nips nips2009 nips2009-40 knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Francois Caron, Arnaud Doucet
Abstract: Over recent years Dirichlet processes and the associated Chinese restaurant process (CRP) have found many applications in clustering while the Indian buffet process (IBP) is increasingly used to describe latent feature models. These models are attractive because they ensure exchangeability (over samples). We propose here extensions of these models where the dependency between samples is given by a known decomposable graph. These models have appealing properties and can be easily learned using Monte Carlo techniques. 1 Motivation The CRP and IBP have found numerous applications in machine learning over recent years [5, 10]. We consider here the case where the data we are interested in are ‘locally’ dependent; these dependencies being represented by a known graph G where each data point/object is associated to a vertex. These local dependencies can correspond to any conceptual or real (e.g. space, time) metric. For example, in the context of clustering, we might want to propose a prior distribution on partitions enforcing that data which are ‘close’ in the graph are more likely to be in the same cluster. Similarly, in the context of latent feature models, we might be interested in a prior distribution on features enforcing that data which are ‘close’ in the graph are more likely to possess similar features. The ‘standard’ CRP and IBP correspond to the case where the graph G is complete; that is it is fully connected. In this paper, we generalize the CRP and IBP to decomposable graphs. The resulting generalized versions of the CRP and IBP enjoy attractive properties. Each clique of the graph follows marginally a CRP or an IBP process and explicit expressions for the joint prior distribution on the graph is available. It makes it easy to learn those models using straightforward generalizations of Markov chain Monte Carlo (MCMC) or Sequential Monte Carlo (SMC) algorithms proposed to perform inference for the CRP and IBP [5, 10, 14]. The rest of the paper is organized as follows. In Section 2, we review the popular Dirichlet multinomial allocation model and the Dirichlet Process (DP) partition distribution. We propose an extension of these two models to decomposable graphical models. In Section 3 we discuss nonparametric latent feature models, reviewing briefly the construction in [5] and extending it to decomposable graphs. We demonstrate these models in Section 4 on two applications: an alternative to the hierarchical DP model [12] and a time-varying matrix factorization problem. 2 Prior distributions for partitions on decomposable graphs Assume we have n observations. When performing clustering, we associate to each of this observation an allocation variable zi ∈ [K] = {1, . . . , K}. Let Πn be the partition of [n] = {1, . . . , n} defined by the equivalence relation i ↔ j ⇔ zi = zj . The resulting partition Πn = {A1 , . . . , An(Πn ) } 1 is an unordered collection of disjoint non-empty subsets Aj of [n], j = 1, . . . , n(Πn ), where ∪j Aj = [n] and n(Πn ) is the number of subsets for partition Πn . We also denote by Pn be the set of all partitions of [n] and let nj , j = 1, . . . , n(Πn ), be the size of the subset Aj . Each allocation variable zi is associated to a vertex/site of an undirected graph G, which is assumed to be known. In the standard case where the graph G is complete, we first review briefly here two popular prior distributions on z1:n , equivalently on Πn . We then extend these models to undirected decomposable graphs; see [2, 8] for an introduction to decomposable graphs. Finally we briefly discuss the directed case. Note that the models proposed here are completely different from the hyper multinomial-Dirichlet in [2] and its recent DP extension [6]. 2.1 Dirichlet multinomial allocation model and DP partition distribution Assume for the time being that K is finite. When the graph is complete, a popular choice for the allocation variables is to consider a Dirichlet multinomial allocation model [11] θ θ , . . . , ), zi |π ∼ π (1) K K where D is the standard Dirichlet distribution and θ > 0. Integrating out π, we obtain the following Dirichlet multinomial prior distribution π ∼ D( Pr(z1:n ) = K j=1 Γ(θ) Γ(nj + θ K) (2) θ Γ(θ + n)Γ( K )K and then, using the straightforward equality Pr(Πn ) = PK where PK = {Πn ∈ Pn |n(Πn ) ≤ K}, we obtain K! (K−n(Πn ))! Pr(z1:n ) valid for for all Πn ∈ n(Π ) Pr(Πn ) = θ Γ(θ) j=1n Γ(nj + K ) K! . θ (K − n(Πn ))! Γ(θ + n)Γ( K )n(Πn ) (3) DP may be seen as a generalization of the Dirichlet multinomial model when the number of components K → ∞; see for example [10]. In this case the distribution over the partition Πn of [n] is given by [11] n(Π ) θn(Πn ) j=1n Γ(nj ) . (4) Pr(Πn ) = n i=1 (θ + i − 1) Let Π−k = {A1,−k , . . . , An(Π−k ),−k } be the partition induced by removing item k to Πn and nj,−k be the size of cluster j for j = 1, . . . , n(Π−k ). It follows from (4) that an item k is assigned to an existing cluster j, j = 1, . . . , n(Π−k ), with probability proportional to nj,−k / (n − 1 + θ) and forms a new cluster with probability θ/ (n − 1 + θ). This property is the basis of the CRP. We now extend the Dirichlet multinomial allocation and the DP partition distribution models to decomposable graphs. 2.2 Markov combination of Dirichlet multinomial and DP partition distributions Let G be a decomposable undirected graph, C = {C1 , . . . , Cp } a perfect ordering of the cliques and S = {S2 , . . . , Cp } the associated separators. It can be easily checked that if the marginal distribution of zC for each clique C ∈ C is defined by (2) then these distributions are consistent as they yield the same distribution (2) over the separators. Therefore, the unique Markov distribution over G with Dirichlet multinomial distribution over the cliques is defined by [8] Pr(zC ) S∈S Pr(zS ) C∈C Pr(z1:n ) = (5) where for each complete set B ⊆ G, we have Pr(zB ) given by (2). It follows that we have for any Πn ∈ PK Γ(θ) K! Pr(Πn ) = (K − n(Πn ))! C∈C Γ(θ) S∈S 2 K j=1 θ Γ(nj,C + K ) θ Γ(θ+nC )Γ( K )K K j=1 θ Γ(nj,S + K ) θ Γ(θ+nS )Γ( K )K (6) where for each complete set B ⊆ G, nj,B is the number of items associated to cluster j, j = 1, . . . , K in B and nB is the total number of items in B. Within each complete set B, the allocation variables define a partition distributed according to the Dirichlet-multinomial distribution. We now extend this approach to DP partition distributions; that is we derive a joint distribution over Πn such that the distribution of ΠB over each complete set B of the graph is given by (4) with θ > 0. Such a distribution satisfies the consistency condition over the separators as the restriction of any partition distributed according to (4) still follows (4) [7]. G Proposition. Let Pn be the set of partitions Πn ∈ Pn such that for each decomposition A, B, and any (i, j) ∈ A × B, i ↔ j ⇒ ∃k ∈ A ∩ B such that k ↔ i ↔ j. As K → ∞, the prior distribution G over partitions (6) is given for each Πn ∈ Pn by Pr(Πn ) = θn(Πn ) n(ΠC ) Γ(nj,C ) j=1 nC i=1 (θ+i−1) n(ΠS ) Γ(nj,S ) j=1 nS (θ+i−1) i=1 C∈C S∈S (7) where n(ΠB ) is the number of clusters in the complete set B. Proof. From (6), we have θ n(ΠC ) K(K − 1) . . . (K − n(Πn ) + 1) Pr(Πn ) = K C∈C n(ΠC )− S∈S n(ΠS ) C∈C θ n(ΠS ) S∈S n(ΠC ) θ Γ(nj,C + K ) j=1 nC (θ+i−1) i=1 n(ΠS ) θ Γ(nj,S + K ) j=1 nS (θ+i−1) i=1 Thus when K → ∞, we obtain (7) if n(Πn ) = C∈C n(ΠC ) − S∈S n(ΠS ) and 0 otherwise. We have n(Πn ) ≤ C∈C n(ΠC ) − S∈S n(ΠS ) for any Πn ∈ Pn and the subset of Pn verifying G n(Πn ) = C∈C n(ΠC ) − S∈S n(ΠS ) corresponds to the set Pn . Example. Let the notation i ∼ j (resp. i j) indicates an edge (resp. no edge) between two sites. Let n = 3 and G be the decomposable graph defined by the relations 1 ∼ 2, 2 ∼ 3 and 1 3. G The set P3 is then equal to {{{1, 2, 3}}; {{1, 2}, {3}}; {{1}, {2, 3}}; {{1}, {2}, {3}}}. Note that G the partition {{1, 3}, {2}} does not belong to P3 . Indeed, as there is no edge between 1 and 3, they cannot be in the same cluster if 2 is in another cluster. The cliques are C1 = {1, 2} and C2 = {2, 3} Pr(ΠC1 ) Pr(ΠC2 ) hence we can and the separator is S2 = {2}. The distribution is given by Pr(Π3 ) = Pr(ΠS ) 2 check that we obtain Pr({1, 2, 3}) = (θ + 1)−2 , Pr({1, 2}, {3}) = Pr({1, 2}, {3}) = θ(θ + 1)−2 and Pr({1}, {2}, {3}) = θ2 (θ + 1)−2 . Let now define the full conditional distributions. Based on (7) the conditional assignment of an item k is proportional to the conditional over the cliques divided by the conditional over the separators. G Let denote G−k the undirected graph obtained by removing vertex k from G. Suppose that Πn ∈ Pn . G−k If Π−k ∈ Pn−1 , then do not change the value of item k. Otherwise, item k is assigned to cluster j / where j = 1, . . . , n(Π−k ) with probability proportional to {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (8) and to a new cluster with probability proportional to θ, where n−k,j,C is the number of items in the set C \ {k} belonging to cluster j. The updating process is illustrated by the Chinese wedding party process1 in Fig. 1. The results of this section can be extended to the Pitman-Yor process, and more generally to species sampling models. Example (continuing). Given Π−2 = {A1 = {1}, A2 = {3}}, we have −1 Pr( item 2 assigned to A1 = {1}| Π−2 ) = Pr( item 2 assigned to A2 = {3}| Π−2 ) = (θ + 2) −1 and Pr( item 2 assigned to new cluster A3 | Π−2 ) = θ (θ + 2) . Given Π−2 = {A1 = {1, 3}}, item 2 is assigned to A1 with probability 1. 1 Note that this representation describes the full conditionals while the CRP represents the sequential updat- ing. 3 (a) (b) (d) (c) (e) Figure 1: Chinese wedding party. Consider a group of n guests attending a wedding party. Each of the n guests may belong to one or several cliques, i.e. maximal groups of people such that everybody knows everybody. The belonging of each guest to the different cliques is represented by color patches on the figures, and the graphical representation of the relationship between the guests is represented by the graphical model (e). (a) Suppose that the guests are already seated such that two guests cannot be together at the same table is they are not part of the same clique, or if there does not exist a group of other guests such that they are related (“Any friend of yours is a friend of mine”). (b) The guest number k leaves his table and either (c) joins a table where there are guests from the same clique as him, with probability proportional to the product of the number of guests from each clique over the product of the number of guests belonging to several cliques on that table or (d) he joins a new table with probability proportional to θ. 2.3 Monte Carlo inference 2.3.1 MCMC algorithm Using the full conditionals, a single site Gibbs sampler can easily be designed to approximate the posterior distribution Pr(Πn |z1:n ). Given a partition Πn , an item k is taken out of the partition. If G−k Π−k ∈ Pn−1 , item k keeps the same value. Otherwise, the item will be assigned to a cluster j, / j = 1, . . . , n(Π−k ), with probability proportional to p(z{k}∪Aj,−k ) × p(zAj,−k ) {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (9) and the item will be assigned to a new cluster with probability proportional to p(z{k} ) × θ. Similarly to [3], we can also define a procedure to sample from p(θ|n(Πn ) = k)). We assume that θ ∼ G(a, b) and use p auxiliary variables x1 , . . . , xp . The procedure is as follows. • For j = 1, . . . , p, sample xj |k, θ ∼ Beta(θ + nSj , nCj − nSj ) • Sample θ|k, x1:p ∼ G(a + k, b − j log xj ) 2.3.2 Sequential Monte Carlo We have so far only treated the case of an undirected decomposable graph G. We can formulate a sequential updating rule for the corresponding perfect directed version D of G. Indeed, let (a1 , . . . a|V | ) be a perfect ordering and pa(ak ) be the set of parents of ak which is by definition complete. Let Πk−1 = {A1,k−1 , . . . , An(Πk−1 ),k−1 } denote the partition of the first k−1 vertices a1:k−1 and let nj,pa(ak ) be the number of elements with value j in the set pa(ak ), j = 1, . . . , n(Πk−1 ). Then the vertex ak joins the set j with probability nj,pa(ak ) / θ + cluster with probability θ/ θ + q q nq,pa(ak ) and creates a new nq,pa(ak ) . One can then design a particle filter/SMC method in a similar fashion as [4]. Consider a set of (i) (i) (i) (i) N N particles Πk−1 with weights wk−1 ∝ Pr(Πk−1 , z1:k−1 ) ( i=1 wk−1 = 1) that approximate (i) the posterior distribution Pr(Πk−1 |z1:k−1 ). For each particle i, there are n(Πk−1 ) + 1 possible 4 (i,j) allocations for component ak . We denote Πk the partition obtained by associating component ak (i,j) to cluster j. The weight associated to Πk is given by nj,pa(ak ) (i) if j = 1, . . . , n(Πk−1 ) θ+ q nq,pa(ak ) (i,j) (i) p(z{ak }∪Aj,k−1 ) wk−1 = wk−1 × (10) (i) θ θ+ n p(zAj,k−1 ) if j = n(Πk−1 ) + 1 q q,pa(ak ) (i,j) Then we can perform a deterministic resampling step by keeping the N particles Πk with highest (i,j) (i) (i) weights wk−1 . Let Πk be the resampled particles and wk the associated normalized weights. 3 Prior distributions for infinite binary matrices on decomposable graphs Assume we have n objects; each of these objects being associated to the vertex of a graph G. To K each object is associated a K-dimensional binary vector zn = (zn,1 , . . . , zn,K ) ∈ {0, 1} where zn,i = 1 if object n possesses feature i and zn,i = 0 otherwise. These vectors zt form a binary n × K matrix denoted Z1:n . We denote by ξ1:n the associated equivalence class of left-ordered matrices and let EK be the set of left-ordered matrices with at most K features. In the standard case where the graph G is complete, we review briefly here two popular prior distributions on Z1:n , equivalently on ξ1:n : the Beta-Bernoulli model and the IBP [5]. We then extend these models to undirected decomposable graphs. This can be used for example to define a time-varying IBP as illustrated in Section 4. 