Pr(xi |θ T ) , (20) i which can be solved efficiently using the Chow-Liu algorithm [3]. [sent-157, score-0.221]

60 2 Fixing the Drawbacks We adapt the original fractional covering algorithm for our problem in order to overcome the drawbacks mentioned above. [sent-160, score-0.687]

61 That is, given the current distribution parameterized by θ Mt we would like to add a new tree θTt to the mixture that solves the following problem: θ Tt = arg min Φ(y) ≡ θT ′ yi exp −β i 5 σ Pr(xi |θ T ) ˆ P (xi ) (21) Pr(xi |θ T ) ≤ 1, Pr(xi |θ T ) ≥ 0, ∀i = 1, · · · , m, s. [sent-167, score-0.598]

62 (22) (23) Here, T is the set of all tree distributions defined over n random variables. [sent-170, score-0.244]

63 Note that since the Φ(y) is not linear in Pr(xi |θT ), the optimal solution provides a dense distribution Pr(·|θ T ) (as opposed to the first order linear approximation which provides a singleton distribution). [sent-176, score-0.233]

64 However, in practice our algorithm converges in a small number (≪ m) of iterations and provides an accurate mixture of trees. [sent-207, score-0.341]

65 We conclude the description of our method by noting that once the new tree distribution θ Tt is obtained, the value of σ is easily updated as σ = arg minσ Φ(y). [sent-209, score-0.267]

66 The subsequent columns show the mean accuracies and the standard deviation over 5 trials of tree-augmented naive Bayes [10], mixture of factorial distributions [2], single tree classifier [3], mixture of trees with random initialization (i. [sent-244, score-1.342]

67 Note that our method provides similar accuracies to [21] while using a smaller mixture of trees (see text). [sent-247, score-0.845]

68 In all our experiments, each iteration takes only 5 to 10 minutes (and the number of iterations is equal to the number of trees in the mixture). [sent-249, score-0.491]

69 We consider the task of using the mixture of trees as a classifier, that is given training data that consists of feature vectors xi together with the class values ci , the task is to correctly classify previously unseen test feature vectors. [sent-253, score-0.896]

70 We then learn a mixture of tree that predicts the i probability of x′ . [sent-256, score-0.464]

71 For the second type of classifier, we learn a mixture of trees for each class value such that it predicts the probability of a feature vector belonging to that particular class. [sent-258, score-0.745]

72 In all our experiments, we initialized the mixture with a single tree obtained from the Chow-Liu algorithm. [sent-261, score-0.464]

73 More importantly, it uses a smaller mixture of trees to achieve these results. [sent-266, score-0.715]

74 Specifically, the method of [21] uses 12, 30 and 3 trees for the three datasets respectively. [sent-267, score-0.462]

75 In contrast our method uses 3-5 trees for ‘Agaricus’, 10-15 trees for ‘Nursery’ and 2 trees for Splice (where the number of trees in the mixture was obtained using a validation dataset, see [21] for details). [sent-268, score-2.101]

76 Furthermore, unlike [21, 26], we obtain better accuracies by using a mixture of trees instead of a single tree for the ‘Splice’ dataset. [sent-269, score-1.011]

77 It is worth noting that [26] also provided a small set of initial trees (with comparable size to our method). [sent-270, score-0.492]

78 However, since the trees do not cover the entire observed distribution, their method provides less accurate results. [sent-271, score-0.657]

79 We tested our approach on the task of recognizing faces using the publicly available dataset1 containing the faces of 11 characters in an episode of ‘Buffy the Vampire Slayer’. [sent-273, score-0.236]

80 For each face we are provided with the location of 13 facial features (see Fig. [sent-275, score-0.229]

81 Furthermore, for each facial feature, we are also provided with a vector that represents the appearance of that facial feature [5] (using the normalized grayscale values present in a circular region of radius 7 centered at the facial feature). [sent-277, score-0.557]

82 Given the appearance vector, the likelihood of each facial feature belonging to a particular character can be found using logistic regression. [sent-279, score-0.268]

83 pictorial structures [6], often provide worse recognition accuracies than those that throw away this information. [sent-287, score-0.238]

84 html 7 Figure 1: The structure of the seven trees learned for 3 of the 11 characters using our method. [sent-294, score-0.559]

85 The structure and parameters of the trees vary significantly, thereby indicating the multimodality of the observed distribution. [sent-296, score-0.55]

86 In order to test whether a spatial model can help improve recognition, we learned a mixture of trees for each of the characters. [sent-318, score-0.749]

87 The random variables of the trees correspond to the facial features and their values correspond to the relative location of the facial feature with respect to the center of the nose. [sent-319, score-0.82]

88 the structure and parameters of the mixture of trees), the faces are normalized to remove global scaling and in-plane rotation using the location of the facial features. [sent-325, score-0.48]

89 We use the faces found in the first 80% of the episode to learn the mixture of trees. [sent-326, score-0.363]

90 1 shows the structure of the trees learned for 3 characters. [sent-332, score-0.496]

91 Although the structure of the trees for a particular character are similar, they vary considerably in the parameters. [sent-334, score-0.501]

92 Table 2 shows the accuracy of the mixture of trees learned by the method of [26] and our approach. [sent-339, score-0.749]

93 In this experiment, refining the mixture of trees using the EM algorithm of [21] did not improve the results. [sent-340, score-0.715]

94 This is evident in the fact that the accuracy of the mixture of trees does not increase significantly as the size of the mixture increases (see table 2, first row). [sent-345, score-1.011]

95 In contrast, the minimization of α-divergence provides a diverse set of trees that attempt to explain the entire distribution thereby providing significantly better results (table 2, second row). [sent-346, score-0.668]

96 7 Discussion We formulated the problem of obtaining a small mixture of trees by minimizing the α-divergence within the fractional covering framework. [sent-347, score-1.355]

97 Our experiments indicate that the suitably modified fractional covering algorithm provides accurate models. [sent-348, score-0.639]

98 There also appears to be a connection between fractional covering (proposed in the theory community) and Discrete AdaBoost [7, 9] (proposed in the machine learning community) that merits further exploration. [sent-350, score-0.551]

99 Sequentially fitting inclusive trees for inference in noisy-OR networks. [sent-397, score-0.537]

100 Fast approximation algorithms for fractional packing and covering problems. [sent-483, score-0.587]


similar papers computed by tfidf model

tfidf for this paper:

wordName wordTfidf (topN-words)

[('trees', 0.462), ('fractional', 0.346), ('pr', 0.331), ('mixture', 0.253), ('tree', 0.211), ('covering', 0.205), ('facial', 0.164), ('xi', 0.121), ('singleton', 0.11), ('pictorial', 0.107), ('plotkin', 0.101), ('bi', 0.097), ('kl', 0.092), ('tj', 0.091), ('drawbacks', 0.085), ('accuracies', 0.085), ('mixtures', 0.083), ('splice', 0.081), ('va', 0.081), ('ai', 0.077), ('agaricus', 0.075), ('inclusive', 0.075), ('divergence', 0.075), ('potentials', 0.074), ('em', 0.068), ('xa', 0.066), ('face', 0.065), ('characters', 0.063), ('faces', 0.063), ('nursery', 0.061), ('mt', 0.06), ('hessian', 0.06), ('minimizing', 0.058), ('arg', 0.056), ('labeling', 0.053), ('overcome', 0.051), ('thereby', 0.051), ('tt', 0.051), ('meila', 0.051), ('ioffe', 0.05), ('kirschner', 0.05), ('yi', 0.05), ('episode', 0.047), ('structures', 0.046), ('initialization', 0.045), ('provides', 0.045), ('words', 0.044), ('polytope', 0.044), ('buffy', 0.044), ('tries', 0.044), ('kumar', 0.043), ('evident', 0.043), ('accurate', 0.043), ('relaxation', 0.042), ('update', 0.042), ('tolerance', 0.042), ('convex', 0.041), ('pawan', 0.04), ('entire', 0.039), ('character', 0.039), ('minimizes', 0.038), ('splits', 0.038), ('ciencies', 0.038), ('unknowns', 0.038), ('explain', 0.037), ('dominant', 0.037), ('observed', 0.037), ('classi', 0.036), ('stepsize', 0.036), ('unary', 0.036), ('packing', 0.036), ('appearance', 0.035), ('learned', 0.034), ('mini', 0.034), ('rosset', 0.034), ('providing', 0.034), ('pairwise', 0.034), ('solution', 0.033), ('inversely', 0.033), ('deg', 0.033), ('distributions', 0.033), ('name', 0.032), ('approximating', 0.032), ('max', 0.032), ('maxi', 0.031), ('undesirable', 0.031), ('cover', 0.031), ('obtaining', 0.031), ('decrease', 0.03), ('feature', 0.03), ('guaranteed', 0.03), ('potential', 0.03), ('initial', 0.03), ('admit', 0.029), ('covers', 0.029), ('worst', 0.029), ('iteration', 0.029), ('message', 0.029), ('attempts', 0.028), ('solves', 0.028)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 1.0000005 129 nips-2009-Learning a Small Mixture of Trees

Author: M. P. Kumar, Daphne Koller

Abstract: The problem of approximating a given probability distribution using a simpler distribution plays an important role in several areas of machine learning, for example variational inference and classification. Within this context, we consider the task of learning a mixture of tree distributions. Although mixtures of trees can be learned by minimizing the KL-divergence using an EM algorithm, its success depends heavily on the initialization. We propose an efficient strategy for obtaining a good initial set of trees that attempts to cover the entire observed distribution by minimizing the α-divergence with α = ∞. We formulate the problem using the fractional covering framework and present a convergent sequential algorithm that only relies on solving a convex program at each iteration. Compared to previous methods, our approach results in a significantly smaller mixture of trees that provides similar or better accuracies. We demonstrate the usefulness of our approach by learning pictorial structures for face recognition.