3.1 Beta-Bernoulli and IBP distributions The Beta-Bernoulli distribution over the allocation Z1:n is K Pr(Z1:n ) = α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) α K Γ(nj j=1 (11) where nj is the number of objects having feature j. It follows that Pr(ξ1:n ) = K K! 2n −1 h=0 α K Γ(nj α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) Kh ! j=1 (12) where Kh is the number of features possessing the history h (see [5] for details). The nonparametric model is obtained by taking the limit when K → ∞ Pr(ξ1:n ) = αK K+ + 2n −1 h=1 Kh ! exp(−αHn ) where K + is the total number of features and Hn = 3.2 (n − nj )!(nj − 1)! n! j=1 n 1 k=1 k . (13) The IBP follows from (13). Markov combination of Beta-Bernoulli and IBP distributions Let G be a decomposable undirected graph, C = {C1 , . . . , Cp } a perfect ordering of the cliques and S = {S2 , . . . , Cp } the associated separators. As in the Dirichlet-multinomial case, it is easily seen that if for each clique C ∈ C, the marginal distribution is defined by (11), then these distributions are consistent as they yield the same distribution (11) over the separators. Therefore, the unique Markov distribution over G with Beta-Bernoulli distribution over the cliques is defined by [8] Pr(ZC ) S∈S Pr(ZS ) C∈C Pr(Z1:n ) = (14) where Pr(ZB ) given by (11) for each complete set B ⊆ G. The prior over ξ1:n is thus given, for ξ1:n ∈ EK , by Pr(ξ1:n ) = K! 2n −1 h=0 Kh ! α K α Γ(nj,C + K )Γ(nC −nj,C +1) α Γ(nC +1+ K ) α α Γ(nj,S + K )Γ(nS −nj,S +1) K K α j=1 Γ(nS +1+ K ) K j=1 C∈C S∈S 5 (15) where for each complete set B ⊆ G, nj,B is the number of items having feature j, j = 1, . . . , K in the set B and nB is the whole set of objects in set B. Taking the limit when K → ∞, we obtain after a few calculations Pr(ξ1:n ) = α + K[n] exp [−α ( C HnC − 2n −1 h=1 Kh ! HnS )] × C∈C + KC (nC −nj,C )!(nj,C −1)! j=1 nC ! S∈S S + KS (nS −nj,S )!(nj,S −1)! j=1 nS ! + + + + if K[n] = C KC − S KS and 0 otherwise, where KB is the number of different features possessed by objects in B. G Let En be the subset of En such that for each decomposition A, B and any (u, v) ∈ A × B: {u and v possess feature j} ⇒ ∃k ∈ A ∩ B such that {k possesses feature j}. Let ξ−k be the left-ordered + matrix obtained by removing object k from ξn and K−k be the total number of different features in G−k + ξ−k . For each feature j = 1, . . . , K−k , if ξ−k ∈ En−1 then we have b C∈C nj,C if i = 1 S∈C nj,S Pr(ξk,j = i) = (16) b C∈C (nC −nj,C ) if i = 0 (nS −nj,S ) S∈C nS where b is the appropriate normalizing constant then the customer k tries Poisson α {S∈S|k∈S} nC {C∈C|k∈C} new dishes. We can easily generalize this construction to a directed version D of G using arguments similar to those presented in Section 2; see Section 4 for an application to time-varying matrix factorization. 4 4.1 Applications Sharing clusters among relative groups: An alternative to HDP Consider that we are given d groups with nj data yi,j in each group, i = 1, . . . , nj , j = 1, . . . , d. We consider latent cluster variables zi,j that define the partition of the data. We will use alternatively the notation θi,j = Uzi,j in the following. Hierarchical Dirichlet Process [12] (HDP) is a very popular model for sharing clusters among related groups. It is based on a hierarchy of DPs G0 ∼ DP (γ, H), Gj |G0 ∼ DP (α, G0 ) j = 1, . . . d θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f (θi,j ) i = 1, . . . , nj . Under conjugacy assumptions, G0 , Gj and U can be integrated out and we can approximate the marginal posterior of (zi,j ) given y = (yi,j ) with Gibbs sampling using the Chinese restaurant franchise to sample from the full conditional p(zi,j |z−{i,j} , y). Using the graph formulation defined in Section 2, we propose an alternative to HDP. Let θ0,1 , . . . , θ0,N be N auxiliary variables belonging to what we call group 0. We define each clique Cj (j = 1, . . . , d) to be composed of elements from group j and elements from group 0. This defines a decomposable graphical model whose separator is given by the elements of group 0. We can rewrite the model in a way quite similar to HDP G0 ∼ DP (α, H), θ0,i |G0 ∼ G0 i = 1, ..., N α α Gj |θ0,1 , . . . , θ0,N ∼ DP (α + N, α+N H + α+N θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f (θi,j ) i = 1, . . . , nj N i=1 δθ0,i ) j = 1, . . . d, N For any subset A and j = k ∈ {1, . . . , p} we have corr(Gj (A), Gk (A)) = α+N . Again, under conjugacy conditions, we can integrate out G0 , Gj and U and approximate the marginal posterior distribution over the partition using the Chinese wedding party process defined in Section 2. Note that for latent variables zi,j , j = 1, . . . , d, associated to data, this is the usual CRP update. As in HDP, multiple layers can be added to the model. Figures 2 (a) and (b) resp. give the graphical DP alternative to HDP and 2-layer HDP. 6 z0 root z0 root corpora docs z1 z2 z1 z2 z3 z1,1 z1,2 z2,1 z2,2 z2,3 docs (a) Graphical DP alternative to HDP (b) Graphical DP alternative to 2-layer HDP Figure 2: Hierarchical Graphs of dependency with (a) one layer and (b) two layers of hierarchy. If N = 0, then Gj ∼ DP (α, H) for all j and this is equivalent to setting γ → ∞ in HDP. If N → ∞ then Gj = G0 for all j, G0 ∼ DP (α, H). This is equivalent to setting α → ∞ in the HDP. One interesting feature of the model is that, contrary to HDP, the marginal distribution of Gj at any layer of the tree is DP (α, H). As a consequence, the total number of clusters scales logarithmically (as in the usual DP) with the size of each group, whereas it scales doubly logarithmically in HDP. Contrary to HDP, there are at most N clusters shared between different groups. Our model is in that sense reminiscent of [9] where only a limited number of clusters can be shared. Note however that contrary to [9] we have a simple CRP-like process. The proposed methodology can be straightforwardly extended to the infinite HMM [12]. The main issue of the proposed model is the setting of the number N of auxiliary parameters. Another issue is that to achieve high correlation, we need a large number of auxiliary variables. Nonetheless, the computational time used to sample from auxiliary variables is negligible compared to the time used for latent variables associated to data. Moreover, it can be easily parallelized. The model proposed offers a far richer framework and ensures that at each level of the tree, the marginal distribution of the partition is given by a DP partition model. 4.2 Time-varying matrix factorization Let X1:n be an observed matrix of dimension n × D. We want to find a representation of this matrix in terms of two latent matrices Z1:n of dimension n × K and Y of dimension K × D. Here Z1:n 2 is a binary matrix whereas Y is a matrix of latent features. By assuming that Y ∼ N 0, σY IK×D and 2 X1:n = Z1:n Y + σX εn where εn ∼ N 0, σX In×D , we obtain p(X1:n |Z1:n ) ∝ −D/2 2 2 + Z+T Z+ + σX /σY IKn 1:n 1:n + (n−Kn )D σX exp − + Kn D σY 2 2 + where Σ−1 = I − Z+ Z+T Z+ + σX /σY IKn n 1:n 1:n 1:n −1 1 T −1 2 tr X1:n Σn X1:n 2σX (17) + Z+T , Kn the number of non-zero columns of 1:n + Z1:n and Z+ is the first Kn columns of Z1:n . To avoid having to set K, [5, 14] assume that Z1:n 1:n follows an IBP. The resulting posterior distribution p(Z1:n |X1:n ) can be estimated through MCMC [5] or SMC [14]. We consider here a different model where the object Xt is assumed to arrive at time index t and we want a prior distribution on Z1:n ensuring that objects close in time are more likely to possess similar features. To achieve this, we consider the simple directed graphical model D of Fig. 3 where the site numbering corresponds to a time index in that case and a perfect numbering of D is (1, 2, . . .). The set of parents pa(t) is composed of the r preceding sites {{t − r}, . . . , {t − 1}}. The time-varying IBP to sample from p(Z1:n ) associated to this directed graph follows from (16) and proceeds as follows. At time t = 1 + new new • Sample K1 ∼Poisson(α), set z1,i = 1 for i = 1, ..., K1 and set K1 = Knew . At times t = 2, . . . , r n + new ∼Poisson( α ). • For k = 1, . . . Kt , sample zt,k ∼ Ber( 1:t−1,k ) and Kt t t 7 ? ? - t−r - t−r+1 - . . . - t−1 - t - t+1 6 6 Figure 3: Directed graph. At times t = r + 1, . . . , n n + α new ∼Poisson( r+1 ). • For k = 1, . . . Kt , sample zt,k ∼ Ber( t−r:t−1,k ) and Kt r+1 + Here Kt is the total number of features appearing from time max(1, t − r) to t − 1 and nt−r:t−1,k the restriction of n1:t−1 to the r last customers. Using (17) and the prior distribution of Z1:n which can be sampled using the time-varying IBP described above, we can easily design an SMC method to sample from p(Z1:n |X1:n ). We do not detail it here. Note that contrary to [14], our algorithm does not require inverting a matrix whose dimension grows linearly with the size of the data but only a matrix of dimension r × r. In order to illustrate the model and SMC algorithm, we create 200 6 × 6 images using a ground truth Y consisting of 4 different 6 × 6 latent images. The 200 × 4 binary matrix was generated from Pr(zt,k = 1) = πt,k , where πt = ( .6 .5 0 0 ) if t = 1, . . . , 30, πt = ( .4 .8 .4 0 ) if t = 31, . . . , 50 and πt = ( 0 .3 .6 .6 ) if t = 51, . . . , 200. The order of the model is set to r = 50. The feature occurences Z1:n and true features Y and their estimates are represented in Figure 4. Two spurious features are detected by the model (features 2 and 5 on Fig. 3(c)) but quickly discarded (Fig. 4(d)). The algorithm is able to correctly estimate the varying prior occurences of the features over time. Feature1 Feature2 Feature1 Feature2 Feature3 20 20 40 40 60 60 Feature4 80 100 Feature4 Feature5 Feature6 Time Feature3 Time 80 100 120 120 140 140 160 160 180 200 180 1 2 3 200 4 Feature (a) 1 2 3 4 5 6 Feature (b) (c) (d) Figure 4: (a) True features, (b) True features occurences, (c) MAP estimate ZM AP and (d) associated E[Y|ZM AP ] t=20 t=50 t=20 t=50 t=100 t=200 t=100 t=200 (a) (b) Figure 5: (a) E[Xt |πt , Y] and (b) E[Xt |X1:t−1 ] at t = 20, 50, 100, 200. 5 Related work and Discussion The fixed-lag version of the time-varying DP of Caron et al. [1] is a special case of the proposed model when G is given by Fig. 3. The bivariate DP of Walker and Muliere [13] is also a special case when G has only two cliques. In this paper, we have assumed that the structure of the graph was known beforehand and we have shown that many flexible models arise from this framework. It would be interesting in the future to investigate the case where the graphical structure is unknown and must be estimated from the data. Acknowledgment The authors thank the reviewers for their comments that helped to improve the writing of the paper. 8 References [1] F. Caron, M. Davy, and A. Doucet. Generalized Polya urn for time-varying Dirichlet process mixtures. In Uncertainty in Artificial Intelligence, 2007. [2] A.P. Dawid and S.L. Lauritzen. Hyper Markov laws in the statistical analysis of decomposable graphical models. The Annals of Statistics, 21:1272–1317, 1993. [3] M.D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90:577–588, 1995. [4] P. Fearnhead. Particle filters for mixture models with an unknown number of components. Statistics and Computing, 14:11–21, 2004. [5] T.L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In Advances in Neural Information Processing Systems, 2006. [6] D. Heinz. Building hyper dirichlet processes for graphical models. Electonic Journal of Statistics, 3:290–315, 2009. [7] J.F.C. Kingman. Random partitions in population genetics. Proceedings of the Royal Society of London, 361:1–20, 1978. [8] S.L. Lauritzen. Graphical Models. Oxford University Press, 1996. [9] P. M¨ ller, F. Quintana, and G. Rosner. A method for combining inference across related nonu parametric Bayesian models. Journal of the Royal Statistical Society B, 66:735–749, 2004. [10] R.M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249–265, 2000. [11] J. Pitman. Exchangeable and partially exchangeable random partitions. Probability theory and related fields, 102:145–158, 1995. [12] Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101:1566–1581, 2006. [13] S. Walker and P. Muliere. A bivariate Dirichlet process. Statistics and Probability Letters, 64:1–7, 2003. [14] F. Wood and T.L. Griffiths. Particle filtering for nonparametric Bayesian matrix factorization. In Advances in Neural Information Processing Systems, 2007. 9
Reference: text
sentIndex sentText sentNum sentScore
1 ca Abstract Over recent years Dirichlet processes and the associated Chinese restaurant process (CRP) have found many applications in clustering while the Indian buffet process (IBP) is increasingly used to describe latent feature models. [sent-5, score-0.151]
2 We propose here extensions of these models where the dependency between samples is given by a known decomposable graph. [sent-7, score-0.295]
3 We consider here the case where the data we are interested in are ‘locally’ dependent; these dependencies being represented by a known graph G where each data point/object is associated to a vertex. [sent-10, score-0.15]
4 For example, in the context of clustering, we might want to propose a prior distribution on partitions enforcing that data which are ‘close’ in the graph are more likely to be in the same cluster. [sent-14, score-0.203]
5 Similarly, in the context of latent feature models, we might be interested in a prior distribution on features enforcing that data which are ‘close’ in the graph are more likely to possess similar features. [sent-15, score-0.323]
6 The ‘standard’ CRP and IBP correspond to the case where the graph G is complete; that is it is fully connected. [sent-16, score-0.103]
7 In this paper, we generalize the CRP and IBP to decomposable graphs. [sent-17, score-0.295]
8 Each clique of the graph follows marginally a CRP or an IBP process and explicit expressions for the joint prior distribution on the graph is available. [sent-19, score-0.347]
9 In Section 2, we review the popular Dirichlet multinomial allocation model and the Dirichlet Process (DP) partition distribution. [sent-22, score-0.329]
10 We propose an extension of these two models to decomposable graphical models. [sent-23, score-0.366]
11 In Section 3 we discuss nonparametric latent feature models, reviewing briefly the construction in [5] and extending it to decomposable graphs. [sent-24, score-0.399]
12 2 Prior distributions for partitions on decomposable graphs Assume we have n observations. [sent-26, score-0.433]
13 When performing clustering, we associate to each of this observation an allocation variable zi ∈ [K] = {1, . [sent-27, score-0.138]
14 , n(Πn ), where ∪j Aj = [n] and n(Πn ) is the number of subsets for partition Πn . [sent-41, score-0.149]
15 We also denote by Pn be the set of all partitions of [n] and let nj , j = 1, . [sent-42, score-0.287]
16 Each allocation variable zi is associated to a vertex/site of an undirected graph G, which is assumed to be known. [sent-46, score-0.357]
17 In the standard case where the graph G is complete, we first review briefly here two popular prior distributions on z1:n , equivalently on Πn . [sent-47, score-0.173]
18 We then extend these models to undirected decomposable graphs; see [2, 8] for an introduction to decomposable graphs. [sent-48, score-0.659]
19 1 Dirichlet multinomial allocation model and DP partition distribution Assume for the time being that K is finite. [sent-52, score-0.329]
20 When the graph is complete, a popular choice for the allocation variables is to consider a Dirichlet multinomial allocation model [11] θ θ , . [sent-53, score-0.386]
21 Integrating out π, we obtain the following Dirichlet multinomial prior distribution π ∼ D( Pr(z1:n ) = K j=1 Γ(θ) Γ(nj + θ K) (2) θ Γ(θ + n)Γ( K )K and then, using the straightforward equality Pr(Πn ) = PK where PK = {Πn ∈ Pn |n(Πn ) ≤ K}, we obtain K! [sent-57, score-0.112]
22 Γ(θ + n)Γ( K )n(Πn ) (3) DP may be seen as a generalization of the Dirichlet multinomial model when the number of components K → ∞; see for example [10]. [sent-62, score-0.077]
23 In this case the distribution over the partition Πn of [n] is given by [11] n(Π ) θn(Πn ) j=1n Γ(nj ) . [sent-63, score-0.149]
24 , An(Π−k ),−k } be the partition induced by removing item k to Πn and nj,−k be the size of cluster j for j = 1, . [sent-67, score-0.412]
25 It follows from (4) that an item k is assigned to an existing cluster j, j = 1, . [sent-71, score-0.313]
26 , n(Π−k ), with probability proportional to nj,−k / (n − 1 + θ) and forms a new cluster with probability θ/ (n − 1 + θ). [sent-74, score-0.155]
27 We now extend the Dirichlet multinomial allocation and the DP partition distribution models to decomposable graphs. [sent-76, score-0.624]
28 2 Markov combination of Dirichlet multinomial and DP partition distributions Let G be a decomposable undirected graph, C = {C1 , . [sent-78, score-0.625]
29 , Cp } a perfect ordering of the cliques and S = {S2 , . [sent-81, score-0.21]
30 It can be easily checked that if the marginal distribution of zC for each clique C ∈ C is defined by (2) then these distributions are consistent as they yield the same distribution (2) over the separators. [sent-85, score-0.177]
31 Therefore, the unique Markov distribution over G with Dirichlet multinomial distribution over the cliques is defined by [8] Pr(zC ) S∈S Pr(zS ) C∈C Pr(z1:n ) = (5) where for each complete set B ⊆ G, we have Pr(zB ) given by (2). [sent-86, score-0.303]
32 C∈C Γ(θ) S∈S 2 K j=1 θ Γ(nj,C + K ) θ Γ(θ+nC )Γ( K )K K j=1 θ Γ(nj,S + K ) θ Γ(θ+nS )Γ( K )K (6) where for each complete set B ⊆ G, nj,B is the number of items associated to cluster j, j = 1, . [sent-89, score-0.252]
33 Within each complete set B, the allocation variables define a partition distributed according to the Dirichlet-multinomial distribution. [sent-93, score-0.315]
34 We now extend this approach to DP partition distributions; that is we derive a joint distribution over Πn such that the distribution of ΠB over each complete set B of the graph is given by (4) with θ > 0. [sent-94, score-0.315]
35 Such a distribution satisfies the consistency condition over the separators as the restriction of any partition distributed according to (4) still follows (4) [7]. [sent-95, score-0.149]
36 As K → ∞, the prior distribution G over partitions (6) is given for each Πn ∈ Pn by Pr(Πn ) = θn(Πn ) n(ΠC ) Γ(nj,C ) j=1 nC i=1 (θ+i−1) n(ΠS ) Γ(nj,S ) j=1 nS (θ+i−1) i=1 C∈C S∈S (7) where n(ΠB ) is the number of clusters in the complete set B. [sent-98, score-0.211]
37 Let n = 3 and G be the decomposable graph defined by the relations 1 ∼ 2, 2 ∼ 3 and 1 3. [sent-109, score-0.398]
38 Note that G the partition {{1, 3}, {2}} does not belong to P3 . [sent-111, score-0.149]
39 Indeed, as there is no edge between 1 and 3, they cannot be in the same cluster if 2 is in another cluster. [sent-112, score-0.096]
40 The cliques are C1 = {1, 2} and C2 = {2, 3} Pr(ΠC1 ) Pr(ΠC2 ) hence we can and the separator is S2 = {2}. [sent-113, score-0.206]
41 Based on (7) the conditional assignment of an item k is proportional to the conditional over the cliques divided by the conditional over the separators. [sent-116, score-0.389]
42 G Let denote G−k the undirected graph obtained by removing vertex k from G. [sent-117, score-0.206]
43 G−k If Π−k ∈ Pn−1 , then do not change the value of item k. [sent-119, score-0.167]
44 Otherwise, item k is assigned to cluster j / where j = 1, . [sent-120, score-0.313]
45 , n(Π−k ) with probability proportional to {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (8) and to a new cluster with probability proportional to θ, where n−k,j,C is the number of items in the set C \ {k} belonging to cluster j. [sent-123, score-0.402]
46 The updating process is illustrated by the Chinese wedding party process1 in Fig. [sent-124, score-0.145]
47 Given Π−2 = {A1 = {1}, A2 = {3}}, we have −1 Pr( item 2 assigned to A1 = {1}| Π−2 ) = Pr( item 2 assigned to A2 = {3}| Π−2 ) = (θ + 2) −1 and Pr( item 2 assigned to new cluster A3 | Π−2 ) = θ (θ + 2) . [sent-128, score-0.747]
48 Given Π−2 = {A1 = {1, 3}}, item 2 is assigned to A1 with probability 1. [sent-129, score-0.217]
49 3 (a) (b) (d) (c) (e) Figure 1: Chinese wedding party. [sent-131, score-0.107]
50 Consider a group of n guests attending a wedding party. [sent-132, score-0.361]
51 Each of the n guests may belong to one or several cliques, i. [sent-133, score-0.21]
52 The belonging of each guest to the different cliques is represented by color patches on the figures, and the graphical representation of the relationship between the guests is represented by the graphical model (e). [sent-136, score-0.614]
53 (a) Suppose that the guests are already seated such that two guests cannot be together at the same table is they are not part of the same clique, or if there does not exist a group of other guests such that they are related (“Any friend of yours is a friend of mine”). [sent-137, score-0.768]
54 Given a partition Πn , an item k is taken out of the partition. [sent-143, score-0.316]
55 Otherwise, the item will be assigned to a cluster j, / j = 1, . [sent-145, score-0.313]
56 , n(Π−k ), with probability proportional to p(z{k}∪Aj,−k ) × p(zAj,−k ) {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (9) and the item will be assigned to a new cluster with probability proportional to p(z{k} ) × θ. [sent-148, score-0.431]
57 2 Sequential Monte Carlo We have so far only treated the case of an undirected decomposable graph G. [sent-160, score-0.467]
58 We can formulate a sequential updating rule for the corresponding perfect directed version D of G. [sent-161, score-0.109]
59 a|V | ) be a perfect ordering and pa(ak ) be the set of parents of ak which is by definition complete. [sent-165, score-0.255]
60 , An(Πk−1 ),k−1 } denote the partition of the first k−1 vertices a1:k−1 and let nj,pa(ak ) be the number of elements with value j in the set pa(ak ), j = 1, . [sent-169, score-0.149]
61 Then the vertex ak joins the set j with probability nj,pa(ak ) / θ + cluster with probability θ/ θ + q q nq,pa(ak ) and creates a new nq,pa(ak ) . [sent-173, score-0.372]
62 For each particle i, there are n(Πk−1 ) + 1 possible 4 (i,j) allocations for component ak . [sent-176, score-0.225]
63 We denote Πk the partition obtained by associating component ak (i,j) to cluster j. [sent-177, score-0.417]
64 Let Πk be the resampled particles and wk the associated normalized weights. [sent-182, score-0.184]
65 3 Prior distributions for infinite binary matrices on decomposable graphs Assume we have n objects; each of these objects being associated to the vertex of a graph G. [sent-183, score-0.591]
66 In the standard case where the graph G is complete, we review briefly here two popular prior distributions on Z1:n , equivalently on ξ1:n : the Beta-Bernoulli model and the IBP [5]. [sent-190, score-0.173]
67 We then extend these models to undirected decomposable graphs. [sent-191, score-0.364]
68 1 Beta-Bernoulli and IBP distributions The Beta-Bernoulli distribution over the allocation Z1:n is K Pr(Z1:n ) = α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) α K Γ(nj j=1 (11) where nj is the number of objects having feature j. [sent-194, score-0.658]
69 2n −1 h=0 α K Γ(nj α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) Kh ! [sent-196, score-0.222]
70 Markov combination of Beta-Bernoulli and IBP distributions Let G be a decomposable undirected graph, C = {C1 , . [sent-205, score-0.399]
71 , Cp } a perfect ordering of the cliques and S = {S2 , . [sent-208, score-0.21]
72 As in the Dirichlet-multinomial case, it is easily seen that if for each clique C ∈ C, the marginal distribution is defined by (11), then these distributions are consistent as they yield the same distribution (11) over the separators. [sent-212, score-0.177]
73 Therefore, the unique Markov distribution over G with Beta-Bernoulli distribution over the cliques is defined by [8] Pr(ZC ) S∈S Pr(ZS ) C∈C Pr(Z1:n ) = (14) where Pr(ZB ) given by (11) for each complete set B ⊆ G. [sent-213, score-0.226]
74 α K α Γ(nj,C + K )Γ(nC −nj,C +1) α Γ(nC +1+ K ) α α Γ(nj,S + K )Γ(nS −nj,S +1) K K α j=1 Γ(nS +1+ K ) K j=1 C∈C S∈S 5 (15) where for each complete set B ⊆ G, nj,B is the number of items having feature j, j = 1, . [sent-216, score-0.146]
75 + + + + if K[n] = C KC − S KS and 0 otherwise, where KB is the number of different features possessed by objects in B. [sent-227, score-0.076]
76 G Let En be the subset of En such that for each decomposition A, B and any (u, v) ∈ A × B: {u and v possess feature j} ⇒ ∃k ∈ A ∩ B such that {k possesses feature j}. [sent-228, score-0.15]
77 1 Applications Sharing clusters among relative groups: An alternative to HDP Consider that we are given d groups with nj data yi,j in each group, i = 1, . [sent-236, score-0.27]
78 We consider latent cluster variables zi,j that define the partition of the data. [sent-243, score-0.312]
79 Under conjugacy assumptions, G0 , Gj and U can be integrated out and we can approximate the marginal posterior of (zi,j ) given y = (yi,j ) with Gibbs sampling using the Chinese restaurant franchise to sample from the full conditional p(zi,j |z−{i,j} , y). [sent-253, score-0.071]
80 Using the graph formulation defined in Section 2, we propose an alternative to HDP. [sent-254, score-0.103]
81 , θ0,N be N auxiliary variables belonging to what we call group 0. [sent-258, score-0.139]
82 , d) to be composed of elements from group j and elements from group 0. [sent-262, score-0.088]
83 This defines a decomposable graphical model whose separator is given by the elements of group 0. [sent-263, score-0.453]
84 Again, under conjugacy conditions, we can integrate out G0 , Gj and U and approximate the marginal posterior distribution over the partition using the Chinese wedding party process defined in Section 2. [sent-280, score-0.365]
85 give the graphical DP alternative to HDP and 2-layer HDP. [sent-287, score-0.071]
86 6 z0 root z0 root corpora docs z1 z2 z1 z2 z3 z1,1 z1,2 z2,1 z2,2 z2,3 docs (a) Graphical DP alternative to HDP (b) Graphical DP alternative to 2-layer HDP Figure 2: Hierarchical Graphs of dependency with (a) one layer and (b) two layers of hierarchy. [sent-288, score-0.08]
87 One interesting feature of the model is that, contrary to HDP, the marginal distribution of Gj at any layer of the tree is DP (α, H). [sent-292, score-0.122]
88 As a consequence, the total number of clusters scales logarithmically (as in the usual DP) with the size of each group, whereas it scales doubly logarithmically in HDP. [sent-293, score-0.12]
89 Nonetheless, the computational time used to sample from auxiliary variables is negligible compared to the time used for latent variables associated to data. [sent-300, score-0.163]
90 The model proposed offers a far richer framework and ensures that at each level of the tree, the marginal distribution of the partition is given by a DP partition model. [sent-302, score-0.334]