2 0.16782153 31 nips-2009-An LP View of the M-best MAP problem

Author: Menachem Fromer, Amir Globerson

Abstract: We consider the problem of finding the M assignments with maximum probability in a probabilistic graphical model. We show how this problem can be formulated as a linear program (LP) on a particular polytope. We prove that, for tree graphs (and junction trees in general), this polytope has a particularly simple form and differs from the marginal polytope in a single inequality constraint. We use this characterization to provide an approximation scheme for non-tree graphs, by using the set of spanning trees over such graphs. The method we present puts the M -best inference problem in the context of LP relaxations, which have recently received considerable attention and have proven useful in solving difficult inference problems. We show empirically that our method often finds the provably exact M best configurations for problems of high tree-width. A common task in probabilistic modeling is finding the assignment with maximum probability given a model. This is often referred to as the MAP (maximum a-posteriori) problem. Of particular interest is the case of MAP in graphical models, i.e., models where the probability factors into a product over small subsets of variables. For general models, this is an NP-hard problem [11], and thus approximation algorithms are required. Of those, the class of LP based relaxations has recently received considerable attention [3, 5, 18]. In fact, it has been shown that some problems (e.g., fixed backbone protein design) can be solved exactly via sequences of increasingly tighter LP relaxations [13]. In many applications, one is interested not only in the MAP assignment but also in the M maximum probability assignments [19]. For example, in a protein design problem, we might be interested in the M amino acid sequences that are most stable on a given backbone structure [2]. In cases where the MAP problem is tractable, one can devise tractable algorithms for the M best problem [8, 19]. Specifically, for low tree-width graphs, this can be done via a variant of max-product [19]. However, when finding MAPs is not tractable, it is much less clear how to approximate the M best case. One possible approach is to use loopy max-product to obtain approximate max-marginals and use those to approximate the M best solutions [19]. However, this is largely a heuristic and does not provide any guarantees in terms of optimality certificates or bounds on the optimal values. LP approximations to MAP do enjoy such guarantees. Specifically, they provide upper bounds on the MAP value and optimality certificates. Furthermore, they often work for graphs with large tree-width [13]. The goal of the current work is to leverage the power of LP relaxations to the M best case. We begin by focusing on the problem of finding the second best solution. We show how it can be formulated as an LP over a polytope we call the “assignment-excluding marginal polytope”. In the general case, this polytope may require an exponential number of inequalities, but we prove that when the graph is a tree it has a very compact representation. We proceed to use this result to obtain approximations to the second best problem, and show how these can be tightened in various ways. Next, we show how M best assignments can be found by relying on algorithms for 1 second best assignments, and thus our results for the second best case can be used to devise an approximation algorithm for the M best problem. We conclude by applying our method to several models, showing that it often finds the exact M best assignments. 1 The M-best MAP problem and its LP formulation Consider a function on n variables defined as: f (x1 , . . . , xn ; θ) = θij (xi , xj ) + ij∈E θi (xi ) (1) i∈V where V and E are the vertices and nodes of a graph G with n nodes. We shall be interested in the M assignments with largest f (x; θ) value.1 Denote these by x(1) , . . . , x(M) , so that x(1) is the assignment that maximizes f (x; θ), x(2) is the 2nd best assignment, etc. The MAP problem (i.e., finding x(1) ) can be formulated as an LP as follows [15]. Let µ be a vector of distributions that includes {µij (xi , xj )}ij∈E over edge variables and {µi (xi )}i∈V over nodes. The set of µ that arise from some joint distribution is known as the marginal polytope [15] and is denoted by M(G). Formally: M(G) = {µ | ∃p(x) ∈ ∆ s.t. p(xi , xj ) = µij (xi , xj ) , p(xi ) = µi (xi )} . where ∆ is the set of distributions on x. The MAP problem can then be shown to be equivalent to the following LP:2 max f (x; θ) = max µ · θ , (2) x µ∈M(G) It can be shown that this LP always has a maximizing µ that is a vertex of M(G) and is integral. Furthermore, this µ corresponds to the MAP assignment x(1) . Although the number of variables in this LP is only O(|E| + |V |), the difficulty comes from an exponential number of linear inequalities generally required to describe the marginal polytope M(G). We shall find it useful to define a mapping between assignments x and integral vertices of the polytope. Given an integral vertex v ∈ M(G), define x(v) to be the assignment that maximizes vi (xi ). And, given an assignment z define v(z) to be the integral vertex in M(G) corresponding to the assignment z. Thus the LP in Eq. 2 will be maximized by v(x(1) ). One simple outer bound of the marginal polytope is the local polytope ML (G), which only enforces pairwise constraints between variables:     µi (xi ) = 1 (3) µij (xi , xj ) = µj (xj ), µij (xi , xj ) = µi (xi ), ML (G) = µ ≥ 0   x x x i j i The LP relaxation is then to maximize µ · θ where µ ∈ ML (G). For tree structured graphs, ML (G) = M(G) [15] and thus the LP relaxation yields the exact MAP x(1) . An LP Formulation for the 2nd -best MAP 2 Assume we found the MAP assignment x(1) and are now interested in finding x(2) . Is there a simple LP whose solution yields x(2) ? We begin by focusing on the case where G is a tree so that the local LP relaxation is exact. We first treat the case of a connected tree. To construct an LP whose solution is x(2) , a natural approach is to use the LP for x(1) (i.e., the LP in Eq. 2) but somehow eliminate the solution x(1) using additional constraints. This, however, is somewhat trickier than it sounds. The key difficulty is that the new constraints should not generate fractional vertices, so that the resulting LP is still exact. We begin by defining the polytope over which we need to optimize in order to obtain x(2) . 1 2 This is equivalent to finding P maximum probability assignments for a model p(x) ∝ ef (x;θ) . the P P P We use the notation µ · θ = ij∈E xi ,xj µij (xi , xj )θij (xi , xj ) + i xi µi (xi )θi (xi ) 2 Definition 1. The assignment-excluding marginal polytope is defined as: ˆ M(G, z) = {µ | ∃p(x) ∈ ∆ s.t. p(z) = 0, p(xi , xj ) = µij (xi , xj ), p(xi ) = µi (xi )} . ˆ M(G, z) is simply the convex hull of all (integral) vectors v(x) for x = z. (4) ˆ The following result shows that optimizing over M(G, x(1) ) will yield the second best soluˆ tion x(2) , so that we refer to M(G, x(1) ) as the second-best marginal polytope. Lemma 1. The 2nd best solution is obtained via the following LP: maxx=x(1) f (x; θ) = maxµ∈M(G,x(1) ) µ · θ. Furthermore, the µ that maximizes the LP on ˆ the right is integral and corresponds to the second-best MAP assignment x(2) . The proof is similar to that of Eq. 2: instead of optimizing over x, we optimize over distributions p(x), while enforcing that p(x(1) ) = 0 so that x(1) is excluded from the maximization. The key question which we now address is how to obtain a simple characterization of ˆ ˆ M(G, z). Intuitively, it would seems that M(G, z) should be “similar” to M(G), such that it can be described as M(G) plus some constraints that “block” the assignment z. To illustrate the difficulty in finding such “blocking” constraints, consider the following constraint, originally suggested by Santos [10]: i µi (zi ) ≤ n − 1. This inequality is not satisfied by µ = v(z) since v(z) attains the value n for the LHS of the above. Furthermore, for any x = z and µ = v(x), the LHS would be n − 1 or less. Thus, this inequality separates ˆ v(z) from all other integral vertices. One might conclude that we can define M(G, z) by adding this inequality to M(G). The difficulty is that the resulting polytope has fractional vertices,3 and maximizing over it won’t generally yield an integral solution. It turns out that there is a different inequality that does yield an exact characterization of ˆ M(G, z) when G is a tree. We now define this inequality and state our main theorem. Definition 2. Consider the functional I(µ, z) (which is linear in µ): (1 − di )µi (zi ) + I(µ, z) = i µij (zi , zj ) (5) ij∈E where di is the degree of node i in the tree graph G. ˆ Theorem 1. Adding the single inequality I(µ, z) ≤ 0 to M(G) yields M(G, z). ˆ M(G, z) = {µ | µ ∈ M(G), I(µ, z) ≤ 0 } (6) The theorem is proved in the appendix. Taken together with Lemma 1, it implies that x(2) may be obtained via an LP that is very similar to the MAP-LP, but has an additional constraint. We note the interesting similarity between I(µ, z) and the Bethe entropy [20]. The only difference is that in Bethe, µi , µij are replaced by H(Xi ), H(Xi , Xj ) respectively.4 The theorem also generalizes to the case where G is not a tree, but we have a junction tree for G. In this case, the theorem still holds if we define a generalized I(µ, z) inequality as: (1 − dS )µS (zS ) + S∈S µC (zC ) ≤ 0 (7) C∈C where C and S are the junction tree cliques and their separators, respectively, and dS is the number of cliques that intersect on separator S. In this case, the marginal polytope should enforce consistency between marginals µC (zC ) and their separators µS (zS ). However, such a characterization requires variables whose cardinality is exponential in the tree-width and is thus tractable only for graphs of low tree-width. In the next section, we address approximations for general graphs. A corresponding result exists for the case when G is a forest. In this case, the inequality in Eq. 6 is modified to: I(µ, z) ≤ |P | − 1, where |P | denotes the number of connected components of G. Interestingly, for a graph without edges, this gives the Santos inequality. 3 Consider the case of a single edge between 2 nodes where the MAP assignment is (0, 0). Adding the inequality µ1 (0) + µ2 (0) ≤ 1 produces the fractional vertex (0.5, 0.5). 4 The connection to Bethe can be more clearly understood from a duality-based proof of Theorem 1. We will cover this in an extended version of the manuscript. 3 2nd best LPs for general graphs - Spanning tree inequalities 3 When the graph G is not a tree, the marginal polytope M(G) generally requires an exponential number of inequalities. However, as mentioned above, it does have an exact description in terms of marginals over cliques and separators of a junction tree. Given such marginals on ˆ junction tree cliques, we also have an exact characterization of M(G, z) via the constraint in Eq. 7. However, in general, we cannot afford to be exponential in tree-width. Thus a common strategy [15] is to replace M(G) with an outer bound that enforces consistency between marginals on overlapping sets of variables. The simplest example is ML (G) in Eq. 3. ˆ In what follows, we describe an outer-bound approximation scheme for M(G, z). We use ML (G) as the approximation for M(G) (more generally ML (G) can enforce consistency between any set of small regions, e.g., triplets). When G is not a tree, the linear constraint in ˆ Eq. 6 will no longer suffice to derive M(G, z). Moreover, direct application of the inequality will incorrectly remove some integral vertices. An alternative approach is to add inequalities that separate v(z) from the other integral vertices. This will serve to eliminate more and more fractional vertices, and if enough constraints are added, this may result in an integral solution. One obvious family of such constraints are those corresponding to spanning trees in G and have the form of Eq. 5. Definition 3. Consider any T that is a spanning tree of G. Define the functional I T (µ, z): (1 − dT )µi (zi ) + i I T (µ, z) = i µij (zi , zj ) (8) ij∈T where dT is the degree of i in T . We refer to I T (µ, z) ≤ 0 as a spanning tree inequality. i For any sub-tree T of G, the corresponding spanning tree inequality separates the vertex v(z) from the other vertices. This can be shown via similar arguments as in the proof of Theorem 1. Note, however, that the resulting polytope may still have fractional vertices. The above argument shows that any spanning tree provides a separating inequality for ˆ M(G, z). In principle, we would like to use as many such inequalities as possible. Definition 4. The spanning tree assignment-excluding marginal polytope is defined as: ˆ MST (G, z) = µ | µ ∈ ML (G), L ∀ tree T ⊆ E I T (µ, z) ≤ 0 (9) where the ST notation indicates the inclusion of all spanning tree inequalities for G.5 Thus, we would actually like to perform the following optimization problem: max ˆ µ∈MST (G,z) L µ·θ ˆ as an approximation to optimization over M(G, z); i.e., we seek the optimal µ subject to all spanning tree inequalities for G with the ambition that this µ be integral and thus provide the non-z MAP assignment, with a certificate of optimality. Although the number of spanning trees is exponential in n, it turns out that all spanning inequalities can be used in practice. One way to achieve this is via a cutting plane algorithm [12] that finds the most violated spanning tree inequality and adds it to the LP. To implement this efficiently, we note that for a particular µ and a spanning tree T , the value of I T (µ, z) can be decomposed into a sum over the edges in T (and a T -independent constant): I T (µ, z) = µi (zi ) µij (zi , zj ) − µi (zi ) − µj (zj ) + (10) i ij∈T The tree maximizing the above is the maximum-weight spanning tree with edge-weights wij = µij (zi , zj ) − µi (zi ) − µj (zj ). It can thus be found efficiently. The cutting plane algorithm proceeds as follows. We start by adding an arbitrary spanning tree. Then, as long as the optimal µ is fractional, we find the spanning tree inequality that µ most violates (where this is implemented via the maximum-weight spanning tree). This constraint will necessarily remove µ from the polytope. If there are no violated inequalities 5 ˆ ˆL Note that M(G, z) ⊆ MST (G, z) ⊂ ML (G). 4 but µ is still fractional, then spanning tree inequalities do not suffice to find an integral solution (but see below on hypertree constraints to add in this case). In practice, we found that only a relatively small number of inequalities are needed to successfully yield an integral solution, or determine that all such inequalities are already satisfied. An alternative approach for solving the all spanning-tree problem is to work via the dual. The dual variables roughly correspond to points in the spanning tree polytope [16], optimization over which can be done in polynomial time, e.g., via the ellipsoid algorithm. We do not pursue this here since the cutting plane algorithm performed well in our experiments. ˆ As mentioned earlier, we can exactly characterize M(G, z) using Eq. 7, albeit at a cost exponential in the tree-width of the graph. A practical compromise would be to use inequalities over clique trees of G, where the cliques are relatively small, e.g., triplets. The corresponding constraint (Eq. 7 with the small cliques and their separators) will necessarily separate v(z) from the other integral vertices. Finding the maximally violated such inequality is an NP-hard problem, equivalent to a prize collecting Steiner tree problem, but recent work has found that such problems are often exactly solvable in practice [7]. It thus might be practical to include all such trees as constraints using a cutting plane algorithm. 4 From 2nd -best to M-best Thus far, we only dealt with the 2nd best case. As we show now, it turns out that the 2nd -best formalism can be used to devise an algorithm for M best. We begin by describing an algorithm for the exact M best and then show how it can be used to approximate those via the approximations for 2nd best described above. Fig. 1 describes our scheme, which we call Partitioning for Enumerating Solutions (or PES) for solving the M best problem. The scheme is general and only assumes that MAP-“like” problems can be solved. It is inspired by several pre-existing M best solution schemes [4, 6, 8, 19] but differs from them in highlighting the role of finding a second best solution within a given subspace. for m ← 1 to M do if m = 1 then Run MAP solver to obtain the best assignment: x(1) ≡ arg max f (x; θ) CONSTRAINTS1 ← ∅ else k ←− arg max ′ k′ ∈{1,...,m−1} f (y(k ) ; θ) // sub-space containing mth best assignment x(m) ← y(k) // mth best assignment // A variable choice that distinguishes x(m) from x(k) : (m) (v, a) ← any member of the set {(i, xi (m) ) : xi (k) = xi } CONSTRAINTSm ← CONSTRAINTSk ∪ {xv = a} // Eliminate x(k) (as MAP) from subspace m CONSTRAINTSk ← CONSTRAINTSk ∪ {xv = a} // Eliminate x(m) (as 2nd -best) from subspace k y(k) ← CalcNextBestSolution(CONSTRAINTSk , x(k) ) end y(m) ← CalcNextBestSolution(CONSTRAINTSm , x(m) ) end return {x(m) }M m=1 /* Find next best solution in sub-space defined by CONSTRAINTS */ Function CalcNextBestSolution(CONSTRAINTS, x(∗) ) // x(∗) is the MAP in the sub-space defined by CONSTRAINTS: Run MAP solver to obtain the second-best solution: y ≡ arg max f (x; θ), and return y. x=x(∗) ,CONSTRAINTS end Figure 1: Pseudocode for the PES algorithm. The modus operandi of the PES algorithm is to efficiently partition the search space while systematically excluding all previously determined assignments. Significantly, any MAP 5 Attractive Grids Ranks Run-times 1 50 Mixed Grids Ranks Run-times 1 50 0.5 0 S N B 0 Hard Protein SCP Ranks Run-times 1 50 0.5 S N B 0 0 S+R N+R B+R 0.5 S+R N+R B+R 0 S+R B B+R 0 S+R B B+R Figure 2: Number of best ranks and normalized run-times for the attractive and mixed grids, and the more difficult protein SCP problems. S, N, and B denote the STRIPES, Nilsson, and BMMF algorithms. Algorithms marked with +R denote that regions of variables were added for those runs. solver can be plugged into it, on the condition that it is capable of solving the arg max in the CalcNextBestSolution subroutine. The correctness of PES can be shown by observing that at the M th stage, all previous best solutions are excluded from the optimization and no other assignment is excluded. Of note, this simple partitioning scheme is possible due to the observation that the first-best and second-best MAP assignments must differ in the assignment of at least one variable in the graph. The main computational step of the PES algorithm is to maximize f (x; θ) subject to x = x(∗) and x ∈ CONSTRAINTS (see the CalcNextBestSolution subroutine). The CONSTRAINTS set merely enforces that some of the coordinates of x are either equal to or different from specified values.6 Within the LP, these can be enforced by setting µi (xi = a) = 1 or µi (xi = a) = 0. It can be shown that if one optimizes µ · θ with ˆ these constraints and µ ∈ M(G, x(∗) ), the solution is integral. Thus, the only element ˆ requiring approximation in the general case is the description of M(G, x(∗) ). We choose as ˆ this approximation the polytope MST (G, x(∗) ) in Eq. 9. We call the resulting approximaL tion algorithm Spanning TRee Inequalities and Partitioning for Enumerating Solutions, or STRIPES. In the next section, we evaluate this scheme experimentally. 5 Experiments We compared the performance of STRIPES to the BMMF algorithm [19] and the Lawler/Nilsson algorithm [6, 8]. Nilsson’s algorithm is equivalent to PES where the 2nd best assignment is obtained from maximizations within O(n) partitions, so that its runtime is O(n) times the cost of finding a single MAP. Here we approximated each MAP with its LP relaxation (as in STRIPES), so that both STRIPES and Nilsson come with certificates of optimality when their LP solutions are integral. BMMF relies on loopy BP to approximate the M best solutions.7 We used M = 50 in all experiments. To compare the algorithms, we pooled all their solutions, noting the 50 top probabilities, and then counted the fraction of these that any particular algorithm found (its solution rank). For run-time comparisons, we normalized the times by the longest-running algorithm for each example. We begin by considering pairwise MRFs on binary grid graphs of size 10 × 10. In the first experiment, we used an Ising model with attractive (submodular) potentials, a setting in which the pairwise LP relaxation is exact [14]. For each grid edge ij, we randomly chose Jij ∈ [0, 0.5], and local potentials were randomized in the range ±0.5. The results for 25 graphs are shown in Fig. 2. Both the STRIPES and Nilsson algorithms obtained the 50 optimal solutions (as learned from their optimality certificates), while BMMF clearly fared less well for some of the graphs. While the STRIPES algorithm took < 0.5 to 2 minutes to run, the Nilsson algorithm took around 13 minutes. On the other hand, BMMF was quicker, taking around 10 seconds per run, while failing to find a significant portion of the top solutions. Overall, the STRIPES algorithm was required to employ up to 19 spanning tree inequalities per calculation of second-best solution. 6 This is very different from the second best constraint, since setting x1 = 1 blocks all assignments with this value, as opposed to setting x = 1 which blocks only the assignment with all ones. 7 For BMMF, we used the C implementation at http://www.cs.huji.ac.il/~ talyam/ inference.html. The LPs for STRIPES and Nilsson were solved using CPLEX. 6 Next, we studied Ising models with mixed interaction potentials (with Jij and the local potentials randomly chosen in [−0.5, 0.5]). For almost all of the 25 models, all three algorithms were not able to successfully find the top solutions. Thus, we added regions of triplets (two for every grid face) to tighten the LP relaxation (for STRIPES and Nilsson) and to perform GBP instead of BP (for BMMF). This resulted in STRIPES and Nilsson always provably finding the optimal solutions, and BMMF mostly finding these solutions (Fig. 2). For these more difficult grids, however, STRIPES was the fastest of the algorithms, taking 0.5 - 5 minutes. On the other hand, the Nilsson and BMMF algorithms took 18 minutes and 2.5 7 minutes, respectively. STRIPES added up to 23 spanning tree inequalities per iteration. The protein side-chain prediction (SCP) problem is to to predict the placement of amino acid side-chains given a protein backbone [2, 18]. Minimization of a protein energy function corresponds to finding a MAP assignment for a pairwise MRF [19]. We employed the dataset of [18] (up to 45 states per variable, mean approximate tree-width 50), running all algorithms to calculate the optimal side-chain configurations. For 315 of 370 problems in the dataset, the first MAP solution was obtained directly as a result of the LP relaxation having an integral solution (“easy” problems). STRIPES provably found the subsequent top 50 solutions within 4.5 hours for all but one of these cases (up to 8 spanning trees per calculation), and BMMF found the same 50 solutions for each case within 0.5 hours; note that only STRIPES provides a certificate of optimality for these solutions. On the other hand, only for 146 of the 315 problems was the Nilsson method able to complete within five days; thus, we do not compare its performance here. For the remaining 55 (“hard”) problems (Fig. 2), we added problem-specific triplet regions using the MPLP algorithm [13]. We then ran the STRIPES algorithm to find the optimal solutions. Surprisingly, it was able to exactly find the 50 top solutions for all cases, using up to 4 standard spanning tree inequalities per second-best calculation. The STRIPES run-times for these problems ranged from 6 minutes to 23 hours. On the other hand, whether running BMMF without these regions (BP) or with the regions (GBP), it did not perform as well as STRIPES in terms of the number of high-ranking solutions or its speed. To summarize, STRIPES provably found the top 50 solutions for 369 of the 370 protein SCP problems. 6 Conclusion ˆ In this work, we present a novel combinatorial object M(G, z) and show its utility in obtaining the M best MAP assignments. We provide a simple characterization of it for tree structured graphs, and show how it can be used for approximations in non-tree graphs. As with the marginal polytope, many interesting questions arise about the properties of ˆ M(G, z). For example, in which non-tree cases can we provide a compact characterization (e.g., as for the cut-polytope for planar graphs [1]). Another compelling question is in which problems the spanning tree inequalities are provably optimal. An interesting generalization of our method is to predict diverse solutions satisfying some local measure of “distance” from each other, e.g., as in [2]. Here we studied the polytope that results from excluding one assignment. An intriguing question is to characterize the polytope that excludes M assignments. We have found that it does not simply correspond to adding M constraints I(µ, z i ) ≤ 0 for i = 1, . . . , M , so its ˆ geometry is apparently more complicated than that of M(G, z). Here we used LP solvers to solve for µ. Such generic solvers could be slow for large-scale problems. However, in recent years, specialized algorithms have been suggested for solving MAP-LP relaxations [3, 5, 9, 17]. These use the special form of the constraints to obtain local-updates and more scalable algorithms. We intend to apply these schemes to our method. Finally, our empirical results show that our method indeed leverages the power of LP relaxations and yields exact M best optimal solutions for problems with large tree-width. Acknowledgements We thank Nati Linial for his helpful discussions and Chen Yanover and Talya Meltzer for their insight and help in running BMMF. We also thank the anonymous reviewers for their useful advice. 7 A Proof of Theorem 1 Recall that for any µ ∈ M(G), there exists a probability density p(x) s.t. µ = x p(x)v(x). Denote pµ (z) as the minimal value of p(z) among all p(x) that give µ. We prove that ˆ pµ (z) = max(0, I(µ, z)), from which the theorem follows (since pµ (z) = 0 iff µ ∈ M(G, z)). The proof is by induction on n. For n = 1, the node has degree 0, so I(µ, z) = µ1 (z1 ). Clearly, pµ (z) = µ1 (z1 ), so pµ (z) = I(µ, z). For n > 1, there must exist a leaf in G ˆ (assume that its index is n and its neighbor’s is n − 1). Denote G as the tree obtained ˆ by removing node n and its edge with n − 1. For any assignment x, denote x as the corresponding sub-assignment for the first n − 1 variables. Also, any µ can be derived by ˆ ˆ adding appropriate coordinates to a unique µ ∈ M(G). For an integral vertex µ = v(x), ˆˆ ˆ ˆ ˆ ˆ x denote its projected µ as v (ˆ ). Denote by I(µ, z ) the functional in Eq. 5 applied to G. For ˆ any µ and its projected µ, it can be seen that: ˆˆ ˆ I(µ, z) = I(µ, z ) − α (11) where we define α = xn =zn µn−1,n (zn−1 , xn ) (so 0 ≤ α ≤ 1). The inductive assumption ˆ ˆ ˆ gives a p(ˆ ) that has marginals µ and also p(ˆ ) = max(0, I(µ, z )). We next use p(ˆ ) to ˆx ˆz ˆx construct a p(x) that has marginals µ and the desired minimal pµ (z). Consider three cases: ˆˆ ˆ I. I(µ, z) ≤ 0 and I(µ, z ) ≤ 0. From the inductive assumption, pµ (ˆ ) = 0, so we define: ˆˆ z µn−1,n (xn−1 , xn ) p(x) = p(ˆ ) ˆx (12) µn−1 (xn−1 ) which indeed marginalizes to µ, and p(z) = 0 so that pµ (z) = 0 as required. If µn−1 (xn−1 ) = 0, then p(ˆ ) is necessarily 0, in which case we define p(x) = 0. Note that this construction ˆx is identical to that used in proving that ML (G) = M(G) for a tree graph G. ˆˆ ˆ II. I(µ, z) > 0. Based on Eq. 11 and α ≥ 0, we have I(µ, z ) > 0. Applying the inductive ˆ µ, z ) = pµ (ˆ ) > 0. Now, define p(x) so that p(z) = I(µ, z): ˆ assumption to µ, we obtain I( ˆ ˆ ˆˆ z xl , l ≤ n − 2 δ(xn−1 = zn−1 ) δ(xn = zn ) p(x) no constraint 0 no constraint As in Eq. 12 0 0 ∃ l x l = zl 1 ∀ l x l = zl 1 µn−1,n (zn−1 , xn ) 1 1 p(ˆ ) ˆx 0 I(µ, z) Simple algebra shows that p(x) is non-negative and has µ as marginals. We now show that p(z) is minimal. Based on the inductive assumption and Eq. 11, it can easily be shown that I(v(z), z) = 1, I(v(x), z) ≤ 0 for x = z. For any p(x) s.t. µ = x p(x)v(x), from linearity, I(µ, z) = p(z) + x=z p(x)I(v(x), z) ≤ p(z) (since I(v(x), z) ≤ 0 for x = z). Since the p(z) we define achieves this lower bound, it is clearly minimal. ˆˆ ˆ ˆ III. I(µ, z) ≤ 0 but I(µ, z ) > 0. Applying the inductive assumption to µ, we see that ˆ µ, z ) > 0; Eq. 11 implies α − I(µ, z ) ≥ 0. Define β = µn−1 (zn−1 ) − pµ (ˆ ), which ˆˆ ˆ ˆˆ z pµ (ˆ ) = I( ˆ ˆ ˆˆ z ˆ is non-negative since µn−1 (zn−1 ) = µn−1 (ˆ n−1 ) and p marginalizes to µ. Define p(x) as: ˆ z ˆ xl , l ≤ n − 2 δ(xn−1 = zn−1 ) δ(xn = zn ) no constraint 0 no constraint ∃ l x l = zl As in Eq. 12 0 ˆ ˆ z µ (z ,x ) p(ˆ ) n−1,n βn−1 n α−I(µ,ˆ ) ˆx α µ (z ,z ) p(ˆ ) n−1,n βn−1 n ˆx (z ,x ) ˆˆ ˆ µ I(µ, z ) n−1,n αn−1 n 1 0 0 1 1 ∀ l x l = zl p(x) 1 which indeed marginalizes to µ, and p(z) = 0 so that pµ (z) = 0, as required. 8 References [1] F. Barahona. On cuts and matchings in planar graphs. Math. Program., 60(1):53–68, 1993. [2] M. Fromer and C. Yanover. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Proteins: Structure, Function, and Bioinformatics, 75:682–705, 2009. [3] A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 21. MIT Press, Cambridge, MA, 2007. [4] E. Kloppmann, G. M. Ullmann, and T. Becker. An extended dead-end elimination algorithm to determine gap-free lists of low energy states. Journal of Comp. Chem., 28:2325–2335, 2007. [5] N. Komodakis and N. Paragios. Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles. In D. Forsyth, P. Torr, and A. Zisserman, editors, ECCV, pages 806–820, Heidelberg, Germany, 2008. Springer. [6] E. L. Lawler. A procedure for computing the K best solutions to discrete optimization problems and its application to the shortest path problem. Management Science, 18(7):401–405, 1972. [7] I. Ljubic, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. Mathematical Programming, 105:427–449, Feb 2006. [8] D. Nilsson. An efficient algorithm for finding the M most probable configurations in probabilistic expert systems. Statistics and Computing, 8:159–173, Jun 1998. [9] P. Ravikumar, A. Agarwal, and M. Wainwright. Message-passing for graph-structured linear programs: proximal projections, convergence and rounding schemes. In Proc. of the 25th international conference on Machine learning, pages 800–807, New York, NY, USA, 2008. ACM. [10] E. Santos. On the generation of alternative explanations with implications for belief revision. In Proc. of the 7th Annual Conference on Uncertainty in Artificial Intelligence, 1991. [11] Y. Shimony. Finding the MAPs for belief networks is NP-hard. 68(2):399–410, 1994. Aritifical Intelligence, [12] D. Sontag and T. Jaakkola. New outer bounds on the marginal polytope. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1393–1400. MIT Press, Cambridge, MA, 2007. [13] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP relaxations for MAP using message passing. In Proc. of the 24th Annual Conference on Uncertainty in Artificial Intelligence, pages 503–510, 2008. [14] B. Taskar, S. Lacoste-Julien, and M. I. Jordan. Structured prediction, dual extragradient and bregman projections. J. Mach. Learn. Res., 7:1627–1653, 2006. [15] M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn., 1(1-2):1–305, 2008. [16] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. A new class of upper bounds on the log partition function. IEEE Transactions on Information Theory, 51(7):2313–2335, 2005. [17] T. Werner. A linear programming approach to max-sum problem: A review. IEEE Trans. Pattern Anal. Mach. Intell., 29(7):1165–1179, 2007. [18] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief propagation – an empirical study. Journal of Machine Learning Research, 7:1887–1907, 2006. [19] C. Yanover and Y. Weiss. Finding the M most probable configurations using loopy belief propagation. In Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004. [20] J. Yedidia, W. W.T. Freeman, and Y. Weiss. Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Trans. on Information Theory, 51(7):2282– 2312, 2005. 9