91 We consider here a different model where the object Xt is assumed to arrive at time index t and we want a prior distribution on Z1:n ensuring that objects close in time are more likely to possess similar features. [sent-310, score-0.118]
92 To achieve this, we consider the simple directed graphical model D of Fig. [sent-311, score-0.133]
93 3 where the site numbering corresponds to a time index in that case and a perfect numbering of D is (1, 2, . [sent-312, score-0.176]
94 The time-varying IBP to sample from p(Z1:n ) associated to this directed graph follows from (16) and proceeds as follows. [sent-320, score-0.212]
95 The feature occurences Z1:n and true features Y and their estimates are represented in Figure 4. [sent-369, score-0.154]
96 The algorithm is able to correctly estimate the varying prior occurences of the features over time. [sent-373, score-0.152]
97 In this paper, we have assumed that the structure of the graph was known beforehand and we have shown that many flexible models arise from this framework. [sent-379, score-0.103]
98 It would be interesting in the future to investigate the case where the graphical structure is unknown and must be estimated from the data. [sent-380, score-0.071]
99 Hyper Markov laws in the statistical analysis of decomposable graphical models. [sent-393, score-0.366]
100 Infinite latent feature models and the Indian buffet process. [sent-409, score-0.104]
wordName wordTfidf (topN-words)
[('pr', 0.342), ('decomposable', 0.295), ('dp', 0.235), ('ibp', 0.226), ('nj', 0.222), ('guests', 0.21), ('gj', 0.177), ('ak', 0.172), ('item', 0.167), ('cliques', 0.163), ('pn', 0.162), ('crp', 0.156), ('ns', 0.15), ('partition', 0.149), ('hdp', 0.141), ('dirichlet', 0.136), ('nc', 0.113), ('wedding', 0.107), ('clique', 0.106), ('graph', 0.103), ('allocation', 0.103), ('cluster', 0.096), ('wk', 0.091), ('kh', 0.09), ('smc', 0.08), ('bordeaux', 0.08), ('occurences', 0.08), ('kt', 0.078), ('multinomial', 0.077), ('graphical', 0.071), ('caron', 0.07), ('joins', 0.07), ('undirected', 0.069), ('latent', 0.067), ('partitions', 0.065), ('cp', 0.065), ('zc', 0.064), ('complete', 0.063), ('chinese', 0.063), ('kn', 0.063), ('directed', 0.062), ('proportional', 0.059), ('aj', 0.053), ('particle', 0.053), ('arnaud', 0.053), ('guest', 0.053), ('ikn', 0.053), ('nsj', 0.053), ('hyper', 0.052), ('assigned', 0.05), ('contrary', 0.049), ('auxiliary', 0.049), ('en', 0.048), ('clusters', 0.048), ('perfect', 0.047), ('associated', 0.047), ('friend', 0.047), ('numbering', 0.047), ('items', 0.046), ('belonging', 0.046), ('particles', 0.046), ('group', 0.044), ('possess', 0.044), ('poisson', 0.043), ('separator', 0.043), ('ber', 0.043), ('nb', 0.043), ('zb', 0.043), ('carlo', 0.043), ('monte', 0.043), ('docs', 0.04), ('walker', 0.04), ('objects', 0.039), ('graphs', 0.038), ('conditionals', 0.038), ('bivariate', 0.038), ('party', 0.038), ('ek', 0.038), ('pk', 0.038), ('feature', 0.037), ('features', 0.037), ('marginal', 0.036), ('logarithmically', 0.036), ('kc', 0.036), ('parents', 0.036), ('prior', 0.035), ('zi', 0.035), ('conjugacy', 0.035), ('site', 0.035), ('distributions', 0.035), ('vertex', 0.034), ('exchangeable', 0.033), ('markov', 0.033), ('mcmc', 0.033), ('brie', 0.032), ('zs', 0.032), ('possesses', 0.032), ('ks', 0.032), ('pa', 0.032), ('ap', 0.031)]
simIndex simValue paperId paperTitle
same-paper 1 0.99999964 40 nips-2009-Bayesian Nonparametric Models on Decomposable Graphs
Author: Francois Caron, Arnaud Doucet
Abstract: Over recent years Dirichlet processes and the associated Chinese restaurant process (CRP) have found many applications in clustering while the Indian buffet process (IBP) is increasingly used to describe latent feature models. These models are attractive because they ensure exchangeability (over samples). We propose here extensions of these models where the dependency between samples is given by a known decomposable graph. These models have appealing properties and can be easily learned using Monte Carlo techniques. 1 Motivation The CRP and IBP have found numerous applications in machine learning over recent years [5, 10]. We consider here the case where the data we are interested in are ‘locally’ dependent; these dependencies being represented by a known graph G where each data point/object is associated to a vertex. These local dependencies can correspond to any conceptual or real (e.g. space, time) metric. For example, in the context of clustering, we might want to propose a prior distribution on partitions enforcing that data which are ‘close’ in the graph are more likely to be in the same cluster. Similarly, in the context of latent feature models, we might be interested in a prior distribution on features enforcing that data which are ‘close’ in the graph are more likely to possess similar features. The ‘standard’ CRP and IBP correspond to the case where the graph G is complete; that is it is fully connected. In this paper, we generalize the CRP and IBP to decomposable graphs. The resulting generalized versions of the CRP and IBP enjoy attractive properties. Each clique of the graph follows marginally a CRP or an IBP process and explicit expressions for the joint prior distribution on the graph is available. It makes it easy to learn those models using straightforward generalizations of Markov chain Monte Carlo (MCMC) or Sequential Monte Carlo (SMC) algorithms proposed to perform inference for the CRP and IBP [5, 10, 14]. The rest of the paper is organized as follows. In Section 2, we review the popular Dirichlet multinomial allocation model and the Dirichlet Process (DP) partition distribution. We propose an extension of these two models to decomposable graphical models. In Section 3 we discuss nonparametric latent feature models, reviewing briefly the construction in [5] and extending it to decomposable graphs. We demonstrate these models in Section 4 on two applications: an alternative to the hierarchical DP model [12] and a time-varying matrix factorization problem. 2 Prior distributions for partitions on decomposable graphs Assume we have n observations. When performing clustering, we associate to each of this observation an allocation variable zi ∈ [K] = {1, . . . , K}. Let Πn be the partition of [n] = {1, . . . , n} defined by the equivalence relation i ↔ j ⇔ zi = zj . The resulting partition Πn = {A1 , . . . , An(Πn ) } 1 is an unordered collection of disjoint non-empty subsets Aj of [n], j = 1, . . . , n(Πn ), where ∪j Aj = [n] and n(Πn ) is the number of subsets for partition Πn . We also denote by Pn be the set of all partitions of [n] and let nj , j = 1, . . . , n(Πn ), be the size of the subset Aj . Each allocation variable zi is associated to a vertex/site of an undirected graph G, which is assumed to be known. In the standard case where the graph G is complete, we first review briefly here two popular prior distributions on z1:n , equivalently on Πn . We then extend these models to undirected decomposable graphs; see [2, 8] for an introduction to decomposable graphs. Finally we briefly discuss the directed case. Note that the models proposed here are completely different from the hyper multinomial-Dirichlet in [2] and its recent DP extension [6]. 2.1 Dirichlet multinomial allocation model and DP partition distribution Assume for the time being that K is finite. When the graph is complete, a popular choice for the allocation variables is to consider a Dirichlet multinomial allocation model [11] θ θ , . . . , ), zi |π ∼ π (1) K K where D is the standard Dirichlet distribution and θ > 0. Integrating out π, we obtain the following Dirichlet multinomial prior distribution π ∼ D( Pr(z1:n ) = K j=1 Γ(θ) Γ(nj + θ K) (2) θ Γ(θ + n)Γ( K )K and then, using the straightforward equality Pr(Πn ) = PK where PK = {Πn ∈ Pn |n(Πn ) ≤ K}, we obtain K! (K−n(Πn ))! Pr(z1:n ) valid for for all Πn ∈ n(Π ) Pr(Πn ) = θ Γ(θ) j=1n Γ(nj + K ) K! . θ (K − n(Πn ))! Γ(θ + n)Γ( K )n(Πn ) (3) DP may be seen as a generalization of the Dirichlet multinomial model when the number of components K → ∞; see for example [10]. In this case the distribution over the partition Πn of [n] is given by [11] n(Π ) θn(Πn ) j=1n Γ(nj ) . (4) Pr(Πn ) = n i=1 (θ + i − 1) Let Π−k = {A1,−k , . . . , An(Π−k ),−k } be the partition induced by removing item k to Πn and nj,−k be the size of cluster j for j = 1, . . . , n(Π−k ). It follows from (4) that an item k is assigned to an existing cluster j, j = 1, . . . , n(Π−k ), with probability proportional to nj,−k / (n − 1 + θ) and forms a new cluster with probability θ/ (n − 1 + θ). This property is the basis of the CRP. We now extend the Dirichlet multinomial allocation and the DP partition distribution models to decomposable graphs. 2.2 Markov combination of Dirichlet multinomial and DP partition distributions Let G be a decomposable undirected graph, C = {C1 , . . . , Cp } a perfect ordering of the cliques and S = {S2 , . . . , Cp } the associated separators. It can be easily checked that if the marginal distribution of zC for each clique C ∈ C is defined by (2) then these distributions are consistent as they yield the same distribution (2) over the separators. Therefore, the unique Markov distribution over G with Dirichlet multinomial distribution over the cliques is defined by [8] Pr(zC ) S∈S Pr(zS ) C∈C Pr(z1:n ) = (5) where for each complete set B ⊆ G, we have Pr(zB ) given by (2). It follows that we have for any Πn ∈ PK Γ(θ) K! Pr(Πn ) = (K − n(Πn ))! C∈C Γ(θ) S∈S 2 K j=1 θ Γ(nj,C + K ) θ Γ(θ+nC )Γ( K )K K j=1 θ Γ(nj,S + K ) θ Γ(θ+nS )Γ( K )K (6) where for each complete set B ⊆ G, nj,B is the number of items associated to cluster j, j = 1, . . . , K in B and nB is the total number of items in B. Within each complete set B, the allocation variables define a partition distributed according to the Dirichlet-multinomial distribution. We now extend this approach to DP partition distributions; that is we derive a joint distribution over Πn such that the distribution of ΠB over each complete set B of the graph is given by (4) with θ > 0. Such a distribution satisfies the consistency condition over the separators as the restriction of any partition distributed according to (4) still follows (4) [7]. G Proposition. Let Pn be the set of partitions Πn ∈ Pn such that for each decomposition A, B, and any (i, j) ∈ A × B, i ↔ j ⇒ ∃k ∈ A ∩ B such that k ↔ i ↔ j. As K → ∞, the prior distribution G over partitions (6) is given for each Πn ∈ Pn by Pr(Πn ) = θn(Πn ) n(ΠC ) Γ(nj,C ) j=1 nC i=1 (θ+i−1) n(ΠS ) Γ(nj,S ) j=1 nS (θ+i−1) i=1 C∈C S∈S (7) where n(ΠB ) is the number of clusters in the complete set B. Proof. From (6), we have θ n(ΠC ) K(K − 1) . . . (K − n(Πn ) + 1) Pr(Πn ) = K C∈C n(ΠC )− S∈S n(ΠS ) C∈C θ n(ΠS ) S∈S n(ΠC ) θ Γ(nj,C + K ) j=1 nC (θ+i−1) i=1 n(ΠS ) θ Γ(nj,S + K ) j=1 nS (θ+i−1) i=1 Thus when K → ∞, we obtain (7) if n(Πn ) = C∈C n(ΠC ) − S∈S n(ΠS ) and 0 otherwise. We have n(Πn ) ≤ C∈C n(ΠC ) − S∈S n(ΠS ) for any Πn ∈ Pn and the subset of Pn verifying G n(Πn ) = C∈C n(ΠC ) − S∈S n(ΠS ) corresponds to the set Pn . Example. Let the notation i ∼ j (resp. i j) indicates an edge (resp. no edge) between two sites. Let n = 3 and G be the decomposable graph defined by the relations 1 ∼ 2, 2 ∼ 3 and 1 3. G The set P3 is then equal to {{{1, 2, 3}}; {{1, 2}, {3}}; {{1}, {2, 3}}; {{1}, {2}, {3}}}. Note that G the partition {{1, 3}, {2}} does not belong to P3 . Indeed, as there is no edge between 1 and 3, they cannot be in the same cluster if 2 is in another cluster. The cliques are C1 = {1, 2} and C2 = {2, 3} Pr(ΠC1 ) Pr(ΠC2 ) hence we can and the separator is S2 = {2}. The distribution is given by Pr(Π3 ) = Pr(ΠS ) 2 check that we obtain Pr({1, 2, 3}) = (θ + 1)−2 , Pr({1, 2}, {3}) = Pr({1, 2}, {3}) = θ(θ + 1)−2 and Pr({1}, {2}, {3}) = θ2 (θ + 1)−2 . Let now define the full conditional distributions. Based on (7) the conditional assignment of an item k is proportional to the conditional over the cliques divided by the conditional over the separators. G Let denote G−k the undirected graph obtained by removing vertex k from G. Suppose that Πn ∈ Pn . G−k If Π−k ∈ Pn−1 , then do not change the value of item k. Otherwise, item k is assigned to cluster j / where j = 1, . . . , n(Π−k ) with probability proportional to {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (8) and to a new cluster with probability proportional to θ, where n−k,j,C is the number of items in the set C \ {k} belonging to cluster j. The updating process is illustrated by the Chinese wedding party process1 in Fig. 1. The results of this section can be extended to the Pitman-Yor process, and more generally to species sampling models. Example (continuing). Given Π−2 = {A1 = {1}, A2 = {3}}, we have −1 Pr( item 2 assigned to A1 = {1}| Π−2 ) = Pr( item 2 assigned to A2 = {3}| Π−2 ) = (θ + 2) −1 and Pr( item 2 assigned to new cluster A3 | Π−2 ) = θ (θ + 2) . Given Π−2 = {A1 = {1, 3}}, item 2 is assigned to A1 with probability 1. 1 Note that this representation describes the full conditionals while the CRP represents the sequential updat- ing. 3 (a) (b) (d) (c) (e) Figure 1: Chinese wedding party. Consider a group of n guests attending a wedding party. Each of the n guests may belong to one or several cliques, i.e. maximal groups of people such that everybody knows everybody. The belonging of each guest to the different cliques is represented by color patches on the figures, and the graphical representation of the relationship between the guests is represented by the graphical model (e). (a) Suppose that the guests are already seated such that two guests cannot be together at the same table is they are not part of the same clique, or if there does not exist a group of other guests such that they are related (“Any friend of yours is a friend of mine”). (b) The guest number k leaves his table and either (c) joins a table where there are guests from the same clique as him, with probability proportional to the product of the number of guests from each clique over the product of the number of guests belonging to several cliques on that table or (d) he joins a new table with probability proportional to θ. 2.3 Monte Carlo inference 2.3.1 MCMC algorithm Using the full conditionals, a single site Gibbs sampler can easily be designed to approximate the posterior distribution Pr(Πn |z1:n ). Given a partition Πn , an item k is taken out of the partition. If G−k Π−k ∈ Pn−1 , item k keeps the same value. Otherwise, the item will be assigned to a cluster j, / j = 1, . . . , n(Π−k ), with probability proportional to p(z{k}∪Aj,−k ) × p(zAj,−k ) {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (9) and the item will be assigned to a new cluster with probability proportional to p(z{k} ) × θ. Similarly to [3], we can also define a procedure to sample from p(θ|n(Πn ) = k)). We assume that θ ∼ G(a, b) and use p auxiliary variables x1 , . . . , xp . The procedure is as follows. • For j = 1, . . . , p, sample xj |k, θ ∼ Beta(θ + nSj , nCj − nSj ) • Sample θ|k, x1:p ∼ G(a + k, b − j log xj ) 2.3.2 Sequential Monte Carlo We have so far only treated the case of an undirected decomposable graph G. We can formulate a sequential updating rule for the corresponding perfect directed version D of G. Indeed, let (a1 , . . . a|V | ) be a perfect ordering and pa(ak ) be the set of parents of ak which is by definition complete. Let Πk−1 = {A1,k−1 , . . . , An(Πk−1 ),k−1 } denote the partition of the first k−1 vertices a1:k−1 and let nj,pa(ak ) be the number of elements with value j in the set pa(ak ), j = 1, . . . , n(Πk−1 ). Then the vertex ak joins the set j with probability nj,pa(ak ) / θ + cluster with probability θ/ θ + q q nq,pa(ak ) and creates a new nq,pa(ak ) . One can then design a particle filter/SMC method in a similar fashion as [4]. Consider a set of (i) (i) (i) (i) N N particles Πk−1 with weights wk−1 ∝ Pr(Πk−1 , z1:k−1 ) ( i=1 wk−1 = 1) that approximate (i) the posterior distribution Pr(Πk−1 |z1:k−1 ). For each particle i, there are n(Πk−1 ) + 1 possible 4 (i,j) allocations for component ak . We denote Πk the partition obtained by associating component ak (i,j) to cluster j. The weight associated to Πk is given by nj,pa(ak ) (i) if j = 1, . . . , n(Πk−1 ) θ+ q nq,pa(ak ) (i,j) (i) p(z{ak }∪Aj,k−1 ) wk−1 = wk−1 × (10) (i) θ θ+ n p(zAj,k−1 ) if j = n(Πk−1 ) + 1 q q,pa(ak ) (i,j) Then we can perform a deterministic resampling step by keeping the N particles Πk with highest (i,j) (i) (i) weights wk−1 . Let Πk be the resampled particles and wk the associated normalized weights. 3 Prior distributions for infinite binary matrices on decomposable graphs Assume we have n objects; each of these objects being associated to the vertex of a graph G. To K each object is associated a K-dimensional binary vector zn = (zn,1 , . . . , zn,K ) ∈ {0, 1} where zn,i = 1 if object n possesses feature i and zn,i = 0 otherwise. These vectors zt form a binary n × K matrix denoted Z1:n . We denote by ξ1:n the associated equivalence class of left-ordered matrices and let EK be the set of left-ordered matrices with at most K features. In the standard case where the graph G is complete, we review briefly here two popular prior distributions on Z1:n , equivalently on ξ1:n : the Beta-Bernoulli model and the IBP [5]. We then extend these models to undirected decomposable graphs. This can be used for example to define a time-varying IBP as illustrated in Section 4. 3.1 Beta-Bernoulli and IBP distributions The Beta-Bernoulli distribution over the allocation Z1:n is K Pr(Z1:n ) = α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) α K Γ(nj j=1 (11) where nj is the number of objects having feature j. It follows that Pr(ξ1:n ) = K K! 2n −1 h=0 α K Γ(nj α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) Kh ! j=1 (12) where Kh is the number of features possessing the history h (see [5] for details). The nonparametric model is obtained by taking the limit when K → ∞ Pr(ξ1:n ) = αK K+ + 2n −1 h=1 Kh ! exp(−αHn ) where K + is the total number of features and Hn = 3.2 (n − nj )!(nj − 1)! n! j=1 n 1 k=1 k . (13) The IBP follows from (13). Markov combination of Beta-Bernoulli and IBP distributions Let G be a decomposable undirected graph, C = {C1 , . . . , Cp } a perfect ordering of the cliques and S = {S2 , . . . , Cp } the associated separators. As in the Dirichlet-multinomial case, it is easily seen that if for each clique C ∈ C, the marginal distribution is defined by (11), then these distributions are consistent as they yield the same distribution (11) over the separators. Therefore, the unique Markov distribution over G with Beta-Bernoulli distribution over the cliques is defined by [8] Pr(ZC ) S∈S Pr(ZS ) C∈C Pr(Z1:n ) = (14) where Pr(ZB ) given by (11) for each complete set B ⊆ G. The prior over ξ1:n is thus given, for ξ1:n ∈ EK , by Pr(ξ1:n ) = K! 2n −1 h=0 Kh ! α K α Γ(nj,C + K )Γ(nC −nj,C +1) α Γ(nC +1+ K ) α α Γ(nj,S + K )Γ(nS −nj,S +1) K K α j=1 Γ(nS +1+ K ) K j=1 C∈C S∈S 5 (15) where for each complete set B ⊆ G, nj,B is the number of items having feature j, j = 1, . . . , K in the set B and nB is the whole set of objects in set B. Taking the limit when K → ∞, we obtain after a few calculations Pr(ξ1:n ) = α + K[n] exp [−α ( C HnC − 2n −1 h=1 Kh ! HnS )] × C∈C + KC (nC −nj,C )!(nj,C −1)! j=1 nC ! S∈S S + KS (nS −nj,S )!(nj,S −1)! j=1 nS ! + + + + if K[n] = C KC − S KS and 0 otherwise, where KB is the number of different features possessed by objects in B. G Let En be the subset of En such that for each decomposition A, B and any (u, v) ∈ A × B: {u and v possess feature j} ⇒ ∃k ∈ A ∩ B such that {k possesses feature j}. Let ξ−k be the left-ordered + matrix obtained by removing object k from ξn and K−k be the total number of different features in G−k + ξ−k . For each feature j = 1, . . . , K−k , if ξ−k ∈ En−1 then we have b C∈C nj,C if i = 1 S∈C nj,S Pr(ξk,j = i) = (16) b C∈C (nC −nj,C ) if i = 0 (nS −nj,S ) S∈C nS where b is the appropriate normalizing constant then the customer k tries Poisson α {S∈S|k∈S} nC {C∈C|k∈C} new dishes. We can easily generalize this construction to a directed version D of G using arguments similar to those presented in Section 2; see Section 4 for an application to time-varying matrix factorization. 4 4.1 Applications Sharing clusters among relative groups: An alternative to HDP Consider that we are given d groups with nj data yi,j in each group, i = 1, . . . , nj , j = 1, . . . , d. We consider latent cluster variables zi,j that define the partition of the data. We will use alternatively the notation θi,j = Uzi,j in the following. Hierarchical Dirichlet Process [12] (HDP) is a very popular model for sharing clusters among related groups. It is based on a hierarchy of DPs G0 ∼ DP (γ, H), Gj |G0 ∼ DP (α, G0 ) j = 1, . . . d θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f (θi,j ) i = 1, . . . , nj . Under conjugacy assumptions, G0 , Gj and U can be integrated out and we can approximate the marginal posterior of (zi,j ) given y = (yi,j ) with Gibbs sampling using the Chinese restaurant franchise to sample from the full conditional p(zi,j |z−{i,j} , y). Using the graph formulation defined in Section 2, we propose an alternative to HDP. Let θ0,1 , . . . , θ0,N be N auxiliary variables belonging to what we call group 0. We define each clique Cj (j = 1, . . . , d) to be composed of elements from group j and elements from group 0. This defines a decomposable graphical model whose separator is given by the elements of group 0. We can rewrite the model in a way quite similar to HDP G0 ∼ DP (α, H), θ0,i |G0 ∼ G0 i = 1, ..., N α α Gj |θ0,1 , . . . , θ0,N ∼ DP (α + N, α+N H + α+N θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f (θi,j ) i = 1, . . . , nj N i=1 δθ0,i ) j = 1, . . . d, N For any subset A and j = k ∈ {1, . . . , p} we have corr(Gj (A), Gk (A)) = α+N . Again, under conjugacy conditions, we can integrate out G0 , Gj and U and approximate the marginal posterior distribution over the partition using the Chinese wedding party process defined in Section 2. Note that for latent variables zi,j , j = 1, . . . , d, associated to data, this is the usual CRP update. As in HDP, multiple layers can be added to the model. Figures 2 (a) and (b) resp. give the graphical DP alternative to HDP and 2-layer HDP. 6 z0 root z0 root corpora docs z1 z2 z1 z2 z3 z1,1 z1,2 z2,1 z2,2 z2,3 docs (a) Graphical DP alternative to HDP (b) Graphical DP alternative to 2-layer HDP Figure 2: Hierarchical Graphs of dependency with (a) one layer and (b) two layers of hierarchy. If N = 0, then Gj ∼ DP (α, H) for all j and this is equivalent to setting γ → ∞ in HDP. If N → ∞ then Gj = G0 for all j, G0 ∼ DP (α, H). This is equivalent to setting α → ∞ in the HDP. One interesting feature of the model is that, contrary to HDP, the marginal distribution of Gj at any layer of the tree is DP (α, H). As a consequence, the total number of clusters scales logarithmically (as in the usual DP) with the size of each group, whereas it scales doubly logarithmically in HDP. Contrary to HDP, there are at most N clusters shared between different groups. Our model is in that sense reminiscent of [9] where only a limited number of clusters can be shared. Note however that contrary to [9] we have a simple CRP-like process. The proposed methodology can be straightforwardly extended to the infinite HMM [12]. The main issue of the proposed model is the setting of the number N of auxiliary parameters. Another issue is that to achieve high correlation, we need a large number of auxiliary variables. Nonetheless, the computational time used to sample from auxiliary variables is negligible compared to the time used for latent variables associated to data. Moreover, it can be easily parallelized. The model proposed offers a far richer framework and ensures that at each level of the tree, the marginal distribution of the partition is given by a DP partition model. 4.2 Time-varying matrix factorization Let X1:n be an observed matrix of dimension n × D. We want to find a representation of this matrix in terms of two latent matrices Z1:n of dimension n × K and Y of dimension K × D. Here Z1:n 2 is a binary matrix whereas Y is a matrix of latent features. By assuming that Y ∼ N 0, σY IK×D and 2 X1:n = Z1:n Y + σX εn where εn ∼ N 0, σX In×D , we obtain p(X1:n |Z1:n ) ∝ −D/2 2 2 + Z+T Z+ + σX /σY IKn 1:n 1:n + (n−Kn )D σX exp − + Kn D σY 2 2 + where Σ−1 = I − Z+ Z+T Z+ + σX /σY IKn n 1:n 1:n 1:n −1 1 T −1 2 tr X1:n Σn X1:n 2σX (17) + Z+T , Kn the number of non-zero columns of 1:n + Z1:n and Z+ is the first Kn columns of Z1:n . To avoid having to set K, [5, 14] assume that Z1:n 1:n follows an IBP. The resulting posterior distribution p(Z1:n |X1:n ) can be estimated through MCMC [5] or SMC [14]. We consider here a different model where the object Xt is assumed to arrive at time index t and we want a prior distribution on Z1:n ensuring that objects close in time are more likely to possess similar features. To achieve this, we consider the simple directed graphical model D of Fig. 3 where the site numbering corresponds to a time index in that case and a perfect numbering of D is (1, 2, . . .). The set of parents pa(t) is composed of the r preceding sites {{t − r}, . . . , {t − 1}}. The time-varying IBP to sample from p(Z1:n ) associated to this directed graph follows from (16) and proceeds as follows. At time t = 1 + new new • Sample K1 ∼Poisson(α), set z1,i = 1 for i = 1, ..., K1 and set K1 = Knew . At times t = 2, . . . , r n + new ∼Poisson( α ). • For k = 1, . . . Kt , sample zt,k ∼ Ber( 1:t−1,k ) and Kt t t 7 ? ? - t−r - t−r+1 - . . . - t−1 - t - t+1 6 6 Figure 3: Directed graph. At times t = r + 1, . . . , n n + α new ∼Poisson( r+1 ). • For k = 1, . . . Kt , sample zt,k ∼ Ber( t−r:t−1,k ) and Kt r+1 + Here Kt is the total number of features appearing from time max(1, t − r) to t − 1 and nt−r:t−1,k the restriction of n1:t−1 to the r last customers. Using (17) and the prior distribution of Z1:n which can be sampled using the time-varying IBP described above, we can easily design an SMC method to sample from p(Z1:n |X1:n ). We do not detail it here. Note that contrary to [14], our algorithm does not require inverting a matrix whose dimension grows linearly with the size of the data but only a matrix of dimension r × r. In order to illustrate the model and SMC algorithm, we create 200 6 × 6 images using a ground truth Y consisting of 4 different 6 × 6 latent images. The 200 × 4 binary matrix was generated from Pr(zt,k = 1) = πt,k , where πt = ( .6 .5 0 0 ) if t = 1, . . . , 30, πt = ( .4 .8 .4 0 ) if t = 31, . . . , 50 and πt = ( 0 .3 .6 .6 ) if t = 51, . . . , 200. The order of the model is set to r = 50. The feature occurences Z1:n and true features Y and their estimates are represented in Figure 4. Two spurious features are detected by the model (features 2 and 5 on Fig. 3(c)) but quickly discarded (Fig. 4(d)). The algorithm is able to correctly estimate the varying prior occurences of the features over time. Feature1 Feature2 Feature1 Feature2 Feature3 20 20 40 40 60 60 Feature4 80 100 Feature4 Feature5 Feature6 Time Feature3 Time 80 100 120 120 140 140 160 160 180 200 180 1 2 3 200 4 Feature (a) 1 2 3 4 5 6 Feature (b) (c) (d) Figure 4: (a) True features, (b) True features occurences, (c) MAP estimate ZM AP and (d) associated E[Y|ZM AP ] t=20 t=50 t=20 t=50 t=100 t=200 t=100 t=200 (a) (b) Figure 5: (a) E[Xt |πt , Y] and (b) E[Xt |X1:t−1 ] at t = 20, 50, 100, 200. 