3 0.14861099 40 nips-2009-Bayesian Nonparametric Models on Decomposable Graphs

Author: Francois Caron, Arnaud Doucet

Abstract: Over recent years Dirichlet processes and the associated Chinese restaurant process (CRP) have found many applications in clustering while the Indian buffet process (IBP) is increasingly used to describe latent feature models. These models are attractive because they ensure exchangeability (over samples). We propose here extensions of these models where the dependency between samples is given by a known decomposable graph. These models have appealing properties and can be easily learned using Monte Carlo techniques. 1 Motivation The CRP and IBP have found numerous applications in machine learning over recent years [5, 10]. We consider here the case where the data we are interested in are ‘locally’ dependent; these dependencies being represented by a known graph G where each data point/object is associated to a vertex. These local dependencies can correspond to any conceptual or real (e.g. space, time) metric. For example, in the context of clustering, we might want to propose a prior distribution on partitions enforcing that data which are ‘close’ in the graph are more likely to be in the same cluster. Similarly, in the context of latent feature models, we might be interested in a prior distribution on features enforcing that data which are ‘close’ in the graph are more likely to possess similar features. The ‘standard’ CRP and IBP correspond to the case where the graph G is complete; that is it is fully connected. In this paper, we generalize the CRP and IBP to decomposable graphs. The resulting generalized versions of the CRP and IBP enjoy attractive properties. Each clique of the graph follows marginally a CRP or an IBP process and explicit expressions for the joint prior distribution on the graph is available. It makes it easy to learn those models using straightforward generalizations of Markov chain Monte Carlo (MCMC) or Sequential Monte Carlo (SMC) algorithms proposed to perform inference for the CRP and IBP [5, 10, 14]. The rest of the paper is organized as follows. In Section 2, we review the popular Dirichlet multinomial allocation model and the Dirichlet Process (DP) partition distribution. We propose an extension of these two models to decomposable graphical models. In Section 3 we discuss nonparametric latent feature models, reviewing briefly the construction in [5] and extending it to decomposable graphs. We demonstrate these models in Section 4 on two applications: an alternative to the hierarchical DP model [12] and a time-varying matrix factorization problem. 2 Prior distributions for partitions on decomposable graphs Assume we have n observations. When performing clustering, we associate to each of this observation an allocation variable zi ∈ [K] = {1, . . . , K}. Let Πn be the partition of [n] = {1, . . . , n} defined by the equivalence relation i ↔ j ⇔ zi = zj . The resulting partition Πn = {A1 , . . . , An(Πn ) } 1 is an unordered collection of disjoint non-empty subsets Aj of [n], j = 1, . . . , n(Πn ), where ∪j Aj = [n] and n(Πn ) is the number of subsets for partition Πn . We also denote by Pn be the set of all partitions of [n] and let nj , j = 1, . . . , n(Πn ), be the size of the subset Aj . Each allocation variable zi is associated to a vertex/site of an undirected graph G, which is assumed to be known. In the standard case where the graph G is complete, we first review briefly here two popular prior distributions on z1:n , equivalently on Πn . We then extend these models to undirected decomposable graphs; see [2, 8] for an introduction to decomposable graphs. Finally we briefly discuss the directed case. Note that the models proposed here are completely different from the hyper multinomial-Dirichlet in [2] and its recent DP extension [6]. 2.1 Dirichlet multinomial allocation model and DP partition distribution Assume for the time being that K is finite. When the graph is complete, a popular choice for the allocation variables is to consider a Dirichlet multinomial allocation model [11] θ θ , . . . , ), zi |π ∼ π (1) K K where D is the standard Dirichlet distribution and θ > 0. Integrating out π, we obtain the following Dirichlet multinomial prior distribution π ∼ D( Pr(z1:n ) = K j=1 Γ(θ) Γ(nj + θ K) (2) θ Γ(θ + n)Γ( K )K and then, using the straightforward equality Pr(Πn ) = PK where PK = {Πn ∈ Pn |n(Πn ) ≤ K}, we obtain K! (K−n(Πn ))! Pr(z1:n ) valid for for all Πn ∈ n(Π ) Pr(Πn ) = θ Γ(θ) j=1n Γ(nj + K ) K! . θ (K − n(Πn ))! Γ(θ + n)Γ( K )n(Πn ) (3) DP may be seen as a generalization of the Dirichlet multinomial model when the number of components K → ∞; see for example [10]. In this case the distribution over the partition Πn of [n] is given by [11] n(Π ) θn(Πn ) j=1n Γ(nj ) . (4) Pr(Πn ) = n i=1 (θ + i − 1) Let Π−k = {A1,−k , . . . , An(Π−k ),−k } be the partition induced by removing item k to Πn and nj,−k be the size of cluster j for j = 1, . . . , n(Π−k ). It follows from (4) that an item k is assigned to an existing cluster j, j = 1, . . . , n(Π−k ), with probability proportional to nj,−k / (n − 1 + θ) and forms a new cluster with probability θ/ (n − 1 + θ). This property is the basis of the CRP. We now extend the Dirichlet multinomial allocation and the DP partition distribution models to decomposable graphs. 2.2 Markov combination of Dirichlet multinomial and DP partition distributions Let G be a decomposable undirected graph, C = {C1 , . . . , Cp } a perfect ordering of the cliques and S = {S2 , . . . , Cp } the associated separators. It can be easily checked that if the marginal distribution of zC for each clique C ∈ C is defined by (2) then these distributions are consistent as they yield the same distribution (2) over the separators. Therefore, the unique Markov distribution over G with Dirichlet multinomial distribution over the cliques is defined by [8] Pr(zC ) S∈S Pr(zS ) C∈C Pr(z1:n ) = (5) where for each complete set B ⊆ G, we have Pr(zB ) given by (2). It follows that we have for any Πn ∈ PK Γ(θ) K! Pr(Πn ) = (K − n(Πn ))! C∈C Γ(θ) S∈S 2 K j=1 θ Γ(nj,C + K ) θ Γ(θ+nC )Γ( K )K K j=1 θ Γ(nj,S + K ) θ Γ(θ+nS )Γ( K )K (6) where for each complete set B ⊆ G, nj,B is the number of items associated to cluster j, j = 1, . . . , K in B and nB is the total number of items in B. Within each complete set B, the allocation variables define a partition distributed according to the Dirichlet-multinomial distribution. We now extend this approach to DP partition distributions; that is we derive a joint distribution over Πn such that the distribution of ΠB over each complete set B of the graph is given by (4) with θ > 0. Such a distribution satisfies the consistency condition over the separators as the restriction of any partition distributed according to (4) still follows (4) [7]. G Proposition. Let Pn be the set of partitions Πn ∈ Pn such that for each decomposition A, B, and any (i, j) ∈ A × B, i ↔ j ⇒ ∃k ∈ A ∩ B such that k ↔ i ↔ j. As K → ∞, the prior distribution G over partitions (6) is given for each Πn ∈ Pn by Pr(Πn ) = θn(Πn ) n(ΠC ) Γ(nj,C ) j=1 nC i=1 (θ+i−1) n(ΠS ) Γ(nj,S ) j=1 nS (θ+i−1) i=1 C∈C S∈S (7) where n(ΠB ) is the number of clusters in the complete set B. Proof. From (6), we have θ n(ΠC ) K(K − 1) . . . (K − n(Πn ) + 1) Pr(Πn ) = K C∈C n(ΠC )− S∈S n(ΠS ) C∈C θ n(ΠS ) S∈S n(ΠC ) θ Γ(nj,C + K ) j=1 nC (θ+i−1) i=1 n(ΠS ) θ Γ(nj,S + K ) j=1 nS (θ+i−1) i=1 Thus when K → ∞, we obtain (7) if n(Πn ) = C∈C n(ΠC ) − S∈S n(ΠS ) and 0 otherwise. We have n(Πn ) ≤ C∈C n(ΠC ) − S∈S n(ΠS ) for any Πn ∈ Pn and the subset of Pn verifying G n(Πn ) = C∈C n(ΠC ) − S∈S n(ΠS ) corresponds to the set Pn . Example. Let the notation i ∼ j (resp. i j) indicates an edge (resp. no edge) between two sites. Let n = 3 and G be the decomposable graph defined by the relations 1 ∼ 2, 2 ∼ 3 and 1 3. G The set P3 is then equal to {{{1, 2, 3}}; {{1, 2}, {3}}; {{1}, {2, 3}}; {{1}, {2}, {3}}}. Note that G the partition {{1, 3}, {2}} does not belong to P3 . Indeed, as there is no edge between 1 and 3, they cannot be in the same cluster if 2 is in another cluster. The cliques are C1 = {1, 2} and C2 = {2, 3} Pr(ΠC1 ) Pr(ΠC2 ) hence we can and the separator is S2 = {2}. The distribution is given by Pr(Π3 ) = Pr(ΠS ) 2 check that we obtain Pr({1, 2, 3}) = (θ + 1)−2 , Pr({1, 2}, {3}) = Pr({1, 2}, {3}) = θ(θ + 1)−2 and Pr({1}, {2}, {3}) = θ2 (θ + 1)−2 . Let now define the full conditional distributions. Based on (7) the conditional assignment of an item k is proportional to the conditional over the cliques divided by the conditional over the separators. G Let denote G−k the undirected graph obtained by removing vertex k from G. Suppose that Πn ∈ Pn . G−k If Π−k ∈ Pn−1 , then do not change the value of item k. Otherwise, item k is assigned to cluster j / where j = 1, . . . , n(Π−k ) with probability proportional to {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (8) and to a new cluster with probability proportional to θ, where n−k,j,C is the number of items in the set C \ {k} belonging to cluster j. The updating process is illustrated by the Chinese wedding party process1 in Fig. 1. The results of this section can be extended to the Pitman-Yor process, and more generally to species sampling models. Example (continuing). Given Π−2 = {A1 = {1}, A2 = {3}}, we have −1 Pr( item 2 assigned to A1 = {1}| Π−2 ) = Pr( item 2 assigned to A2 = {3}| Π−2 ) = (θ + 2) −1 and Pr( item 2 assigned to new cluster A3 | Π−2 ) = θ (θ + 2) . Given Π−2 = {A1 = {1, 3}}, item 2 is assigned to A1 with probability 1. 1 Note that this representation describes the full conditionals while the CRP represents the sequential updat- ing. 3 (a) (b) (d) (c) (e) Figure 1: Chinese wedding party. Consider a group of n guests attending a wedding party. Each of the n guests may belong to one or several cliques, i.e. maximal groups of people such that everybody knows everybody. The belonging of each guest to the different cliques is represented by color patches on the figures, and the graphical representation of the relationship between the guests is represented by the graphical model (e). (a) Suppose that the guests are already seated such that two guests cannot be together at the same table is they are not part of the same clique, or if there does not exist a group of other guests such that they are related (“Any friend of yours is a friend of mine”). (b) The guest number k leaves his table and either (c) joins a table where there are guests from the same clique as him, with probability proportional to the product of the number of guests from each clique over the product of the number of guests belonging to several cliques on that table or (d) he joins a new table with probability proportional to θ. 2.3 Monte Carlo inference 2.3.1 MCMC algorithm Using the full conditionals, a single site Gibbs sampler can easily be designed to approximate the posterior distribution Pr(Πn |z1:n ). Given a partition Πn , an item k is taken out of the partition. If G−k Π−k ∈ Pn−1 , item k keeps the same value. Otherwise, the item will be assigned to a cluster j, / j = 1, . . . , n(Π−k ), with probability proportional to p(z{k}∪Aj,−k ) × p(zAj,−k ) {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (9) and the item will be assigned to a new cluster with probability proportional to p(z{k} ) × θ. Similarly to [3], we can also define a procedure to sample from p(θ|n(Πn ) = k)). We assume that θ ∼ G(a, b) and use p auxiliary variables x1 , . . . , xp . The procedure is as follows. • For j = 1, . . . , p, sample xj |k, θ ∼ Beta(θ + nSj , nCj − nSj ) • Sample θ|k, x1:p ∼ G(a + k, b − j log xj ) 2.3.2 Sequential Monte Carlo We have so far only treated the case of an undirected decomposable graph G. We can formulate a sequential updating rule for the corresponding perfect directed version D of G. Indeed, let (a1 , . . . a|V | ) be a perfect ordering and pa(ak ) be the set of parents of ak which is by definition complete. Let Πk−1 = {A1,k−1 , . . . , An(Πk−1 ),k−1 } denote the partition of the first k−1 vertices a1:k−1 and let nj,pa(ak ) be the number of elements with value j in the set pa(ak ), j = 1, . . . , n(Πk−1 ). Then the vertex ak joins the set j with probability nj,pa(ak ) / θ + cluster with probability θ/ θ + q q nq,pa(ak ) and creates a new nq,pa(ak ) . One can then design a particle filter/SMC method in a similar fashion as [4]. Consider a set of (i) (i) (i) (i) N N particles Πk−1 with weights wk−1 ∝ Pr(Πk−1 , z1:k−1 ) ( i=1 wk−1 = 1) that approximate (i) the posterior distribution Pr(Πk−1 |z1:k−1 ). For each particle i, there are n(Πk−1 ) + 1 possible 4 (i,j) allocations for component ak . We denote Πk the partition obtained by associating component ak (i,j) to cluster j. The weight associated to Πk is given by  nj,pa(ak ) (i)  if j = 1, . . . , n(Πk−1 ) θ+ q nq,pa(ak ) (i,j) (i) p(z{ak }∪Aj,k−1 ) wk−1 = wk−1 × (10) (i) θ  θ+ n p(zAj,k−1 ) if j = n(Πk−1 ) + 1 q q,pa(ak ) (i,j) Then we can perform a deterministic resampling step by keeping the N particles Πk with highest (i,j) (i) (i) weights wk−1 . Let Πk be the resampled particles and wk the associated normalized weights. 3 Prior distributions for infinite binary matrices on decomposable graphs Assume we have n objects; each of these objects being associated to the vertex of a graph G. To K each object is associated a K-dimensional binary vector zn = (zn,1 , . . . , zn,K ) ∈ {0, 1} where zn,i = 1 if object n possesses feature i and zn,i = 0 otherwise. These vectors zt form a binary n × K matrix denoted Z1:n . We denote by ξ1:n the associated equivalence class of left-ordered matrices and let EK be the set of left-ordered matrices with at most K features. In the standard case where the graph G is complete, we review briefly here two popular prior distributions on Z1:n , equivalently on ξ1:n : the Beta-Bernoulli model and the IBP [5]. We then extend these models to undirected decomposable graphs. This can be used for example to define a time-varying IBP as illustrated in Section 4. 3.1 Beta-Bernoulli and IBP distributions The Beta-Bernoulli distribution over the allocation Z1:n is K Pr(Z1:n ) = α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) α K Γ(nj j=1 (11) where nj is the number of objects having feature j. It follows that Pr(ξ1:n ) = K K! 2n −1 h=0 α K Γ(nj α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) Kh ! j=1 (12) where Kh is the number of features possessing the history h (see [5] for details). The nonparametric model is obtained by taking the limit when K → ∞ Pr(ξ1:n ) = αK K+ + 2n −1 h=1 Kh ! exp(−αHn ) where K + is the total number of features and Hn = 3.2 (n − nj )!(nj − 1)! n! j=1 n 1 k=1 k . (13) The IBP follows from (13). Markov combination of Beta-Bernoulli and IBP distributions Let G be a decomposable undirected graph, C = {C1 , . . . , Cp } a perfect ordering of the cliques and S = {S2 , . . . , Cp } the associated separators. As in the Dirichlet-multinomial case, it is easily seen that if for each clique C ∈ C, the marginal distribution is defined by (11), then these distributions are consistent as they yield the same distribution (11) over the separators. Therefore, the unique Markov distribution over G with Beta-Bernoulli distribution over the cliques is defined by [8] Pr(ZC ) S∈S Pr(ZS ) C∈C Pr(Z1:n ) = (14) where Pr(ZB ) given by (11) for each complete set B ⊆ G. The prior over ξ1:n is thus given, for ξ1:n ∈ EK , by Pr(ξ1:n ) = K! 2n −1 h=0 Kh ! α K α Γ(nj,C + K )Γ(nC −nj,C +1) α Γ(nC +1+ K ) α α Γ(nj,S + K )Γ(nS −nj,S +1) K K α j=1 Γ(nS +1+ K ) K j=1 C∈C S∈S 5 (15) where for each complete set B ⊆ G, nj,B is the number of items having feature j, j = 1, . . . , K in the set B and nB is the whole set of objects in set B. Taking the limit when K → ∞, we obtain after a few calculations Pr(ξ1:n ) = α + K[n] exp [−α ( C HnC − 2n −1 h=1 Kh ! HnS )] × C∈C + KC (nC −nj,C )!(nj,C −1)! j=1 nC ! S∈S S + KS (nS −nj,S )!(nj,S −1)! j=1 nS ! + + + + if K[n] = C KC − S KS and 0 otherwise, where KB is the number of different features possessed by objects in B. G Let En be the subset of En such that for each decomposition A, B and any (u, v) ∈ A × B: {u and v possess feature j} ⇒ ∃k ∈ A ∩ B such that {k possesses feature j}. Let ξ−k be the left-ordered + matrix obtained by removing object k from ξn and K−k be the total number of different features in G−k + ξ−k . For each feature j = 1, . . . , K−k , if ξ−k ∈ En−1 then we have   b C∈C nj,C if i = 1 S∈C nj,S Pr(ξk,j = i) = (16)  b C∈C (nC −nj,C ) if i = 0 (nS −nj,S ) S∈C nS where b is the appropriate normalizing constant then the customer k tries Poisson α {S∈S|k∈S} nC {C∈C|k∈C} new dishes. We can easily generalize this construction to a directed version D of G using arguments similar to those presented in Section 2; see Section 4 for an application to time-varying matrix factorization. 4 4.1 Applications Sharing clusters among relative groups: An alternative to HDP Consider that we are given d groups with nj data yi,j in each group, i = 1, . . . , nj , j = 1, . . . , d. We consider latent cluster variables zi,j that define the partition of the data. We will use alternatively the notation θi,j = Uzi,j in the following. Hierarchical Dirichlet Process [12] (HDP) is a very popular model for sharing clusters among related groups. It is based on a hierarchy of DPs G0 ∼ DP (γ, H), Gj |G0 ∼ DP (α, G0 ) j = 1, . . . d θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f (θi,j ) i = 1, . . . , nj . Under conjugacy assumptions, G0 , Gj and U can be integrated out and we can approximate the marginal posterior of (zi,j ) given y = (yi,j ) with Gibbs sampling using the Chinese restaurant franchise to sample from the full conditional p(zi,j |z−{i,j} , y). Using the graph formulation defined in Section 2, we propose an alternative to HDP. Let θ0,1 , . . . , θ0,N be N auxiliary variables belonging to what we call group 0. We define each clique Cj (j = 1, . . . , d) to be composed of elements from group j and elements from group 0. This defines a decomposable graphical model whose separator is given by the elements of group 0. We can rewrite the model in a way quite similar to HDP G0 ∼ DP (α, H), θ0,i |G0 ∼ G0 i = 1, ..., N α α Gj |θ0,1 , . . . , θ0,N ∼ DP (α + N, α+N H + α+N θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f (θi,j ) i = 1, . . . , nj N i=1 δθ0,i ) j = 1, . . . d, N For any subset A and j = k ∈ {1, . . . , p} we have corr(Gj (A), Gk (A)) = α+N . Again, under conjugacy conditions, we can integrate out G0 , Gj and U and approximate the marginal posterior distribution over the partition using the Chinese wedding party process defined in Section 2. Note that for latent variables zi,j , j = 1, . . . , d, associated to data, this is the usual CRP update. As in HDP, multiple layers can be added to the model. Figures 2 (a) and (b) resp. give the graphical DP alternative to HDP and 2-layer HDP. 6 z0 root z0 root corpora docs z1 z2 z1 z2 z3 z1,1 z1,2 z2,1 z2,2 z2,3 docs (a) Graphical DP alternative to HDP (b) Graphical DP alternative to 2-layer HDP Figure 2: Hierarchical Graphs of dependency with (a) one layer and (b) two layers of hierarchy. If N = 0, then Gj ∼ DP (α, H) for all j and this is equivalent to setting γ → ∞ in HDP. If N → ∞ then Gj = G0 for all j, G0 ∼ DP (α, H). This is equivalent to setting α → ∞ in the HDP. One interesting feature of the model is that, contrary to HDP, the marginal distribution of Gj at any layer of the tree is DP (α, H). As a consequence, the total number of clusters scales logarithmically (as in the usual DP) with the size of each group, whereas it scales doubly logarithmically in HDP. Contrary to HDP, there are at most N clusters shared between different groups. Our model is in that sense reminiscent of [9] where only a limited number of clusters can be shared. Note however that contrary to [9] we have a simple CRP-like process. The proposed methodology can be straightforwardly extended to the infinite HMM [12]. The main issue of the proposed model is the setting of the number N of auxiliary parameters. Another issue is that to achieve high correlation, we need a large number of auxiliary variables. Nonetheless, the computational time used to sample from auxiliary variables is negligible compared to the time used for latent variables associated to data. Moreover, it can be easily parallelized. The model proposed offers a far richer framework and ensures that at each level of the tree, the marginal distribution of the partition is given by a DP partition model. 4.2 Time-varying matrix factorization Let X1:n be an observed matrix of dimension n × D. We want to find a representation of this matrix in terms of two latent matrices Z1:n of dimension n × K and Y of dimension K × D. Here Z1:n 2 is a binary matrix whereas Y is a matrix of latent features. By assuming that Y ∼ N 0, σY IK×D and 2 X1:n = Z1:n Y + σX εn where εn ∼ N 0, σX In×D , we obtain p(X1:n |Z1:n ) ∝ −D/2 2 2 + Z+T Z+ + σX /σY IKn 1:n 1:n + (n−Kn )D σX exp − + Kn D σY 2 2 + where Σ−1 = I − Z+ Z+T Z+ + σX /σY IKn n 1:n 1:n 1:n −1 1 T −1 2 tr X1:n Σn X1:n 2σX (17) + Z+T , Kn the number of non-zero columns of 1:n + Z1:n and Z+ is the first Kn columns of Z1:n . To avoid having to set K, [5, 14] assume that Z1:n 1:n follows an IBP. The resulting posterior distribution p(Z1:n |X1:n ) can be estimated through MCMC [5] or SMC [14]. We consider here a different model where the object Xt is assumed to arrive at time index t and we want a prior distribution on Z1:n ensuring that objects close in time are more likely to possess similar features. To achieve this, we consider the simple directed graphical model D of Fig. 3 where the site numbering corresponds to a time index in that case and a perfect numbering of D is (1, 2, . . .). The set of parents pa(t) is composed of the r preceding sites {{t − r}, . . . , {t − 1}}. The time-varying IBP to sample from p(Z1:n ) associated to this directed graph follows from (16) and proceeds as follows. At time t = 1 + new new • Sample K1 ∼Poisson(α), set z1,i = 1 for i = 1, ..., K1 and set K1 = Knew . At times t = 2, . . . , r n + new ∼Poisson( α ). • For k = 1, . . . Kt , sample zt,k ∼ Ber( 1:t−1,k ) and Kt t t 7   ?  ? - t−r - t−r+1 - . . . - t−1 - t - t+1        6 6 Figure 3: Directed graph. At times t = r + 1, . . . , n n + α new ∼Poisson( r+1 ). • For k = 1, . . . Kt , sample zt,k ∼ Ber( t−r:t−1,k ) and Kt r+1 + Here Kt is the total number of features appearing from time max(1, t − r) to t − 1 and nt−r:t−1,k the restriction of n1:t−1 to the r last customers. Using (17) and the prior distribution of Z1:n which can be sampled using the time-varying IBP described above, we can easily design an SMC method to sample from p(Z1:n |X1:n ). We do not detail it here. Note that contrary to [14], our algorithm does not require inverting a matrix whose dimension grows linearly with the size of the data but only a matrix of dimension r × r. In order to illustrate the model and SMC algorithm, we create 200 6 × 6 images using a ground truth Y consisting of 4 different 6 × 6 latent images. The 200 × 4 binary matrix was generated from Pr(zt,k = 1) = πt,k , where πt = ( .6 .5 0 0 ) if t = 1, . . . , 30, πt = ( .4 .8 .4 0 ) if t = 31, . . . , 50 and πt = ( 0 .3 .6 .6 ) if t = 51, . . . , 200. The order of the model is set to r = 50. The feature occurences Z1:n and true features Y and their estimates are represented in Figure 4. Two spurious features are detected by the model (features 2 and 5 on Fig. 3(c)) but quickly discarded (Fig. 4(d)). The algorithm is able to correctly estimate the varying prior occurences of the features over time. Feature1 Feature2 Feature1 Feature2 Feature3 20 20 40 40 60 60 Feature4 80 100 Feature4 Feature5 Feature6 Time Feature3 Time 80 100 120 120 140 140 160 160 180 200 180 1 2 3 200 4 Feature (a) 1 2 3 4 5 6 Feature (b) (c) (d) Figure 4: (a) True features, (b) True features occurences, (c) MAP estimate ZM AP and (d) associated E[Y|ZM AP ] t=20 t=50 t=20 t=50 t=100 t=200 t=100 t=200 (a) (b) Figure 5: (a) E[Xt |πt , Y] and (b) E[Xt |X1:t−1 ] at t = 20, 50, 100, 200. 5 Related work and Discussion The fixed-lag version of the time-varying DP of Caron et al. [1] is a special case of the proposed model when G is given by Fig. 3. The bivariate DP of Walker and Muliere [13] is also a special case when G has only two cliques. In this paper, we have assumed that the structure of the graph was known beforehand and we have shown that many flexible models arise from this framework. It would be interesting in the future to investigate the case where the graphical structure is unknown and must be estimated from the data. Acknowledgment The authors thank the reviewers for their comments that helped to improve the writing of the paper. 8 References [1] F. Caron, M. Davy, and A. Doucet. Generalized Polya urn for time-varying Dirichlet process mixtures. In Uncertainty in Artificial Intelligence, 2007. [2] A.P. Dawid and S.L. Lauritzen. Hyper Markov laws in the statistical analysis of decomposable graphical models. The Annals of Statistics, 21:1272–1317, 1993. [3] M.D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90:577–588, 1995. [4] P. Fearnhead. Particle filters for mixture models with an unknown number of components. Statistics and Computing, 14:11–21, 2004. [5] T.L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In Advances in Neural Information Processing Systems, 2006. [6] D. Heinz. Building hyper dirichlet processes for graphical models. Electonic Journal of Statistics, 3:290–315, 2009. [7] J.F.C. Kingman. Random partitions in population genetics. Proceedings of the Royal Society of London, 361:1–20, 1978. [8] S.L. Lauritzen. Graphical Models. Oxford University Press, 1996. [9] P. M¨ ller, F. Quintana, and G. Rosner. A method for combining inference across related nonu parametric Bayesian models. Journal of the Royal Statistical Society B, 66:735–749, 2004. [10] R.M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249–265, 2000. [11] J. Pitman. Exchangeable and partially exchangeable random partitions. Probability theory and related fields, 102:145–158, 1995. [12] Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101:1566–1581, 2006. [13] S. Walker and P. Muliere. A bivariate Dirichlet process. Statistics and Probability Letters, 64:1–7, 2003. [14] F. Wood and T.L. Griffiths. Particle filtering for nonparametric Bayesian matrix factorization. In Advances in Neural Information Processing Systems, 2007. 9

4 0.13032937 61 nips-2009-Convex Relaxation of Mixture Regression with Efficient Algorithms

Author: Novi Quadrianto, John Lim, Dale Schuurmans, Tibério S. Caetano

Abstract: We develop a convex relaxation of maximum a posteriori estimation of a mixture of regression models. Although our relaxation involves a semidefinite matrix variable, we reformulate the problem to eliminate the need for general semidefinite programming. In particular, we provide two reformulations that admit fast algorithms. The first is a max-min spectral reformulation exploiting quasi-Newton descent. The second is a min-min reformulation consisting of fast alternating steps of closed-form updates. We evaluate the methods against Expectation-Maximization in a real problem of motion segmentation from video data. 1

5 0.1166843 241 nips-2009-The 'tree-dependent components' of natural scenes are edge filters

Author: Daniel Zoran, Yair Weiss

Abstract: We propose a new model for natural image statistics. Instead of minimizing dependency between components of natural images, we maximize a simple form of dependency in the form of tree-dependencies. By learning filters and tree structures which are best suited for natural images we observe that the resulting filters are edge filters, similar to the famous ICA on natural images results. Calculating the likelihood of an image patch using our model requires estimating the squared output of pairs of filters connected in the tree. We observe that after learning, these pairs of filters are predominantly of similar orientations but different phases, so their joint energy resembles models of complex cells. 1 Introduction and related work Many models of natural image statistics have been proposed in recent years [1, 2, 3, 4]. A common goal of many of these models is finding a representation in which components or sub-components of the image are made as independent or as sparse as possible [5, 6, 2]. This has been found to be a difficult goal, as natural images have a highly intricate structure and removing dependencies between components is hard [7]. In this work we take a different approach, instead of minimizing dependence between components we try to maximize a simple form of dependence - tree dependence. It would be useful to place this model in context of previous works about natural image statistics. Many earlier models are described by the marginal statistics solely, obtaining a factorial form of the likelihood: p(x) = pi (xi ) (1) i The most notable model of this approach is Independent Component Analysis (ICA), where one seeks to find a linear transformation which maximizes independence between components (thus fitting well with the aforementioned factorization). This model has been applied to many scenarios, and proved to be one of the great successes of natural image statistics modeling with the emergence of edge-filters [5]. This approach has two problems. The first is that dependencies between components are still very strong, even with those learned transformation seeking to remove them. Second, it has been shown that ICA achieves, after the learned transformation, only marginal gains when measured quantitatively against simpler method like PCA [7] in terms of redundancy reduction. A different approach was taken recently in the form of radial Gaussianization [8], in which components which are distributed in a radially symmetric manner are made independent by transforming them non-linearly into a radial Gaussian, and thus, independent from one another. A more elaborate approach, related to ICA, is Independent Subspace Component Analysis or ISA. In this model, one looks for independent subspaces of the data, while allowing the sub-components 1 Figure 1: Our model with respect to marginal models such as ICA (a), and ISA like models (b). Our model, being a tree based model (c), allows components to belong to more than one subspace, and the subspaces are not required to be independent. of each subspace to be dependent: p(x) = pk (xi∈K ) (2) k This model has been applied to natural images as well and has been shown to produce the emergence of phase invariant edge detectors, akin to complex cells in V1 [2]. Independent models have several shortcoming, but by far the most notable one is the fact that the resulting components are, in fact, highly dependent. First, dependency between the responses of ICA filters has been reported many times [2, 7]. Also, dependencies between ISA components has also been observed [9]. Given these robust dependencies between filter outputs, it is somewhat peculiar that in order to get simple cell properties one needs to assume independence. In this work we ask whether it is possible to obtain V1 like filters in a model that assumes dependence. In our model we assume the filter distribution can be described by a tree graphical model [10] (see Figure 1). Degenerate cases of tree graphical models include ICA (in which no edges are present) and ISA (in which edges are only present within a subspace). But in its non-degenerate form, our model assumes any two filter outputs may be dependent. We allow components to belong to more than one subspace, and as a result, do not require independence between them. 2 Model and learning Our model is comprised of three main components. Given a set of patches, we look for the parameters which maximize the likelihood of a whitened natural image patch z: N p(yi |ypai ; β) p(z; W, β, T ) = p(y1 ) (3) i=1 Where y = Wz, T is the tree structure, pai denotes the parent of node i and β is a parameter of the density model (see below for the details). The three components we are trying to learn are: 1. The filter matrix W, where every row defines one of the filters. The response of these filters is assumed to be tree-dependent. We assume that W is orthogonal (and is a rotation of a whitening transform). 2. The tree structure T which specifies which components are dependent on each other. 3. The probability density function for connected nodes in the tree, which specify the exact form of dependency between nodes. All three together describe a complete model for whitened natural image patches, allowing likelihood estimation and exact inference [11]. We perform the learning in an iterative manner: we start by learning the tree structure and density model from the entire data set, then, keeping the structure and density constant, we learn the filters via gradient ascent in mini-batches. Going back to the tree structure we repeat the process many times iteratively. It is important to note that both the filter set and tree structure are learned from the data, and are continuously updated during learning. In the following sections we will provide details on the specifics of each part of the model. 2 β=0.0 β=0.5 β=1.0 β=0.0 β=0.5 β=1.0 2 1 1 1 1 1 1 0 −1 0 −1 −2 −1 −2 −3 0 x1 2 0 x1 2 0 x1 2 −2 −3 −2 0 x1 2 0 −1 −2 −3 −2 0 −1 −2 −3 −2 0 −1 −2 −3 −2 0 x2 3 2 x2 3 2 x2 3 2 x2 3 2 x2 3 2 x2 3 −3 −2 0 x1 2 −2 0 x1 2 Figure 2: Shape of the conditional (Left three plots) and joint (Right three plots) density model in log scale for several values of β, from dependence to independence. 2.1 Learning tree structure In their seminal paper, Chow and Liu showed how to learn the optimal tree structure approximation for a multidimensional probability density function [12]. This algorithm is easy to apply to this scenario, and requires just a few simple steps. First, given the current estimate for the filter matrix W, we calculate the response of each of the filters with all the patches in the data set. Using these responses, we calculate the mutual information between each pair of filters (nodes) to obtain a fully connected weighted graph. The final step is to find a maximal spanning tree over this graph. The resulting unrooted tree is the optimal tree approximation of the joint distribution function over all nodes. We will note that the tree is unrooted, and the root can be chosen arbitrarily - this means that there is no node, or filter, that is more important than the others - the direction in the tree graph is arbitrary as long as it is chosen in a consistent way. 2.2 Joint probability density functions Gabor filter responses on natural images exhibit highly kurtotic marginal distributions, with heavy tails and sharp peaks [13, 3, 14]. Joint pair wise distributions also exhibit this same shape with varying degrees of dependency between the components [13, 2]. The density model we use allows us to capture both the highly kurtotic nature of the distributions, while still allowing varying degrees of dependence using a mixing variable. We use a mix of two forms of finite, zero mean Gaussian Scale Mixtures (GSM). In one, the components are assumed to be independent of each other and in the other, they are assumed to be spherically distributed. The mixing variable linearly interpolates between the two, allowing us to capture the whole range of dependencies: p(x1 , x2 ; β) = βpdep (x1 , x2 ) + (1 − β)pind (x1 , x2 ) (4) When β = 1 the two components are dependent (unless p is Gaussian), whereas when β = 0 the two components are independent. For the density functions themselves, we use a finite GSM. The dependent case is a scale mixture of bivariate Gaussians: 2 πk N (x1 , x2 ; σk I) pdep (x1 , x2 ) = (5) k While the independent case is a product of two independent univariate Gaussians: 2 πk N (x1 ; σk ) pind (x1 , x2 ) = k 2 πk N (x2 ; σk ) (6) k 2 Estimating parameters πk and σk for the GSM is done directly from the data using Expectation Maximization. These parameters are the same for all edges and are estimated only once on the first iteration. See Figure 2 for a visualization of the conditional distribution functions for varying values of β. We will note that the marginal distributions for the two types of joint distributions above are the same. The mixing parameter β is also estimated using EM, but this is done for each edge in the tree separately, thus allowing our model to theoretically capture the fully independent case (ICA) and other degenerate models such as ISA. 2.3 Learning tree dependent components Given the current tree structure and density model, we can now learn the matrix W via gradient ascent on the log likelihood of the model. All learning is performed on whitened, dimensionally 3 reduced patches. This means that W is a N × N rotation (orthonormal) matrix, where N is the number of dimensions after dimensionality reduction (see details below). Given an image patch z we multiply it by W to get the response vector y: y = Wz (7) Now we can calculate the log likelihood of the given patch using the tree model (which we assume is constant at the moment): N log p(yi |ypai ) log p(y) = log p(yroot ) + (8) i=1 Where pai denotes the parent of node i. Now, taking the derivative w.r.t the r-th row of W: ∂ log p(y) ∂ log p(y) T = z ∂Wr ∂yr (9) Where z is the whitened natural image patch. Finally, we can calculate the derivative of the log likelihood with respect to the r-th element in y: ∂ log p(ypar , yr ) ∂ log p(y) = + ∂yr ∂yr c∈C(r) ∂ log p(yr , yc ) ∂ log p(yr ) − ∂yr ∂yr (10) Where C(r) denote the children of node r. In summary, the gradient ascent rule for updating the rotation matrix W is given by: t+1 t Wr = Wr + η ∂ log p(y) T z ∂yr (11) Where η is the learning rate constant. After update, the rows of W are orthonormalized. This gradient ascent rule is applied for several hundreds of patches (see details below), after which the tree structure is learned again as described in Section 2.1, using the new filter matrix W, repeating this process for many iterations. 3 Results and analysis 3.1 Validation Before running the full algorithm on natural image data, we wanted to validate that it does produce sensible results with simple synthetic data. We generated noise from four different models, one is 1/f independent Gaussian noise with 8 Discrete Cosine Transform (DCT) filters, the second is a simple ICA model with 8 DCT filters, and highly kurtotic marginals. The third was a simple ISA model - 4 subspaces, each with two filters from the DCT filter set. Distribution within the subspace was a circular, highly kurtotic GSM, and the subspaces were sampled independently. Finally, we generated data from a simple synthetic tree of DCT filters, using the same joint distributions as for the ISA model. These four synthetic random data sets were given to the algorithm - results can be seen in Figure 3 for the ICA, ISA and tree samples. In all cases the model learned the filters and distribution correctly, reproducing both the filters (up to rotations within the subspace in ISA) and the dependency structure between the different filters. In the case of 1/f Gaussian noise, any whitening transformation is equally likely and any value of beta is equally likely. Thus in this case, the algorithm cannot find the tree or the filters. 3.2 Learning from natural image patches We then ran experiments with a set of natural images [9]1 . These images contain natural scenes such as mountains, fields and lakes. . The data set was 50,000 patches, each 16 × 16 pixels large. The patches’ DC was removed and they were then whitened using PCA. Dimension was reduced from 256 to 128 dimensions. The GSM for the density model had 16 components. Several initial 1 available at http://www.cis.hut.fi/projects/ica/imageica/ 4 Figure 3: Validation of the algorithm. Noise was generated from three models - top row is ICA, middle row is ISA and bottom row is a tree model. Samples were then given to the algorithm. On the right are the resulting learned tree models. Presented are the learned filters, tree model (with white edges meaning β = 0, black meaning β = 1 and grays intermediate values) and an example of a marginal histogram for one of the filters. It can be seen that in all cases all parts of the model were correctly learned. Filters in the ISA case were learned up to rotation within the subspace, and all filters were learned up to sign. β values for the ICA case were always below 0.1, as were the values of β between subspaces in ISA. conditions for the matrix W were tried out (random rotations, identity) but this had little effect on results. Mini-batches of 10 patches each were used for the gradient ascent - the gradient of 10 patches was summed, and then normalized to have unit norm. The learning rate constant η was set to 0.1. Tree structure learning and estimation of the mixing variable β were done every 500 mini-batches. All in all, 50 iterations were done over the data set. 3.3 Filters and tree structure Figures 4 and 5 show the learned filters (WQ where Q is the whitening matrix) and tree structure (T ) learned from natural images. Unlike the ISA toy data in figure 3, here a full tree was learned and β is approximately one for all edges. The GSM that was learned for the marginals was highly kurtotic. It can be seen that resulting filters are edge filters at varying scales, positions and orientations. This is similar to the result one gets when applying ICA to natural images [5, 15]. More interesting is Figure 4: Left: Filter set learned from 16 × 16 natural image patches. Filters are ordered by PCA eigenvalues, largest to smallest. Resulting filters are edge filters having different orientations, positions, frequencies and phases. Right: The “feature” set learned, that is, columns of the pseudo inverse of the filter set. 5 Figure 5: The learned tree graph structure and feature set. It can be seen that neighboring features on the graph have similar orientation, position and frequency. See Figure 4 for a better view of the feature details, and see text for full detail and analysis. Note that the figure is rotated CW. 6 Optimal Orientation Optimal Frequency 3.5 Optimal Phase 7 3 0.8 6 2.5 Optimal Position Y 0.9 6 5 5 0.7 0.6 3 Child 1.5 4 Child 2 Child Child 4 3 2 1 1 0.4 0.3 2 0.5 0.5 0.2 0 1 0.1 0 0 1 2 Parent 3 4 0 0 2 4 Parent 6 8 0 0 1 2 3 Parent 4 5 6 0 0.2 0.4 0.6 Parent 0.8 1 Figure 6: Correlation of optimal parameters in neighboring nodes in the tree graph. Orientation, frequency and position are highly correlated, while phase seems to be entirely uncorrelated. This property of correlation in frequency and orientation, while having no correlation in phase is related to the ubiquitous energy model of complex cells in V1. See text for further details. Figure 7: Left: Comparison of log likelihood values of our model with PCA, ICA and ISA. Our model gives the highest likelihood. Right: Samples taken at random from ICA, ISA and our model. Samples from our model appear to contain more long-range structure. the tree graph structure learned along with the filters which is shown in Figure 5. It can be seen that neighboring filters (nodes) in the tree tend to have similar position, frequency and orientation. Figure 6 shows the correlation of optimal frequency, orientation and position for neighboring filters in the tree - it is obvious that all three are highly correlated. Also apparent in this figure is the fact that the optimal phase for neighboring filters has no significant correlation. It has been suggested that filters which have the same orientation, frequency and position with different phase can be related to complex cells in V1 [2, 16]. 3.4 Comparison to other models Since our model is a generalization of both ICA and ISA we use it to learn both models. In order to learn ICA we used the exact same data set, but the tree had no edges and was not learned from the data (alternatively, we could have just set β = 0). For ISA we used a forest architecture of 2 node trees, setting β = 1 for all edges (which means a spherical symmetric distribution), no tree structure was learned. Both models produce edge filters similar to what we learn (and to those in [5, 15, 6]). The ISA model produces neighboring nodes with similar frequency and orientation, but different phase, as was reported in [2]. We also compare to a simple PCA whitening transform, using the same whitening transform and marginals as in the ICA case, but setting W = I. We compare the likelihood each model gives for a test set of natural image patches, different from the one that was used in training. There were 50,000 patches in the test set, and we calculate the mean log likelihood over the entire set. The table in Figure 7 shows the result - as can be seen, our model performs better in likelihood terms than both ICA and ISA. Using a tree model, as opposed to more complex graphical models, allows for easy sampling from the model. Figure 7 shows 20 random samples taken from our tree model along with samples from the ICA and ISA models. Note the elongated structures (e.g. in the bottom left sample) in the samples from the tree model, and compare to patches sampled from the ICA and ISA models. 7 40 40 30 30 20 20 10 1 10 0.8 0.6 0.4 0 0.2 0 0 1 2 3 Orientation 4 0 0 2 4 6 Frequency 8 0 2 4 Phase Figure 8: Left: Interpretation of the model. Given a patch, the response of all edge filters is computed (“simple cells”), then at each edge, the corresponding nodes are squared and summed to produce the response of the “complex cell” this edge represents. Both the response of complex cells and simple cells is summed to produce the likelihood of the patch. Right: Response of a “complex cell” in our model to changing phase, frequency and orientation. Response in the y-axis is the sum of squares of the two filters in this “complex cell”. Note that while the cell is selective to orientation and frequency, it is rather invariant to phase. 3.5 Tree models and complex cells One way to interpret the model is looking at the likelihood of a given patch under this model. For the case of β = 1 substituting Equation 4 into Equation 3 yields: 2 2 ρ( yi + ypai ) − ρ(|ypai |) log L(z) = (12) i 2 Where ρ(x) = log k πk N (x; σk ) . This form of likelihood has an interesting similarity to models of complex cells in V1 [2, 4]. In Figure 8 we draw a simple two-layer network that computes the likelihood. The first layer applies linear filters (“simple cells”) to the image patch, while the second layer sums the squared outputs of similarly oriented filters from the first layer, having different phases, which are connected in the tree (“complex cells”). Output is also dependent on the actual response of the “simple cell” layer. The likelihood here is maximized when both the response of the parent filter ypai and the child yi is zero, but, given that one filter has responded with a non-zero value, the likelihood is maximized when the other filter also fires (see the conditional density in Figure 2). Figure 8 also shows an example of the phase invariance which is present in the learned