5 Related work and Discussion The fixed-lag version of the time-varying DP of Caron et al. [1] is a special case of the proposed model when G is given by Fig. 3. The bivariate DP of Walker and Muliere [13] is also a special case when G has only two cliques. In this paper, we have assumed that the structure of the graph was known beforehand and we have shown that many flexible models arise from this framework. It would be interesting in the future to investigate the case where the graphical structure is unknown and must be estimated from the data. Acknowledgment The authors thank the reviewers for their comments that helped to improve the writing of the paper. 8 References [1] F. Caron, M. Davy, and A. Doucet. Generalized Polya urn for time-varying Dirichlet process mixtures. In Uncertainty in Artificial Intelligence, 2007. [2] A.P. Dawid and S.L. Lauritzen. Hyper Markov laws in the statistical analysis of decomposable graphical models. The Annals of Statistics, 21:1272–1317, 1993. [3] M.D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90:577–588, 1995. [4] P. Fearnhead. Particle filters for mixture models with an unknown number of components. Statistics and Computing, 14:11–21, 2004. [5] T.L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In Advances in Neural Information Processing Systems, 2006. [6] D. Heinz. Building hyper dirichlet processes for graphical models. Electonic Journal of Statistics, 3:290–315, 2009. [7] J.F.C. Kingman. Random partitions in population genetics. Proceedings of the Royal Society of London, 361:1–20, 1978. [8] S.L. Lauritzen. Graphical Models. Oxford University Press, 1996. [9] P. M¨ ller, F. Quintana, and G. Rosner. A method for combining inference across related nonu parametric Bayesian models. Journal of the Royal Statistical Society B, 66:735–749, 2004. [10] R.M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249–265, 2000. [11] J. Pitman. Exchangeable and partially exchangeable random partitions. Probability theory and related fields, 102:145–158, 1995. [12] Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101:1566–1581, 2006. [13] S. Walker and P. Muliere. A bivariate Dirichlet process. Statistics and Probability Letters, 64:1–7, 2003. [14] F. Wood and T.L. Griffiths. Particle filtering for nonparametric Bayesian matrix factorization. In Advances in Neural Information Processing Systems, 2007. 9
2 0.14929006 29 nips-2009-An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism
Author: Douglas Eck, Yoshua Bengio, Aaron C. Courville
Abstract: The Indian Buffet Process is a Bayesian nonparametric approach that models objects as arising from an infinite number of latent factors. Here we extend the latent factor model framework to two or more unbounded layers of latent factors. From a generative perspective, each layer defines a conditional factorial prior distribution over the binary latent variables of the layer below via a noisy-or mechanism. We explore the properties of the model with two empirical studies, one digit recognition task and one music tag data experiment. 1
3 0.14861099 129 nips-2009-Learning a Small Mixture of Trees
Author: M. P. Kumar, Daphne Koller
Abstract: The problem of approximating a given probability distribution using a simpler distribution plays an important role in several areas of machine learning, for example variational inference and classification. Within this context, we consider the task of learning a mixture of tree distributions. Although mixtures of trees can be learned by minimizing the KL-divergence using an EM algorithm, its success depends heavily on the initialization. We propose an efficient strategy for obtaining a good initial set of trees that attempts to cover the entire observed distribution by minimizing the α-divergence with α = ∞. We formulate the problem using the fractional covering framework and present a convergent sequential algorithm that only relies on solving a convex program at each iteration. Compared to previous methods, our approach results in a significantly smaller mixture of trees that provides similar or better accuracies. We demonstrate the usefulness of our approach by learning pictorial structures for face recognition.
4 0.1366073 174 nips-2009-Nonparametric Latent Feature Models for Link Prediction
Author: Kurt Miller, Michael I. Jordan, Thomas L. Griffiths
Abstract: As the availability and importance of relational data—such as the friendships summarized on a social networking website—increases, it becomes increasingly important to have good models for such data. The kinds of latent structure that have been considered for use in predicting links in such networks have been relatively limited. In particular, the machine learning community has focused on latent class models, adapting Bayesian nonparametric methods to jointly infer how many latent classes there are while learning which entities belong to each class. We pursue a similar approach with a richer kind of latent variable—latent features—using a Bayesian nonparametric approach to simultaneously infer the number of features at the same time we learn which entities have each feature. Our model combines these inferred features with known covariates in order to perform link prediction. We demonstrate that the greater expressiveness of this approach allows us to improve performance on three datasets. 1
5 0.13656577 226 nips-2009-Spatial Normalized Gamma Processes
Author: Vinayak Rao, Yee W. Teh
Abstract: Dependent Dirichlet processes (DPs) are dependent sets of random measures, each being marginally DP distributed. They are used in Bayesian nonparametric models when the usual exchangeability assumption does not hold. We propose a simple and general framework to construct dependent DPs by marginalizing and normalizing a single gamma process over an extended space. The result is a set of DPs, each associated with a point in a space such that neighbouring DPs are more dependent. We describe Markov chain Monte Carlo inference involving Gibbs sampling and three different Metropolis-Hastings proposals to speed up convergence. We report an empirical study of convergence on a synthetic dataset and demonstrate an application of the model to topic modeling through time. 1
6 0.12461907 23 nips-2009-Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models
7 0.12155935 123 nips-2009-Large Scale Nonparametric Bayesian Inference: Data Parallelisation in the Indian Buffet Process
8 0.11851501 217 nips-2009-Sharing Features among Dynamical Systems with Beta Processes
9 0.10890643 18 nips-2009-A Stochastic approximation method for inference in probabilistic graphical models
10 0.10180919 65 nips-2009-Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process
11 0.093052424 114 nips-2009-Indian Buffet Processes with Power-law Behavior
12 0.091844395 179 nips-2009-On the Algorithmics and Applications of a Mixed-norm based Kernel Learning Formulation
13 0.09010122 109 nips-2009-Hierarchical Learning of Dimensional Biases in Human Categorization
14 0.087460615 20 nips-2009-A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers
15 0.087113708 255 nips-2009-Variational Inference for the Nested Chinese Restaurant Process
16 0.087102614 155 nips-2009-Modelling Relational Data using Bayesian Clustered Tensor Factorization
17 0.078587636 208 nips-2009-Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization
18 0.077880695 141 nips-2009-Local Rules for Global MAP: When Do They Work ?
19 0.07517305 59 nips-2009-Construction of Nonparametric Bayesian Models from Parametric Bayes Equations
20 0.074444108 11 nips-2009-A General Projection Property for Distribution Families
topicId topicWeight
[(0, -0.217), (1, -0.021), (2, -0.047), (3, -0.159), (4, 0.106), (5, -0.206), (6, 0.089), (7, 0.004), (8, -0.056), (9, -0.08), (10, -0.035), (11, -0.05), (12, 0.019), (13, -0.059), (14, -0.122), (15, 0.02), (16, 0.087), (17, -0.078), (18, 0.067), (19, 0.148), (20, -0.028), (21, 0.03), (22, 0.027), (23, 0.016), (24, 0.008), (25, -0.058), (26, -0.057), (27, -0.031), (28, -0.073), (29, 0.016), (30, 0.123), (31, -0.022), (32, 0.071), (33, 0.049), (34, 0.001), (35, -0.08), (36, 0.005), (37, 0.023), (38, 0.073), (39, 0.049), (40, 0.054), (41, 0.101), (42, 0.036), (43, 0.068), (44, 0.098), (45, 0.047), (46, 0.104), (47, -0.1), (48, 0.113), (49, 0.089)]
simIndex simValue paperId paperTitle
same-paper 1 0.96331543 40 nips-2009-Bayesian Nonparametric Models on Decomposable Graphs
Author: Francois Caron, Arnaud Doucet
Abstract: Over recent years Dirichlet processes and the associated Chinese restaurant process (CRP) have found many applications in clustering while the Indian buffet process (IBP) is increasingly used to describe latent feature models. These models are attractive because they ensure exchangeability (over samples). We propose here extensions of these models where the dependency between samples is given by a known decomposable graph. These models have appealing properties and can be easily learned using Monte Carlo techniques. 1 Motivation The CRP and IBP have found numerous applications in machine learning over recent years [5, 10]. We consider here the case where the data we are interested in are ‘locally’ dependent; these dependencies being represented by a known graph G where each data point/object is associated to a vertex. These local dependencies can correspond to any conceptual or real (e.g. space, time) metric. For example, in the context of clustering, we might want to propose a prior distribution on partitions enforcing that data which are ‘close’ in the graph are more likely to be in the same cluster. Similarly, in the context of latent feature models, we might be interested in a prior distribution on features enforcing that data which are ‘close’ in the graph are more likely to possess similar features. The ‘standard’ CRP and IBP correspond to the case where the graph G is complete; that is it is fully connected. In this paper, we generalize the CRP and IBP to decomposable graphs. The resulting generalized versions of the CRP and IBP enjoy attractive properties. Each clique of the graph follows marginally a CRP or an IBP process and explicit expressions for the joint prior distribution on the graph is available. It makes it easy to learn those models using straightforward generalizations of Markov chain Monte Carlo (MCMC) or Sequential Monte Carlo (SMC) algorithms proposed to perform inference for the CRP and IBP [5, 10, 14]. The rest of the paper is organized as follows. In Section 2, we review the popular Dirichlet multinomial allocation model and the Dirichlet Process (DP) partition distribution. We propose an extension of these two models to decomposable graphical models. In Section 3 we discuss nonparametric latent feature models, reviewing briefly the construction in [5] and extending it to decomposable graphs. We demonstrate these models in Section 4 on two applications: an alternative to the hierarchical DP model [12] and a time-varying matrix factorization problem. 2 Prior distributions for partitions on decomposable graphs Assume we have n observations. When performing clustering, we associate to each of this observation an allocation variable zi ∈ [K] = {1, . . . , K}. Let Πn be the partition of [n] = {1, . . . , n} defined by the equivalence relation i ↔ j ⇔ zi = zj . The resulting partition Πn = {A1 , . . . , An(Πn ) } 1 is an unordered collection of disjoint non-empty subsets Aj of [n], j = 1, . . . , n(Πn ), where ∪j Aj = [n] and n(Πn ) is the number of subsets for partition Πn . We also denote by Pn be the set of all partitions of [n] and let nj , j = 1, . . . , n(Πn ), be the size of the subset Aj . Each allocation variable zi is associated to a vertex/site of an undirected graph G, which is assumed to be known. In the standard case where the graph G is complete, we first review briefly here two popular prior distributions on z1:n , equivalently on Πn . We then extend these models to undirected decomposable graphs; see [2, 8] for an introduction to decomposable graphs. Finally we briefly discuss the directed case. Note that the models proposed here are completely different from the hyper multinomial-Dirichlet in [2] and its recent DP extension [6]. 2.1 Dirichlet multinomial allocation model and DP partition distribution Assume for the time being that K is finite. When the graph is complete, a popular choice for the allocation variables is to consider a Dirichlet multinomial allocation model [11] θ θ , . . . , ), zi |π ∼ π (1) K K where D is the standard Dirichlet distribution and θ > 0. Integrating out π, we obtain the following Dirichlet multinomial prior distribution π ∼ D( Pr(z1:n ) = K j=1 Γ(θ) Γ(nj + θ K) (2) θ Γ(θ + n)Γ( K )K and then, using the straightforward equality Pr(Πn ) = PK where PK = {Πn ∈ Pn |n(Πn ) ≤ K}, we obtain K! (K−n(Πn ))! Pr(z1:n ) valid for for all Πn ∈ n(Π ) Pr(Πn ) = θ Γ(θ) j=1n Γ(nj + K ) K! . θ (K − n(Πn ))! Γ(θ + n)Γ( K )n(Πn ) (3) DP may be seen as a generalization of the Dirichlet multinomial model when the number of components K → ∞; see for example [10]. In this case the distribution over the partition Πn of [n] is given by [11] n(Π ) θn(Πn ) j=1n Γ(nj ) . (4) Pr(Πn ) = n i=1 (θ + i − 1) Let Π−k = {A1,−k , . . . , An(Π−k ),−k } be the partition induced by removing item k to Πn and nj,−k be the size of cluster j for j = 1, . . . , n(Π−k ). It follows from (4) that an item k is assigned to an existing cluster j, j = 1, . . . , n(Π−k ), with probability proportional to nj,−k / (n − 1 + θ) and forms a new cluster with probability θ/ (n − 1 + θ). This property is the basis of the CRP. We now extend the Dirichlet multinomial allocation and the DP partition distribution models to decomposable graphs. 