6 0.11507623 139 nips-2009-Linear-time Algorithms for Pairwise Statistical Problems

7 0.10617921 255 nips-2009-Variational Inference for the Nested Chinese Restaurant Process

8 0.093603827 141 nips-2009-Local Rules for Global MAP: When Do They Work ?

9 0.08678478 72 nips-2009-Distribution Matching for Transduction

10 0.08200267 144 nips-2009-Lower bounds on minimax rates for nonparametric regression with additive sparsity and smoothness

11 0.08056853 198 nips-2009-Rank-Approximate Nearest Neighbor Search: Retaining Meaning and Speed in High Dimensions

12 0.079398774 11 nips-2009-A General Projection Property for Distribution Families

13 0.074642338 75 nips-2009-Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models

14 0.074139886 192 nips-2009-Posterior vs Parameter Sparsity in Latent Variable Models

15 0.073812455 17 nips-2009-A Sparse Non-Parametric Approach for Single Channel Separation of Known Sounds

16 0.073729679 214 nips-2009-Semi-supervised Regression using Hessian energy with an application to semi-supervised dimensionality reduction

17 0.071975984 126 nips-2009-Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering

18 0.070051879 116 nips-2009-Information-theoretic lower bounds on the oracle complexity of convex optimization

19 0.068763442 259 nips-2009-Who’s Doing What: Joint Modeling of Names and Verbs for Simultaneous Face and Pose Annotation

20 0.068207905 120 nips-2009-Kernels and learning curves for Gaussian process regression on random graphs


similar papers computed by lsi model

lsi for this paper:

topicId topicWeight

[(0, -0.243), (1, 0.052), (2, -0.035), (3, -0.012), (4, -0.025), (5, -0.071), (6, 0.027), (7, 0.041), (8, 0.012), (9, -0.095), (10, -0.148), (11, -0.004), (12, 0.095), (13, 0.065), (14, 0.047), (15, -0.014), (16, 0.085), (17, -0.023), (18, 0.066), (19, 0.095), (20, -0.011), (21, -0.209), (22, -0.019), (23, 0.096), (24, -0.007), (25, -0.068), (26, 0.148), (27, 0.08), (28, 0.026), (29, -0.025), (30, -0.045), (31, -0.092), (32, 0.032), (33, 0.023), (34, 0.014), (35, -0.081), (36, -0.074), (37, -0.025), (38, 0.086), (39, -0.055), (40, 0.025), (41, 0.059), (42, 0.013), (43, 0.084), (44, 0.154), (45, 0.02), (46, 0.03), (47, -0.085), (48, 0.055), (49, -0.058)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.96217513 129 nips-2009-Learning a Small Mixture of Trees

Author: M. P. Kumar, Daphne Koller

Abstract: The problem of approximating a given probability distribution using a simpler distribution plays an important role in several areas of machine learning, for example variational inference and classification. Within this context, we consider the task of learning a mixture of tree distributions. Although mixtures of trees can be learned by minimizing the KL-divergence using an EM algorithm, its success depends heavily on the initialization. We propose an efficient strategy for obtaining a good initial set of trees that attempts to cover the entire observed distribution by minimizing the α-divergence with α = ∞. We formulate the problem using the fractional covering framework and present a convergent sequential algorithm that only relies on solving a convex program at each iteration. Compared to previous methods, our approach results in a significantly smaller mixture of trees that provides similar or better accuracies. We demonstrate the usefulness of our approach by learning pictorial structures for face recognition.