2.2 Markov combination of Dirichlet multinomial and DP partition distributions Let G be a decomposable undirected graph, C = {C1 , . . . , Cp } a perfect ordering of the cliques and S = {S2 , . . . , Cp } the associated separators. It can be easily checked that if the marginal distribution of zC for each clique C ∈ C is defined by (2) then these distributions are consistent as they yield the same distribution (2) over the separators. Therefore, the unique Markov distribution over G with Dirichlet multinomial distribution over the cliques is defined by [8] Pr(zC ) S∈S Pr(zS ) C∈C Pr(z1:n ) = (5) where for each complete set B ⊆ G, we have Pr(zB ) given by (2). It follows that we have for any Πn ∈ PK Γ(θ) K! Pr(Πn ) = (K − n(Πn ))! C∈C Γ(θ) S∈S 2 K j=1 θ Γ(nj,C + K ) θ Γ(θ+nC )Γ( K )K K j=1 θ Γ(nj,S + K ) θ Γ(θ+nS )Γ( K )K (6) where for each complete set B ⊆ G, nj,B is the number of items associated to cluster j, j = 1, . . . , K in B and nB is the total number of items in B. Within each complete set B, the allocation variables define a partition distributed according to the Dirichlet-multinomial distribution. We now extend this approach to DP partition distributions; that is we derive a joint distribution over Πn such that the distribution of ΠB over each complete set B of the graph is given by (4) with θ > 0. Such a distribution satisfies the consistency condition over the separators as the restriction of any partition distributed according to (4) still follows (4) [7]. G Proposition. Let Pn be the set of partitions Πn ∈ Pn such that for each decomposition A, B, and any (i, j) ∈ A × B, i ↔ j ⇒ ∃k ∈ A ∩ B such that k ↔ i ↔ j. As K → ∞, the prior distribution G over partitions (6) is given for each Πn ∈ Pn by Pr(Πn ) = θn(Πn ) n(ΠC ) Γ(nj,C ) j=1 nC i=1 (θ+i−1) n(ΠS ) Γ(nj,S ) j=1 nS (θ+i−1) i=1 C∈C S∈S (7) where n(ΠB ) is the number of clusters in the complete set B. Proof. From (6), we have θ n(ΠC ) K(K − 1) . . . (K − n(Πn ) + 1) Pr(Πn ) = K C∈C n(ΠC )− S∈S n(ΠS ) C∈C θ n(ΠS ) S∈S n(ΠC ) θ Γ(nj,C + K ) j=1 nC (θ+i−1) i=1 n(ΠS ) θ Γ(nj,S + K ) j=1 nS (θ+i−1) i=1 Thus when K → ∞, we obtain (7) if n(Πn ) = C∈C n(ΠC ) − S∈S n(ΠS ) and 0 otherwise. We have n(Πn ) ≤ C∈C n(ΠC ) − S∈S n(ΠS ) for any Πn ∈ Pn and the subset of Pn verifying G n(Πn ) = C∈C n(ΠC ) − S∈S n(ΠS ) corresponds to the set Pn . Example. Let the notation i ∼ j (resp. i j) indicates an edge (resp. no edge) between two sites. Let n = 3 and G be the decomposable graph defined by the relations 1 ∼ 2, 2 ∼ 3 and 1 3. G The set P3 is then equal to {{{1, 2, 3}}; {{1, 2}, {3}}; {{1}, {2, 3}}; {{1}, {2}, {3}}}. Note that G the partition {{1, 3}, {2}} does not belong to P3 . Indeed, as there is no edge between 1 and 3, they cannot be in the same cluster if 2 is in another cluster. The cliques are C1 = {1, 2} and C2 = {2, 3} Pr(ΠC1 ) Pr(ΠC2 ) hence we can and the separator is S2 = {2}. The distribution is given by Pr(Π3 ) = Pr(ΠS ) 2 check that we obtain Pr({1, 2, 3}) = (θ + 1)−2 , Pr({1, 2}, {3}) = Pr({1, 2}, {3}) = θ(θ + 1)−2 and Pr({1}, {2}, {3}) = θ2 (θ + 1)−2 . Let now define the full conditional distributions. Based on (7) the conditional assignment of an item k is proportional to the conditional over the cliques divided by the conditional over the separators. G Let denote G−k the undirected graph obtained by removing vertex k from G. Suppose that Πn ∈ Pn . G−k If Π−k ∈ Pn−1 , then do not change the value of item k. Otherwise, item k is assigned to cluster j / where j = 1, . . . , n(Π−k ) with probability proportional to {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (8) and to a new cluster with probability proportional to θ, where n−k,j,C is the number of items in the set C \ {k} belonging to cluster j. The updating process is illustrated by the Chinese wedding party process1 in Fig. 1. The results of this section can be extended to the Pitman-Yor process, and more generally to species sampling models. Example (continuing). Given Π−2 = {A1 = {1}, A2 = {3}}, we have −1 Pr( item 2 assigned to A1 = {1}| Π−2 ) = Pr( item 2 assigned to A2 = {3}| Π−2 ) = (θ + 2) −1 and Pr( item 2 assigned to new cluster A3 | Π−2 ) = θ (θ + 2) . Given Π−2 = {A1 = {1, 3}}, item 2 is assigned to A1 with probability 1. 1 Note that this representation describes the full conditionals while the CRP represents the sequential updat- ing. 3 (a) (b) (d) (c) (e) Figure 1: Chinese wedding party. Consider a group of n guests attending a wedding party. Each of the n guests may belong to one or several cliques, i.e. maximal groups of people such that everybody knows everybody. The belonging of each guest to the different cliques is represented by color patches on the figures, and the graphical representation of the relationship between the guests is represented by the graphical model (e). (a) Suppose that the guests are already seated such that two guests cannot be together at the same table is they are not part of the same clique, or if there does not exist a group of other guests such that they are related (“Any friend of yours is a friend of mine”). (b) The guest number k leaves his table and either (c) joins a table where there are guests from the same clique as him, with probability proportional to the product of the number of guests from each clique over the product of the number of guests belonging to several cliques on that table or (d) he joins a new table with probability proportional to θ. 2.3 Monte Carlo inference 2.3.1 MCMC algorithm Using the full conditionals, a single site Gibbs sampler can easily be designed to approximate the posterior distribution Pr(Πn |z1:n ). Given a partition Πn , an item k is taken out of the partition. If G−k Π−k ∈ Pn−1 , item k keeps the same value. Otherwise, the item will be assigned to a cluster j, / j = 1, . . . , n(Π−k ), with probability proportional to p(z{k}∪Aj,−k ) × p(zAj,−k ) {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (9) and the item will be assigned to a new cluster with probability proportional to p(z{k} ) × θ. Similarly to [3], we can also define a procedure to sample from p(θ|n(Πn ) = k)). We assume that θ ∼ G(a, b) and use p auxiliary variables x1 , . . . , xp . The procedure is as follows. • For j = 1, . . . , p, sample xj |k, θ ∼ Beta(θ + nSj , nCj − nSj ) • Sample θ|k, x1:p ∼ G(a + k, b − j log xj ) 2.3.2 Sequential Monte Carlo We have so far only treated the case of an undirected decomposable graph G. We can formulate a sequential updating rule for the corresponding perfect directed version D of G. Indeed, let (a1 , . . . a|V | ) be a perfect ordering and pa(ak ) be the set of parents of ak which is by definition complete. Let Πk−1 = {A1,k−1 , . . . , An(Πk−1 ),k−1 } denote the partition of the first k−1 vertices a1:k−1 and let nj,pa(ak ) be the number of elements with value j in the set pa(ak ), j = 1, . . . , n(Πk−1 ). Then the vertex ak joins the set j with probability nj,pa(ak ) / θ + cluster with probability θ/ θ + q q nq,pa(ak ) and creates a new nq,pa(ak ) . One can then design a particle filter/SMC method in a similar fashion as [4]. Consider a set of (i) (i) (i) (i) N N particles Πk−1 with weights wk−1 ∝ Pr(Πk−1 , z1:k−1 ) ( i=1 wk−1 = 1) that approximate (i) the posterior distribution Pr(Πk−1 |z1:k−1 ). For each particle i, there are n(Πk−1 ) + 1 possible 4 (i,j) allocations for component ak . We denote Πk the partition obtained by associating component ak (i,j) to cluster j. The weight associated to Πk is given by nj,pa(ak ) (i) if j = 1, . . . , n(Πk−1 ) θ+ q nq,pa(ak ) (i,j) (i) p(z{ak }∪Aj,k−1 ) wk−1 = wk−1 × (10) (i) θ θ+ n p(zAj,k−1 ) if j = n(Πk−1 ) + 1 q q,pa(ak ) (i,j) Then we can perform a deterministic resampling step by keeping the N particles Πk with highest (i,j) (i) (i) weights wk−1 . Let Πk be the resampled particles and wk the associated normalized weights. 3 Prior distributions for infinite binary matrices on decomposable graphs Assume we have n objects; each of these objects being associated to the vertex of a graph G. To K each object is associated a K-dimensional binary vector zn = (zn,1 , . . . , zn,K ) ∈ {0, 1} where zn,i = 1 if object n possesses feature i and zn,i = 0 otherwise. These vectors zt form a binary n × K matrix denoted Z1:n . We denote by ξ1:n the associated equivalence class of left-ordered matrices and let EK be the set of left-ordered matrices with at most K features. In the standard case where the graph G is complete, we review briefly here two popular prior distributions on Z1:n , equivalently on ξ1:n : the Beta-Bernoulli model and the IBP [5]. We then extend these models to undirected decomposable graphs. This can be used for example to define a time-varying IBP as illustrated in Section 4. 3.1 Beta-Bernoulli and IBP distributions The Beta-Bernoulli distribution over the allocation Z1:n is K Pr(Z1:n ) = α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) α K Γ(nj j=1 (11) where nj is the number of objects having feature j. It follows that Pr(ξ1:n ) = K K! 2n −1 h=0 α K Γ(nj α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) Kh ! j=1 (12) where Kh is the number of features possessing the history h (see [5] for details). The nonparametric model is obtained by taking the limit when K → ∞ Pr(ξ1:n ) = αK K+ + 2n −1 h=1 Kh ! exp(−αHn ) where K + is the total number of features and Hn = 3.2 (n − nj )!(nj − 1)! n! j=1 n 1 k=1 k . (13) The IBP follows from (13). Markov combination of Beta-Bernoulli and IBP distributions Let G be a decomposable undirected graph, C = {C1 , . . . , Cp } a perfect ordering of the cliques and S = {S2 , . . . , Cp } the associated separators. As in the Dirichlet-multinomial case, it is easily seen that if for each clique C ∈ C, the marginal distribution is defined by (11), then these distributions are consistent as they yield the same distribution (11) over the separators. Therefore, the unique Markov distribution over G with Beta-Bernoulli distribution over the cliques is defined by [8] Pr(ZC ) S∈S Pr(ZS ) C∈C Pr(Z1:n ) = (14) where Pr(ZB ) given by (11) for each complete set B ⊆ G. The prior over ξ1:n is thus given, for ξ1:n ∈ EK , by Pr(ξ1:n ) = K! 2n −1 h=0 Kh ! α K α Γ(nj,C + K )Γ(nC −nj,C +1) α Γ(nC +1+ K ) α α Γ(nj,S + K )Γ(nS −nj,S +1) K K α j=1 Γ(nS +1+ K ) K j=1 C∈C S∈S 5 (15) where for each complete set B ⊆ G, nj,B is the number of items having feature j, j = 1, . . . , K in the set B and nB is the whole set of objects in set B. Taking the limit when K → ∞, we obtain after a few calculations Pr(ξ1:n ) = α + K[n] exp [−α ( C HnC − 2n −1 h=1 Kh ! HnS )] × C∈C + KC (nC −nj,C )!(nj,C −1)! j=1 nC ! S∈S S + KS (nS −nj,S )!(nj,S −1)! j=1 nS ! + + + + if K[n] = C KC − S KS and 0 otherwise, where KB is the number of different features possessed by objects in B. G Let En be the subset of En such that for each decomposition A, B and any (u, v) ∈ A × B: {u and v possess feature j} ⇒ ∃k ∈ A ∩ B such that {k possesses feature j}. Let ξ−k be the left-ordered + matrix obtained by removing object k from ξn and K−k be the total number of different features in G−k + ξ−k . For each feature j = 1, . . . , K−k , if ξ−k ∈ En−1 then we have b C∈C nj,C if i = 1 S∈C nj,S Pr(ξk,j = i) = (16) b C∈C (nC −nj,C ) if i = 0 (nS −nj,S ) S∈C nS where b is the appropriate normalizing constant then the customer k tries Poisson α {S∈S|k∈S} nC {C∈C|k∈C} new dishes. We can easily generalize this construction to a directed version D of G using arguments similar to those presented in Section 2; see Section 4 for an application to time-varying matrix factorization. 4 4.1 Applications Sharing clusters among relative groups: An alternative to HDP Consider that we are given d groups with nj data yi,j in each group, i = 1, . . . , nj , j = 1, . . . , d. We consider latent cluster variables zi,j that define the partition of the data. We will use alternatively the notation θi,j = Uzi,j in the following. Hierarchical Dirichlet Process [12] (HDP) is a very popular model for sharing clusters among related groups. It is based on a hierarchy of DPs G0 ∼ DP (γ, H), Gj |G0 ∼ DP (α, G0 ) j = 1, . . . d θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f (θi,j ) i = 1, . . . , nj . Under conjugacy assumptions, G0 , Gj and U can be integrated out and we can approximate the marginal posterior of (zi,j ) given y = (yi,j ) with Gibbs sampling using the Chinese restaurant franchise to sample from the full conditional p(zi,j |z−{i,j} , y). Using the graph formulation defined in Section 2, we propose an alternative to HDP. Let θ0,1 , . . . , θ0,N be N auxiliary variables belonging to what we call group 0. We define each clique Cj (j = 1, . . . , d) to be composed of elements from group j and elements from group 0. This defines a decomposable graphical model whose separator is given by the elements of group 0. We can rewrite the model in a way quite similar to HDP G0 ∼ DP (α, H), θ0,i |G0 ∼ G0 i = 1, ..., N α α Gj |θ0,1 , . . . , θ0,N ∼ DP (α + N, α+N H + α+N θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f (θi,j ) i = 1, . . . , nj N i=1 δθ0,i ) j = 1, . . . d, N For any subset A and j = k ∈ {1, . . . , p} we have corr(Gj (A), Gk (A)) = α+N . Again, under conjugacy conditions, we can integrate out G0 , Gj and U and approximate the marginal posterior distribution over the partition using the Chinese wedding party process defined in Section 2. Note that for latent variables zi,j , j = 1, . . . , d, associated to data, this is the usual CRP update. As in HDP, multiple layers can be added to the model. Figures 2 (a) and (b) resp. give the graphical DP alternative to HDP and 2-layer HDP. 6 z0 root z0 root corpora docs z1 z2 z1 z2 z3 z1,1 z1,2 z2,1 z2,2 z2,3 docs (a) Graphical DP alternative to HDP (b) Graphical DP alternative to 2-layer HDP Figure 2: Hierarchical Graphs of dependency with (a) one layer and (b) two layers of hierarchy. If N = 0, then Gj ∼ DP (α, H) for all j and this is equivalent to setting γ → ∞ in HDP. If N → ∞ then Gj = G0 for all j, G0 ∼ DP (α, H). This is equivalent to setting α → ∞ in the HDP. One interesting feature of the model is that, contrary to HDP, the marginal distribution of Gj at any layer of the tree is DP (α, H). As a consequence, the total number of clusters scales logarithmically (as in the usual DP) with the size of each group, whereas it scales doubly logarithmically in HDP. Contrary to HDP, there are at most N clusters shared between different groups. Our model is in that sense reminiscent of [9] where only a limited number of clusters can be shared. Note however that contrary to [9] we have a simple CRP-like process. The proposed methodology can be straightforwardly extended to the infinite HMM [12]. The main issue of the proposed model is the setting of the number N of auxiliary parameters. Another issue is that to achieve high correlation, we need a large number of auxiliary variables. Nonetheless, the computational time used to sample from auxiliary variables is negligible compared to the time used for latent variables associated to data. Moreover, it can be easily parallelized. The model proposed offers a far richer framework and ensures that at each level of the tree, the marginal distribution of the partition is given by a DP partition model. 