2 0.72340232 31 nips-2009-An LP View of the M-best MAP problem

Author: Menachem Fromer, Amir Globerson

Abstract: We consider the problem of finding the M assignments with maximum probability in a probabilistic graphical model. We show how this problem can be formulated as a linear program (LP) on a particular polytope. We prove that, for tree graphs (and junction trees in general), this polytope has a particularly simple form and differs from the marginal polytope in a single inequality constraint. We use this characterization to provide an approximation scheme for non-tree graphs, by using the set of spanning trees over such graphs. The method we present puts the M -best inference problem in the context of LP relaxations, which have recently received considerable attention and have proven useful in solving difficult inference problems. We show empirically that our method often finds the provably exact M best configurations for problems of high tree-width. A common task in probabilistic modeling is finding the assignment with maximum probability given a model. This is often referred to as the MAP (maximum a-posteriori) problem. Of particular interest is the case of MAP in graphical models, i.e., models where the probability factors into a product over small subsets of variables. For general models, this is an NP-hard problem [11], and thus approximation algorithms are required. Of those, the class of LP based relaxations has recently received considerable attention [3, 5, 18]. In fact, it has been shown that some problems (e.g., fixed backbone protein design) can be solved exactly via sequences of increasingly tighter LP relaxations [13]. In many applications, one is interested not only in the MAP assignment but also in the M maximum probability assignments [19]. For example, in a protein design problem, we might be interested in the M amino acid sequences that are most stable on a given backbone structure [2]. In cases where the MAP problem is tractable, one can devise tractable algorithms for the M best problem [8, 19]. Specifically, for low tree-width graphs, this can be done via a variant of max-product [19]. However, when finding MAPs is not tractable, it is much less clear how to approximate the M best case. One possible approach is to use loopy max-product to obtain approximate max-marginals and use those to approximate the M best solutions [19]. However, this is largely a heuristic and does not provide any guarantees in terms of optimality certificates or bounds on the optimal values. LP approximations to MAP do enjoy such guarantees. Specifically, they provide upper bounds on the MAP value and optimality certificates. Furthermore, they often work for graphs with large tree-width [13]. The goal of the current work is to leverage the power of LP relaxations to the M best case. We begin by focusing on the problem of finding the second best solution. We show how it can be formulated as an LP over a polytope we call the “assignment-excluding marginal polytope”. In the general case, this polytope may require an exponential number of inequalities, but we prove that when the graph is a tree it has a very compact representation. We proceed to use this result to obtain approximations to the second best problem, and show how these can be tightened in various ways. Next, we show how M best assignments can be found by relying on algorithms for 1 second best assignments, and thus our results for the second best case can be used to devise an approximation algorithm for the M best problem. We conclude by applying our method to several models, showing that it often finds the exact M best assignments. 1 The M-best MAP problem and its LP formulation Consider a function on n variables defined as: f (x1 , . . . , xn ; θ) = θij (xi , xj ) + ij∈E θi (xi ) (1) i∈V where V and E are the vertices and nodes of a graph G with n nodes. We shall be interested in the M assignments with largest f (x; θ) value.1 Denote these by x(1) , . . . , x(M) , so that x(1) is the assignment that maximizes f (x; θ), x(2) is the 2nd best assignment, etc. The MAP problem (i.e., finding x(1) ) can be formulated as an LP as follows [15]. Let µ be a vector of distributions that includes {µij (xi , xj )}ij∈E over edge variables and {µi (xi )}i∈V over nodes. The set of µ that arise from some joint distribution is known as the marginal polytope [15] and is denoted by M(G). Formally: M(G) = {µ | ∃p(x) ∈ ∆ s.t. p(xi , xj ) = µij (xi , xj ) , p(xi ) = µi (xi )} . where ∆ is the set of distributions on x. The MAP problem can then be shown to be equivalent to the following LP:2 max f (x; θ) = max µ · θ , (2) x µ∈M(G) It can be shown that this LP always has a maximizing µ that is a vertex of M(G) and is integral. Furthermore, this µ corresponds to the MAP assignment x(1) . Although the number of variables in this LP is only O(|E| + |V |), the difficulty comes from an exponential number of linear inequalities generally required to describe the marginal polytope M(G). We shall find it useful to define a mapping between assignments x and integral vertices of the polytope. Given an integral vertex v ∈ M(G), define x(v) to be the assignment that maximizes vi (xi ). And, given an assignment z define v(z) to be the integral vertex in M(G) corresponding to the assignment z. Thus the LP in Eq. 2 will be maximized by v(x(1) ). One simple outer bound of the marginal polytope is the local polytope ML (G), which only enforces pairwise constraints between variables:     µi (xi ) = 1 (3) µij (xi , xj ) = µj (xj ), µij (xi , xj ) = µi (xi ), ML (G) = µ ≥ 0   x x x i j i The LP relaxation is then to maximize µ · θ where µ ∈ ML (G). For tree structured graphs, ML (G) = M(G) [15] and thus the LP relaxation yields the exact MAP x(1) . An LP Formulation for the 2nd -best MAP 2 Assume we found the MAP assignment x(1) and are now interested in finding x(2) . Is there a simple LP whose solution yields x(2) ? We begin by focusing on the case where G is a tree so that the local LP relaxation is exact. We first treat the case of a connected tree. To construct an LP whose solution is x(2) , a natural approach is to use the LP for x(1) (i.e., the LP in Eq. 2) but somehow eliminate the solution x(1) using additional constraints. This, however, is somewhat trickier than it sounds. The key difficulty is that the new constraints should not generate fractional vertices, so that the resulting LP is still exact. We begin by defining the polytope over which we need to optimize in order to obtain x(2) . 1 2 This is equivalent to finding P maximum probability assignments for a model p(x) ∝ ef (x;θ) . the P P P We use the notation µ · θ = ij∈E xi ,xj µij (xi , xj )θij (xi , xj ) + i xi µi (xi )θi (xi ) 2 Definition 1. The assignment-excluding marginal polytope is defined as: ˆ M(G, z) = {µ | ∃p(x) ∈ ∆ s.t. p(z) = 0, p(xi , xj ) = µij (xi , xj ), p(xi ) = µi (xi )} . ˆ M(G, z) is simply the convex hull of all (integral) vectors v(x) for x = z. (4) ˆ The following result shows that optimizing over M(G, x(1) ) will yield the second best soluˆ tion x(2) , so that we refer to M(G, x(1) ) as the second-best marginal polytope. Lemma 1. The 2nd best solution is obtained via the following LP: maxx=x(1) f (x; θ) = maxµ∈M(G,x(1) ) µ · θ. Furthermore, the µ that maximizes the LP on ˆ the right is integral and corresponds to the second-best MAP assignment x(2) . The proof is similar to that of Eq. 2: instead of optimizing over x, we optimize over distributions p(x), while enforcing that p(x(1) ) = 0 so that x(1) is excluded from the maximization. The key question which we now address is how to obtain a simple characterization of ˆ ˆ M(G, z). Intuitively, it would seems that M(G, z) should be “similar” to M(G), such that it can be described as M(G) plus some constraints that “block” the assignment z. To illustrate the difficulty in finding such “blocking” constraints, consider the following constraint, originally suggested by Santos [10]: i µi (zi ) ≤ n − 1. This inequality is not satisfied by µ = v(z) since v(z) attains the value n for the LHS of the above. Furthermore, for any x = z and µ = v(x), the LHS would be n − 1 or less. Thus, this inequality separates ˆ v(z) from all other integral vertices. One might conclude that we can define M(G, z) by adding this inequality to M(G). The difficulty is that the resulting polytope has fractional vertices,3 and maximizing over it won’t generally yield an integral solution. It turns out that there is a different inequality that does yield an exact characterization of ˆ M(G, z) when G is a tree. We now define this inequality and state our main theorem. Definition 2. Consider the functional I(µ, z) (which is linear in µ): (1 − di )µi (zi ) + I(µ, z) = i µij (zi , zj ) (5) ij∈E where di is the degree of node i in the tree graph G. ˆ Theorem 1. Adding the single inequality I(µ, z) ≤ 0 to M(G) yields M(G, z). ˆ M(G, z) = {µ | µ ∈ M(G), I(µ, z) ≤ 0 } (6) The theorem is proved in the appendix. Taken together with Lemma 1, it implies that x(2) may be obtained via an LP that is very similar to the MAP-LP, but has an additional constraint. We note the interesting similarity between I(µ, z) and the Bethe entropy [20]. The only difference is that in Bethe, µi , µij are replaced by H(Xi ), H(Xi , Xj ) respectively.4 The theorem also generalizes to the case where G is not a tree, but we have a junction tree for G. In this case, the theorem still holds if we define a generalized I(µ, z) inequality as: (1 − dS )µS (zS ) + S∈S µC (zC ) ≤ 0 (7) C∈C where C and S are the junction tree cliques and their separators, respectively, and dS is the number of cliques that intersect on separator S. In this case, the marginal polytope should enforce consistency between marginals µC (zC ) and their separators µS (zS ). However, such a characterization requires variables whose cardinality is exponential in the tree-width and is thus tractable only for graphs of low tree-width. In the next section, we address approximations for general graphs. A corresponding result exists for the case when G is a forest. In this case, the inequality in Eq. 6 is modified to: I(µ, z) ≤ |P | − 1, where |P | denotes the number of connected components of G. Interestingly, for a graph without edges, this gives the Santos inequality. 3 Consider the case of a single edge between 2 nodes where the MAP assignment is (0, 0). Adding the inequality µ1 (0) + µ2 (0) ≤ 1 produces the fractional vertex (0.5, 0.5). 4 The connection to Bethe can be more clearly understood from a duality-based proof of Theorem 1. We will cover this in an extended version of the manuscript. 3 2nd best LPs for general graphs - Spanning tree inequalities 3 When the graph G is not a tree, the marginal polytope M(G) generally requires an exponential number of inequalities. However, as mentioned above, it does have an exact description in terms of marginals over cliques and separators of a junction tree. Given such marginals on ˆ junction tree cliques, we also have an exact characterization of M(G, z) via the constraint in Eq. 7. However, in general, we cannot afford to be exponential in tree-width. Thus a common strategy [15] is to replace M(G) with an outer bound that enforces consistency between marginals on overlapping sets of variables. The simplest example is ML (G) in Eq. 3. ˆ In what follows, we describe an outer-bound approximation scheme for M(G, z). We use ML (G) as the approximation for M(G) (more generally ML (G) can enforce consistency between any set of small regions, e.g., triplets). When G is not a tree, the linear constraint in ˆ Eq. 6 will no longer suffice to derive M(G, z). Moreover, direct application of the inequality will incorrectly remove some integral vertices. An alternative approach is to add inequalities that separate v(z) from the other integral vertices. This will serve to eliminate more and more fractional vertices, and if enough constraints are added, this may result in an integral solution. One obvious family of such constraints are those corresponding to spanning trees in G and have the form of Eq. 5. Definition 3. Consider any T that is a spanning tree of G. Define the functional I T (µ, z): (1 − dT )µi (zi ) + i I T (µ, z) = i µij (zi , zj ) (8) ij∈T where dT is the degree of i in T . We refer to I T (µ, z) ≤ 0 as a spanning tree inequality. i For any sub-tree T of G, the corresponding spanning tree inequality separates the vertex v(z) from the other vertices. This can be shown via similar arguments as in the proof of Theorem 1. Note, however, that the resulting polytope may still have fractional vertices. The above argument shows that any spanning tree provides a separating inequality for ˆ M(G, z). In principle, we would like to use as many such inequalities as possible. Definition 4. The spanning tree assignment-excluding marginal polytope is defined as: ˆ MST (G, z) = µ | µ ∈ ML (G), L ∀ tree T ⊆ E I T (µ, z) ≤ 0 (9) where the ST notation indicates the inclusion of all spanning tree inequalities for G.5 Thus, we would actually like to perform the following optimization problem: max ˆ µ∈MST (G,z) L µ·θ ˆ as an approximation to optimization over M(G, z); i.e., we seek the optimal µ subject to all spanning tree inequalities for G with the ambition that this µ be integral and thus provide the non-z MAP assignment, with a certificate of optimality. Although the number of spanning trees is exponential in n, it turns out that all spanning inequalities can be used in practice. One way to achieve this is via a cutting plane algorithm [12] that finds the most violated spanning tree inequality and adds it to the LP. To implement this efficiently, we note that for a particular µ and a spanning tree T , the value of I T (µ, z) can be decomposed into a sum over the edges in T (and a T -independent constant): I T (µ, z) = µi (zi ) µij (zi , zj ) − µi (zi ) − µj (zj ) + (10) i ij∈T The tree maximizing the above is the maximum-weight spanning tree with edge-weights wij = µij (zi , zj ) − µi (zi ) − µj (zj ). It can thus be found efficiently. The cutting plane algorithm proceeds as follows. We start by adding an arbitrary spanning tree. Then, as long as the optimal µ is fractional, we find the spanning tree inequality that µ most violates (where this is implemented via the maximum-weight spanning tree). This constraint will necessarily remove µ from the polytope. If there are no violated inequalities 5 ˆ ˆL Note that M(G, z) ⊆ MST (G, z) ⊂ ML (G). 4 but µ is still fractional, then spanning tree inequalities do not suffice to find an integral solution (but see below on hypertree constraints to add in this case). In practice, we found that only a relatively small number of inequalities are needed to successfully yield an integral solution, or determine that all such inequalities are already satisfied. An alternative approach for solving the all spanning-tree problem is to work via the dual. The dual variables roughly correspond to points in the spanning tree polytope [16], optimization over which can be done in polynomial time, e.g., via the ellipsoid algorithm. We do not pursue this here since the cutting plane algorithm performed well in our experiments. ˆ As mentioned earlier, we can exactly characterize M(G, z) using Eq. 7, albeit at a cost exponential in the tree-width of the graph. A practical compromise would be to use inequalities over clique trees of G, where the cliques are relatively small, e.g., triplets. The corresponding constraint (Eq. 7 with the small cliques and their separators) will necessarily separate v(z) from the other integral vertices. Finding the maximally violated such inequality is an NP-hard problem, equivalent to a prize collecting Steiner tree problem, but recent work has found that such problems are often exactly solvable in practice [7]. It thus might be practical to include all such trees as constraints using a cutting plane algorithm. 4 From 2nd -best to M-best Thus far, we only dealt with the 2nd best case. As we show now, it turns out that the 2nd -best formalism can be used to devise an algorithm for M best. We begin by describing an algorithm for the exact M best and then show how it can be used to approximate those via the approximations for 2nd best described above. Fig. 1 describes our scheme, which we call Partitioning for Enumerating Solutions (or PES) for solving the M best problem. The scheme is general and only assumes that MAP-“like” problems can be solved. It is inspired by several pre-existing M best solution schemes [4, 6, 8, 19] but differs from them in highlighting the role of finding a second best solution within a given subspace. for m ← 1 to M do if m = 1 then Run MAP solver to obtain the best assignment: x(1) ≡ arg max f (x; θ) CONSTRAINTS1 ← ∅ else k ←− arg max ′ k′ ∈{1,...,m−1} f (y(k ) ; θ) // sub-space containing mth best assignment x(m) ← y(k) // mth best assignment // A variable choice that distinguishes x(m) from x(k) : (m) (v, a) ← any member of the set {(i, xi (m) ) : xi (k) = xi } CONSTRAINTSm ← CONSTRAINTSk ∪ {xv = a} // Eliminate x(k) (as MAP) from subspace m CONSTRAINTSk ← CONSTRAINTSk ∪ {xv = a} // Eliminate x(m) (as 2nd -best) from subspace k y(k) ← CalcNextBestSolution(CONSTRAINTSk , x(k) ) end y(m) ← CalcNextBestSolution(CONSTRAINTSm , x(m) ) end return {x(m) }M m=1 /* Find next best solution in sub-space defined by CONSTRAINTS */ Function CalcNextBestSolution(CONSTRAINTS, x(∗) ) // x(∗) is the MAP in the sub-space defined by CONSTRAINTS: Run MAP solver to obtain the second-best solution: y ≡ arg max f (x; θ), and return y. x=x(∗) ,CONSTRAINTS end Figure 1: Pseudocode for the PES algorithm. The modus operandi of the PES algorithm is to efficiently partition the search space while systematically excluding all previously determined assignments. Significantly, any MAP 5 Attractive Grids Ranks Run-times 1 50 Mixed Grids Ranks Run-times 1 50 0.5 0 S N B 0 Hard Protein SCP Ranks Run-times 1 50 0.5 S N B 0 0 S+R N+R B+R 0.5 S+R N+R B+R 0 S+R B B+R 0 S+R B B+R Figure 2: Number of best ranks and normalized run-times for the attractive and mixed grids, and the more difficult protein SCP problems. S, N, and B denote the STRIPES, Nilsson, and BMMF algorithms. Algorithms marked with +R denote that regions of variables were added for those runs. solver can be plugged into it, on the condition that it is capable of solving the arg max in the CalcNextBestSolution subroutine. The correctness of PES can be shown by observing that at the M th stage, all previous best solutions are excluded from the optimization and no other assignment is excluded. Of note, this simple partitioning scheme is possible due to the observation that the first-best and second-best MAP assignments must differ in the assignment of at least one variable in the graph. The main computational step of the PES algorithm is to maximize f (x; θ) subject to x = x(∗) and x ∈ CONSTRAINTS (see the CalcNextBestSolution subroutine). The CONSTRAINTS set merely enforces that some of the coordinates of x are either equal to or different from specified values.6 Within the LP, these can be enforced by setting µi (xi = a) = 1 or µi (xi = a) = 0. It can be shown that if one optimizes µ · θ with ˆ these constraints and µ ∈ M(G, x(∗) ), the solution is integral. Thus, the only element ˆ requiring approximation in the general case is the description of M(G, x(∗) ). We choose as ˆ this approximation the polytope MST (G, x(∗) ) in Eq. 9. We call the resulting approximaL tion algorithm Spanning TRee Inequalities and Partitioning for Enumerating Solutions, or STRIPES. In the next section, we evaluate this scheme experimentally. 5 Experiments We compared the performance of STRIPES to the BMMF algorithm [19] and the Lawler/Nilsson algorithm [6, 8]. Nilsson’s algorithm is equivalent to PES where the 2nd best assignment is obtained from maximizations within O(n) partitions, so that its runtime is O(n) times the cost of finding a single MAP. Here we approximated each MAP with its LP relaxation (as in STRIPES), so that both STRIPES and Nilsson come with certificates of optimality when their LP solutions are integral. BMMF relies on loopy BP to approximate the M best solutions.7 We used M = 50 in all experiments. To compare the algorithms, we pooled all their solutions, noting the 50 top probabilities, and then counted the fraction of these that any particular algorithm found (its solution rank). For run-time comparisons, we normalized the times by the longest-running algorithm for each example. We begin by considering pairwise MRFs on binary grid graphs of size 10 × 10. In the first experiment, we used an Ising model with attractive (submodular) potentials, a setting in which the pairwise LP relaxation is exact [14]. For each grid edge ij, we randomly chose Jij ∈ [0, 0.5], and local potentials were randomized in the range ±0.5. The results for 25 graphs are shown in Fig. 2. Both the STRIPES and Nilsson algorithms obtained the 50 optimal solutions (as learned from their optimality certificates), while BMMF clearly fared less well for some of the graphs. While the STRIPES algorithm took < 0.5 to 2 minutes to run, the Nilsson algorithm took around 13 minutes. On the other hand, BMMF was quicker, taking around 10 seconds per run, while failing to find a significant portion of the top solutions. Overall, the STRIPES algorithm was required to employ up to 19 spanning tree inequalities per calculation of second-best solution. 6 This is very different from the second best constraint, since setting x1 = 1 blocks all assignments with this value, as opposed to setting x = 1 which blocks only the assignment with all ones. 7 For BMMF, we used the C implementation at http://www.cs.huji.ac.il/~ talyam/ inference.html. The LPs for STRIPES and Nilsson were solved using CPLEX. 6 Next, we studied Ising models with mixed interaction potentials (with Jij and the local potentials randomly chosen in [−0.5, 0.5]). For almost all of the 25 models, all three algorithms were not able to successfully find the top solutions. Thus, we added regions of triplets (two for every grid face) to tighten the LP relaxation (for STRIPES and Nilsson) and to perform GBP instead of BP (for BMMF). This resulted in STRIPES and Nilsson always provably finding the optimal solutions, and BMMF mostly finding these solutions (Fig. 2). For these more difficult grids, however, STRIPES was the fastest of the algorithms, taking 0.5 - 5 minutes. On the other hand, the Nilsson and BMMF algorithms took 18 minutes and 2.5 7 minutes, respectively. STRIPES added up to 23 spanning tree inequalities per iteration. The protein side-chain prediction (SCP) problem is to to predict the placement of amino acid side-chains given a protein backbone [2, 18]. Minimization of a protein energy function corresponds to finding a MAP assignment for a pairwise MRF [19]. We employed the dataset of [18] (up to 45 states per variable, mean approximate tree-width 50), running all algorithms to calculate the optimal side-chain configurations. For 315 of 370 problems in the dataset, the first MAP solution was obtained directly as a result of the LP relaxation having an integral solution (“easy” problems). STRIPES provably found the subsequent top 50 solutions within 4.5 hours for all but one of these cases (up to 8 spanning trees per calculation), and BMMF found the same 50 solutions for each case within 0.5 hours; note that only STRIPES provides a certificate of optimality for these solutions. On the other hand, only for 146 of the 315 problems was the Nilsson method able to complete within five days; thus, we do not compare its performance here. For the remaining 55 (“hard”) problems (Fig. 2), we added problem-specific triplet regions using the MPLP algorithm [13]. We then ran the STRIPES algorithm to find the optimal solutions. Surprisingly, it was able to exactly find the 50 top solutions for all cases, using up to 4 standard spanning tree inequalities per second-best calculation. The STRIPES run-times for these problems ranged from 6 minutes to 23 hours. On the other hand, whether running BMMF without these regions (BP) or with the regions (GBP), it did not perform as well as STRIPES in terms of the number of high-ranking solutions or its speed. To summarize, STRIPES provably found the top 50 solutions for 369 of the 370 protein SCP problems. 6 Conclusion ˆ In this work, we present a novel combinatorial object M(G, z) and show its utility in obtaining the M best MAP assignments. We provide a simple characterization of it for tree structured graphs, and show how it can be used for approximations in non-tree graphs. As with the marginal polytope, many interesting questions arise about the properties of ˆ M(G, z). For example, in which non-tree cases can we provide a compact characterization (e.g., as for the cut-polytope for planar graphs [1]). Another compelling question is in which problems the spanning tree inequalities are provably optimal. An interesting generalization of our method is to predict diverse solutions satisfying some local measure of “distance” from each other, e.g., as in [2]. Here we studied the polytope that results from excluding one assignment. An intriguing question is to characterize the polytope that excludes M assignments. We have found that it does not simply correspond to adding M constraints I(µ, z i ) ≤ 0 for i = 1, . . . , M , so its ˆ geometry is apparently more complicated than that of M(G, z). Here we used LP solvers to solve for µ. Such generic solvers could be slow for large-scale problems. However, in recent years, specialized algorithms have been suggested for solving MAP-LP relaxations [3, 5, 9, 17]. These use the special form of the constraints to obtain local-updates and more scalable algorithms. We intend to apply these schemes to our method. Finally, our empirical results show that our method indeed leverages the power of LP relaxations and yields exact M best optimal solutions for problems with large tree-width. Acknowledgements We thank Nati Linial for his helpful discussions and Chen Yanover and Talya Meltzer for their insight and help in running BMMF. We also thank the anonymous reviewers for their useful advice. 7 A Proof of Theorem 1 Recall that for any µ ∈ M(G), there exists a probability density p(x) s.t. µ = x p(x)v(x). Denote pµ (z) as the minimal value of p(z) among all p(x) that give µ. We prove that ˆ pµ (z) = max(0, I(µ, z)), from which the theorem follows (since pµ (z) = 0 iff µ ∈ M(G, z)). The proof is by induction on n. For n = 1, the node has degree 0, so I(µ, z) = µ1 (z1 ). Clearly, pµ (z) = µ1 (z1 ), so pµ (z) = I(µ, z). For n > 1, there must exist a leaf in G ˆ (assume that its index is n and its neighbor’s is n − 1). Denote G as the tree obtained ˆ by removing node n and its edge with n − 1. For any assignment x, denote x as the corresponding sub-assignment for the first n − 1 variables. Also, any µ can be derived by ˆ ˆ adding appropriate coordinates to a unique µ ∈ M(G). For an integral vertex µ = v(x), ˆˆ ˆ ˆ ˆ ˆ x denote its projected µ as v (ˆ ). Denote by I(µ, z ) the functional in Eq. 5 applied to G. For ˆ any µ and its projected µ, it can be seen that: ˆˆ ˆ I(µ, z) = I(µ, z ) − α (11) where we define α = xn =zn µn−1,n (zn−1 , xn ) (so 0 ≤ α ≤ 1). The inductive assumption ˆ ˆ ˆ gives a p(ˆ ) that has marginals µ and also p(ˆ ) = max(0, I(µ, z )). We next use p(ˆ ) to ˆx ˆz ˆx construct a p(x) that has marginals µ and the desired minimal pµ (z). Consider three cases: ˆˆ ˆ I. I(µ, z) ≤ 0 and I(µ, z ) ≤ 0. From the inductive assumption, pµ (ˆ ) = 0, so we define: ˆˆ z µn−1,n (xn−1 , xn ) p(x) = p(ˆ ) ˆx (12) µn−1 (xn−1 ) which indeed marginalizes to µ, and p(z) = 0 so that pµ (z) = 0 as required. If µn−1 (xn−1 ) = 0, then p(ˆ ) is necessarily 0, in which case we define p(x) = 0. Note that this construction ˆx is identical to that used in proving that ML (G) = M(G) for a tree graph G. ˆˆ ˆ II. I(µ, z) > 0. Based on Eq. 11 and α ≥ 0, we have I(µ, z ) > 0. Applying the inductive ˆ µ, z ) = pµ (ˆ ) > 0. Now, define p(x) so that p(z) = I(µ, z): ˆ assumption to µ, we obtain I( ˆ ˆ ˆˆ z xl , l ≤ n − 2 δ(xn−1 = zn−1 ) δ(xn = zn ) p(x) no constraint 0 no constraint As in Eq. 12 0 0 ∃ l x l = zl 1 ∀ l x l = zl 1 µn−1,n (zn−1 , xn ) 1 1 p(ˆ ) ˆx 0 I(µ, z) Simple algebra shows that p(x) is non-negative and has µ as marginals. We now show that p(z) is minimal. Based on the inductive assumption and Eq. 11, it can easily be shown that I(v(z), z) = 1, I(v(x), z) ≤ 0 for x = z. For any p(x) s.t. µ = x p(x)v(x), from linearity, I(µ, z) = p(z) + x=z p(x)I(v(x), z) ≤ p(z) (since I(v(x), z) ≤ 0 for x = z). Since the p(z) we define achieves this lower bound, it is clearly minimal. ˆˆ ˆ ˆ III. I(µ, z) ≤ 0 but I(µ, z ) > 0. Applying the inductive assumption to µ, we see that ˆ µ, z ) > 0; Eq. 11 implies α − I(µ, z ) ≥ 0. Define β = µn−1 (zn−1 ) − pµ (ˆ ), which ˆˆ ˆ ˆˆ z pµ (ˆ ) = I( ˆ ˆ ˆˆ z ˆ is non-negative since µn−1 (zn−1 ) = µn−1 (ˆ n−1 ) and p marginalizes to µ. Define p(x) as: ˆ z ˆ xl , l ≤ n − 2 δ(xn−1 = zn−1 ) δ(xn = zn ) no constraint 0 no constraint ∃ l x l = zl As in Eq. 12 0 ˆ ˆ z µ (z ,x ) p(ˆ ) n−1,n βn−1 n α−I(µ,ˆ ) ˆx α µ (z ,z ) p(ˆ ) n−1,n βn−1 n ˆx (z ,x ) ˆˆ ˆ µ I(µ, z ) n−1,n αn−1 n 1 0 0 1 1 ∀ l x l = zl p(x) 1 which indeed marginalizes to µ, and p(z) = 0 so that pµ (z) = 0, as required. 8 References [1] F. Barahona. On cuts and matchings in planar graphs. Math. Program., 60(1):53–68, 1993. [2] M. Fromer and C. Yanover. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Proteins: Structure, Function, and Bioinformatics, 75:682–705, 2009. [3] A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 21. MIT Press, Cambridge, MA, 2007. [4] E. Kloppmann, G. M. Ullmann, and T. Becker. An extended dead-end elimination algorithm to determine gap-free lists of low energy states. Journal of Comp. Chem., 28:2325–2335, 2007. [5] N. Komodakis and N. Paragios. Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles. In D. Forsyth, P. Torr, and A. Zisserman, editors, ECCV, pages 806–820, Heidelberg, Germany, 2008. Springer. [6] E. L. Lawler. A procedure for computing the K best solutions to discrete optimization problems and its application to the shortest path problem. Management Science, 18(7):401–405, 1972. [7] I. Ljubic, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. Mathematical Programming, 105:427–449, Feb 2006. [8] D. Nilsson. An efficient algorithm for finding the M most probable configurations in probabilistic expert systems. Statistics and Computing, 8:159–173, Jun 1998. [9] P. Ravikumar, A. Agarwal, and M. Wainwright. Message-passing for graph-structured linear programs: proximal projections, convergence and rounding schemes. In Proc. of the 25th international conference on Machine learning, pages 800–807, New York, NY, USA, 2008. ACM. [10] E. Santos. On the generation of alternative explanations with implications for belief revision. In Proc. of the 7th Annual Conference on Uncertainty in Artificial Intelligence, 1991. [11] Y. Shimony. Finding the MAPs for belief networks is NP-hard. 68(2):399–410, 1994. Aritifical Intelligence, [12] D. Sontag and T. Jaakkola. New outer bounds on the marginal polytope. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1393–1400. MIT Press, Cambridge, MA, 2007. [13] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP relaxations for MAP using message passing. In Proc. of the 24th Annual Conference on Uncertainty in Artificial Intelligence, pages 503–510, 2008. [14] B. Taskar, S. Lacoste-Julien, and M. I. Jordan. Structured prediction, dual extragradient and bregman projections. J. Mach. Learn. Res., 7:1627–1653, 2006. [15] M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn., 1(1-2):1–305, 2008. [16] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. A new class of upper bounds on the log partition function. IEEE Transactions on Information Theory, 51(7):2313–2335, 2005. [17] T. Werner. A linear programming approach to max-sum problem: A review. IEEE Trans. Pattern Anal. Mach. Intell., 29(7):1165–1179, 2007. [18] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief propagation – an empirical study. Journal of Machine Learning Research, 7:1887–1907, 2006. [19] C. Yanover and Y. Weiss. Finding the M most probable configurations using loopy belief propagation. In Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004. [20] J. Yedidia, W. W.T. Freeman, and Y. Weiss. Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Trans. on Information Theory, 51(7):2282– 2312, 2005. 9

3 0.60762614 249 nips-2009-Tracking Dynamic Sources of Malicious Activity at Internet Scale

Author: Shobha Venkataraman, Avrim Blum, Dawn Song, Subhabrata Sen, Oliver Spatscheck

Abstract: We formulate and address the problem of discovering dynamic malicious regions on the Internet. We model this problem as one of adaptively pruning a known decision tree, but with additional challenges: (1) severe space requirements, since the underlying decision tree has over 4 billion leaves, and (2) a changing target function, since malicious activity on the Internet is dynamic. We present a novel algorithm that addresses this problem, by putting together a number of different “experts” algorithms and online paging algorithms. We prove guarantees on our algorithm’s performance as a function of the best possible pruning of a similar size, and our experiments show that our algorithm achieves high accuracy on large real-world data sets, with significant improvements over existing approaches.

4 0.5282985 103 nips-2009-Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation

Author: Yusuke Watanabe, Kenji Fukumizu

Abstract: We propose a new approach to the analysis of Loopy Belief Propagation (LBP) by establishing a formula that connects the Hessian of the Bethe free energy with the edge zeta function. The formula has a number of theoretical implications on LBP. It is applied to give a sufficient condition that the Hessian of the Bethe free energy is positive definite, which shows non-convexity for graphs with multiple cycles. The formula clarifies the relation between the local stability of a fixed point of LBP and local minima of the Bethe free energy. We also propose a new approach to the uniqueness of LBP fixed point, and show various conditions of uniqueness. 1

5 0.5125314 35 nips-2009-Approximating MAP by Compensating for Structural Relaxations

Author: Arthur Choi, Adnan Darwiche

Abstract: We introduce a new perspective on approximations to the maximum a posteriori (MAP) task in probabilistic graphical models, that is based on simplifying a given instance, and then tightening the approximation. First, we start with a structural relaxation of the original model. We then infer from the relaxation its deficiencies, and compensate for them. This perspective allows us to identify two distinct classes of approximations. First, we find that max-product belief propagation can be viewed as a way to compensate for a relaxation, based on a particular idealized case for exactness. We identify a second approach to compensation that is based on a more refined idealized case, resulting in a new approximation with distinct properties. We go on to propose a new class of algorithms that, starting with a relaxation, iteratively seeks tighter approximations. 1

6 0.51237547 75 nips-2009-Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models

7 0.50810087 160 nips-2009-Multiple Incremental Decremental Learning of Support Vector Machines

8 0.50481725 11 nips-2009-A General Projection Property for Distribution Families

9 0.49637786 255 nips-2009-Variational Inference for the Nested Chinese Restaurant Process

10 0.49537697 111 nips-2009-Hierarchical Modeling of Local Image Features through $L p$-Nested Symmetric Distributions

11 0.49309996 198 nips-2009-Rank-Approximate Nearest Neighbor Search: Retaining Meaning and Speed in High Dimensions

12 0.49226561 139 nips-2009-Linear-time Algorithms for Pairwise Statistical Problems

13 0.49135202 197 nips-2009-Randomized Pruning: Efficiently Calculating Expectations in Large Dynamic Programs

14 0.4895491 40 nips-2009-Bayesian Nonparametric Models on Decomposable Graphs

15 0.48379064 72 nips-2009-Distribution Matching for Transduction

16 0.47754148 141 nips-2009-Local Rules for Global MAP: When Do They Work ?

17 0.46935058 61 nips-2009-Convex Relaxation of Mixture Regression with Efficient Algorithms

18 0.45779529 48 nips-2009-Bootstrapping from Game Tree Search

19 0.45754942 10 nips-2009-A Gaussian Tree Approximation for Integer Least-Squares

20 0.45399076 234 nips-2009-Streaming k-means approximation


similar papers computed by lda model

lda for this paper:

topicId topicWeight

[(7, 0.014), (21, 0.017), (24, 0.07), (25, 0.087), (35, 0.064), (36, 0.168), (39, 0.065), (51, 0.01), (58, 0.069), (59, 0.133), (61, 0.015), (71, 0.072), (81, 0.028), (86, 0.085), (91, 0.028)]

similar papers list:

simIndex simValue paperId paperTitle

1 0.93881726 16 nips-2009-A Smoothed Approximate Linear Program

Author: Vijay Desai, Vivek Farias, Ciamac C. Moallemi

Abstract: We present a novel linear program for the approximation of the dynamic programming cost-to-go function in high-dimensional stochastic control problems. LP approaches to approximate DP naturally restrict attention to approximations that are lower bounds to the optimal cost-to-go function. Our program – the ‘smoothed approximate linear program’ – relaxes this restriction in an appropriate fashion while remaining computationally tractable. Doing so appears to have several advantages: First, we demonstrate superior bounds on the quality of approximation to the optimal cost-to-go function afforded by our approach. Second, experiments with our approach on a challenging problem (the game of Tetris) show that the approach outperforms the existing LP approach (which has previously been shown to be competitive with several ADP algorithms) by an order of magnitude. 1

same-paper 2 0.9242835 129 nips-2009-Learning a Small Mixture of Trees

Author: M. P. Kumar, Daphne Koller

Abstract: The problem of approximating a given probability distribution using a simpler distribution plays an important role in several areas of machine learning, for example variational inference and classification. Within this context, we consider the task of learning a mixture of tree distributions. Although mixtures of trees can be learned by minimizing the KL-divergence using an EM algorithm, its success depends heavily on the initialization. We propose an efficient strategy for obtaining a good initial set of trees that attempts to cover the entire observed distribution by minimizing the α-divergence with α = ∞. We formulate the problem using the fractional covering framework and present a convergent sequential algorithm that only relies on solving a convex program at each iteration. Compared to previous methods, our approach results in a significantly smaller mixture of trees that provides similar or better accuracies. We demonstrate the usefulness of our approach by learning pictorial structures for face recognition.

3 0.86060005 174 nips-2009-Nonparametric Latent Feature Models for Link Prediction

Author: Kurt Miller, Michael I. Jordan, Thomas L. Griffiths

Abstract: As the availability and importance of relational data—such as the friendships summarized on a social networking website—increases, it becomes increasingly important to have good models for such data. The kinds of latent structure that have been considered for use in predicting links in such networks have been relatively limited. In particular, the machine learning community has focused on latent class models, adapting Bayesian nonparametric methods to jointly infer how many latent classes there are while learning which entities belong to each class. We pursue a similar approach with a richer kind of latent variable—latent features—using a Bayesian nonparametric approach to simultaneously infer the number of features at the same time we learn which entities have each feature. Our model combines these inferred features with known covariates in order to perform link prediction. We demonstrate that the greater expressiveness of this approach allows us to improve performance on three datasets. 1

4 0.85968971 132 nips-2009-Learning in Markov Random Fields using Tempered Transitions

Author: Ruslan Salakhutdinov

Abstract: Markov random fields (MRF’s), or undirected graphical models, provide a powerful framework for modeling complex dependencies among random variables. Maximum likelihood learning in MRF’s is hard due to the presence of the global normalizing constant. In this paper we consider a class of stochastic approximation algorithms of the Robbins-Monro type that use Markov chain Monte Carlo to do approximate maximum likelihood learning. We show that using MCMC operators based on tempered transitions enables the stochastic approximation algorithm to better explore highly multimodal distributions, which considerably improves parameter estimates in large, densely-connected MRF’s. Our results on MNIST and NORB datasets demonstrate that we can successfully learn good generative models of high-dimensional, richly structured data that perform well on digit and object recognition tasks.

5 0.85926187 72 nips-2009-Distribution Matching for Transduction

Author: Novi Quadrianto, James Petterson, Alex J. Smola

Abstract: Many transductive inference algorithms assume that distributions over training and test estimates should be related, e.g. by providing a large margin of separation on both sets. We use this idea to design a transduction algorithm which can be used without modification for classification, regression, and structured estimation. At its heart we exploit the fact that for a good learner the distributions over the outputs on training and test sets should match. This is a classical two-sample problem which can be solved efficiently in its most general form by using distance measures in Hilbert Space. It turns out that a number of existing heuristics can be viewed as special cases of our approach. 1

6 0.85683978 217 nips-2009-Sharing Features among Dynamical Systems with Beta Processes

7 0.85557193 260 nips-2009-Zero-shot Learning with Semantic Output Codes

8 0.85411495 97 nips-2009-Free energy score space

9 0.85345501 169 nips-2009-Nonlinear Learning using Local Coordinate Coding

10 0.84879345 18 nips-2009-A Stochastic approximation method for inference in probabilistic graphical models

11 0.84875107 27 nips-2009-Adaptive Regularization of Weight Vectors

12 0.84795117 71 nips-2009-Distribution-Calibrated Hierarchical Classification

13 0.84677988 157 nips-2009-Multi-Label Prediction via Compressed Sensing

14 0.84614289 250 nips-2009-Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference

15 0.84458119 220 nips-2009-Slow Learners are Fast

16 0.84429586 41 nips-2009-Bayesian Source Localization with the Multivariate Laplace Prior

17 0.8433342 49 nips-2009-Breaking Boundaries Between Induction Time and Diagnosis Time Active Information Acquisition

18 0.84212363 166 nips-2009-Noisy Generalized Binary Search

19 0.84195316 118 nips-2009-Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions

20 0.84151644 225 nips-2009-Sparsistent Learning of Varying-coefficient Models with Structural Changes