4.2 Time-varying matrix factorization Let X1:n be an observed matrix of dimension n × D. We want to find a representation of this matrix in terms of two latent matrices Z1:n of dimension n × K and Y of dimension K × D. Here Z1:n 2 is a binary matrix whereas Y is a matrix of latent features. By assuming that Y ∼ N 0, σY IK×D and 2 X1:n = Z1:n Y + σX εn where εn ∼ N 0, σX In×D , we obtain p(X1:n |Z1:n ) ∝ −D/2 2 2 + Z+T Z+ + σX /σY IKn 1:n 1:n + (n−Kn )D σX exp − + Kn D σY 2 2 + where Σ−1 = I − Z+ Z+T Z+ + σX /σY IKn n 1:n 1:n 1:n −1 1 T −1 2 tr X1:n Σn X1:n 2σX (17) + Z+T , Kn the number of non-zero columns of 1:n + Z1:n and Z+ is the first Kn columns of Z1:n . To avoid having to set K, [5, 14] assume that Z1:n 1:n follows an IBP. The resulting posterior distribution p(Z1:n |X1:n ) can be estimated through MCMC [5] or SMC [14]. We consider here a different model where the object Xt is assumed to arrive at time index t and we want a prior distribution on Z1:n ensuring that objects close in time are more likely to possess similar features. To achieve this, we consider the simple directed graphical model D of Fig. 3 where the site numbering corresponds to a time index in that case and a perfect numbering of D is (1, 2, . . .). The set of parents pa(t) is composed of the r preceding sites {{t − r}, . . . , {t − 1}}. The time-varying IBP to sample from p(Z1:n ) associated to this directed graph follows from (16) and proceeds as follows. At time t = 1 + new new • Sample K1 ∼Poisson(α), set z1,i = 1 for i = 1, ..., K1 and set K1 = Knew . At times t = 2, . . . , r n + new ∼Poisson( α ). • For k = 1, . . . Kt , sample zt,k ∼ Ber( 1:t−1,k ) and Kt t t 7 ? ? - t−r - t−r+1 - . . . - t−1 - t - t+1 6 6 Figure 3: Directed graph. At times t = r + 1, . . . , n n + α new ∼Poisson( r+1 ). • For k = 1, . . . Kt , sample zt,k ∼ Ber( t−r:t−1,k ) and Kt r+1 + Here Kt is the total number of features appearing from time max(1, t − r) to t − 1 and nt−r:t−1,k the restriction of n1:t−1 to the r last customers. Using (17) and the prior distribution of Z1:n which can be sampled using the time-varying IBP described above, we can easily design an SMC method to sample from p(Z1:n |X1:n ). We do not detail it here. Note that contrary to [14], our algorithm does not require inverting a matrix whose dimension grows linearly with the size of the data but only a matrix of dimension r × r. In order to illustrate the model and SMC algorithm, we create 200 6 × 6 images using a ground truth Y consisting of 4 different 6 × 6 latent images. The 200 × 4 binary matrix was generated from Pr(zt,k = 1) = πt,k , where πt = ( .6 .5 0 0 ) if t = 1, . . . , 30, πt = ( .4 .8 .4 0 ) if t = 31, . . . , 50 and πt = ( 0 .3 .6 .6 ) if t = 51, . . . , 200. The order of the model is set to r = 50. The feature occurences Z1:n and true features Y and their estimates are represented in Figure 4. Two spurious features are detected by the model (features 2 and 5 on Fig. 3(c)) but quickly discarded (Fig. 4(d)). The algorithm is able to correctly estimate the varying prior occurences of the features over time. Feature1 Feature2 Feature1 Feature2 Feature3 20 20 40 40 60 60 Feature4 80 100 Feature4 Feature5 Feature6 Time Feature3 Time 80 100 120 120 140 140 160 160 180 200 180 1 2 3 200 4 Feature (a) 1 2 3 4 5 6 Feature (b) (c) (d) Figure 4: (a) True features, (b) True features occurences, (c) MAP estimate ZM AP and (d) associated E[Y|ZM AP ] t=20 t=50 t=20 t=50 t=100 t=200 t=100 t=200 (a) (b) Figure 5: (a) E[Xt |πt , Y] and (b) E[Xt |X1:t−1 ] at t = 20, 50, 100, 200. 5 Related work and Discussion The fixed-lag version of the time-varying DP of Caron et al. [1] is a special case of the proposed model when G is given by Fig. 3. The bivariate DP of Walker and Muliere [13] is also a special case when G has only two cliques. In this paper, we have assumed that the structure of the graph was known beforehand and we have shown that many flexible models arise from this framework. It would be interesting in the future to investigate the case where the graphical structure is unknown and must be estimated from the data. Acknowledgment The authors thank the reviewers for their comments that helped to improve the writing of the paper. 8 References [1] F. Caron, M. Davy, and A. Doucet. Generalized Polya urn for time-varying Dirichlet process mixtures. In Uncertainty in Artificial Intelligence, 2007. [2] A.P. Dawid and S.L. Lauritzen. Hyper Markov laws in the statistical analysis of decomposable graphical models. The Annals of Statistics, 21:1272–1317, 1993. [3] M.D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90:577–588, 1995. [4] P. Fearnhead. Particle filters for mixture models with an unknown number of components. Statistics and Computing, 14:11–21, 2004. [5] T.L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In Advances in Neural Information Processing Systems, 2006. [6] D. Heinz. Building hyper dirichlet processes for graphical models. Electonic Journal of Statistics, 3:290–315, 2009. [7] J.F.C. Kingman. Random partitions in population genetics. Proceedings of the Royal Society of London, 361:1–20, 1978. [8] S.L. Lauritzen. Graphical Models. Oxford University Press, 1996. [9] P. M¨ ller, F. Quintana, and G. Rosner. A method for combining inference across related nonu parametric Bayesian models. Journal of the Royal Statistical Society B, 66:735–749, 2004. [10] R.M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249–265, 2000. [11] J. Pitman. Exchangeable and partially exchangeable random partitions. Probability theory and related fields, 102:145–158, 1995. [12] Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101:1566–1581, 2006. [13] S. Walker and P. Muliere. A bivariate Dirichlet process. Statistics and Probability Letters, 64:1–7, 2003. [14] F. Wood and T.L. Griffiths. Particle filtering for nonparametric Bayesian matrix factorization. In Advances in Neural Information Processing Systems, 2007. 9
2 0.67572445 226 nips-2009-Spatial Normalized Gamma Processes
Author: Vinayak Rao, Yee W. Teh
Abstract: Dependent Dirichlet processes (DPs) are dependent sets of random measures, each being marginally DP distributed. They are used in Bayesian nonparametric models when the usual exchangeability assumption does not hold. We propose a simple and general framework to construct dependent DPs by marginalizing and normalizing a single gamma process over an extended space. The result is a set of DPs, each associated with a point in a space such that neighbouring DPs are more dependent. We describe Markov chain Monte Carlo inference involving Gibbs sampling and three different Metropolis-Hastings proposals to speed up convergence. We report an empirical study of convergence on a synthetic dataset and demonstrate an application of the model to topic modeling through time. 1
3 0.66857946 114 nips-2009-Indian Buffet Processes with Power-law Behavior
Author: Yee W. Teh, Dilan Gorur
Abstract: The Indian buffet process (IBP) is an exchangeable distribution over binary matrices used in Bayesian nonparametric featural models. In this paper we propose a three-parameter generalization of the IBP exhibiting power-law behavior. We achieve this by generalizing the beta process (the de Finetti measure of the IBP) to the stable-beta process and deriving the IBP corresponding to it. We find interesting relationships between the stable-beta process and the Pitman-Yor process (another stochastic process used in Bayesian nonparametric models with interesting power-law properties). We derive a stick-breaking construction for the stable-beta process, and find that our power-law IBP is a good model for word occurrences in document corpora. 1
4 0.62169784 29 nips-2009-An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism
Author: Douglas Eck, Yoshua Bengio, Aaron C. Courville
Abstract: The Indian Buffet Process is a Bayesian nonparametric approach that models objects as arising from an infinite number of latent factors. Here we extend the latent factor model framework to two or more unbounded layers of latent factors. From a generative perspective, each layer defines a conditional factorial prior distribution over the binary latent variables of the layer below via a noisy-or mechanism. We explore the properties of the model with two empirical studies, one digit recognition task and one music tag data experiment. 1
5 0.61430562 123 nips-2009-Large Scale Nonparametric Bayesian Inference: Data Parallelisation in the Indian Buffet Process
Author: Finale Doshi-velez, Shakir Mohamed, Zoubin Ghahramani, David A. Knowles
Abstract: Nonparametric Bayesian models provide a framework for flexible probabilistic modelling of complex datasets. Unfortunately, the high-dimensional averages required for Bayesian methods can be slow, especially with the unbounded representations used by nonparametric models. We address the challenge of scaling Bayesian inference to the increasingly large datasets found in real-world applications. We focus on parallelisation of inference in the Indian Buffet Process (IBP), which allows data points to have an unbounded number of sparse latent features. Our novel MCMC sampler divides a large data set between multiple processors and uses message passing to compute the global likelihoods and posteriors. This algorithm, the first parallel inference scheme for IBP-based models, scales to datasets orders of magnitude larger than have previously been possible. 1
6 0.60291916 59 nips-2009-Construction of Nonparametric Bayesian Models from Parametric Bayes Equations
7 0.55703413 51 nips-2009-Clustering sequence sets for motif discovery
8 0.55520946 155 nips-2009-Modelling Relational Data using Bayesian Clustered Tensor Factorization
9 0.54495496 174 nips-2009-Nonparametric Latent Feature Models for Link Prediction
10 0.53440523 217 nips-2009-Sharing Features among Dynamical Systems with Beta Processes
11 0.50199407 255 nips-2009-Variational Inference for the Nested Chinese Restaurant Process
12 0.49465063 148 nips-2009-Matrix Completion from Power-Law Distributed Samples
13 0.49335659 69 nips-2009-Discrete MDL Predicts in Total Variation
14 0.44792822 252 nips-2009-Unsupervised Feature Selection for the $k$-means Clustering Problem
15 0.43802908 129 nips-2009-Learning a Small Mixture of Trees
16 0.42395768 42 nips-2009-Bayesian Sparse Factor Models and DAGs Inference and Comparison
17 0.42324057 23 nips-2009-Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models
18 0.41238472 171 nips-2009-Nonparametric Bayesian Models for Unsupervised Event Coreference Resolution
19 0.40173045 143 nips-2009-Localizing Bugs in Program Executions with Graphical Models
20 0.40148473 244 nips-2009-The Wisdom of Crowds in the Recollection of Order Information
topicId topicWeight
[(24, 0.036), (25, 0.048), (35, 0.055), (36, 0.103), (39, 0.098), (58, 0.094), (61, 0.024), (64, 0.218), (66, 0.03), (71, 0.1), (81, 0.018), (86, 0.083), (91, 0.013)]
simIndex simValue paperId paperTitle
Author: Finale Doshi-velez, Shakir Mohamed, Zoubin Ghahramani, David A. Knowles
Abstract: Nonparametric Bayesian models provide a framework for flexible probabilistic modelling of complex datasets. Unfortunately, the high-dimensional averages required for Bayesian methods can be slow, especially with the unbounded representations used by nonparametric models. We address the challenge of scaling Bayesian inference to the increasingly large datasets found in real-world applications. We focus on parallelisation of inference in the Indian Buffet Process (IBP), which allows data points to have an unbounded number of sparse latent features. Our novel MCMC sampler divides a large data set between multiple processors and uses message passing to compute the global likelihoods and posteriors. This algorithm, the first parallel inference scheme for IBP-based models, scales to datasets orders of magnitude larger than have previously been possible. 1
same-paper 2 0.83957392 40 nips-2009-Bayesian Nonparametric Models on Decomposable Graphs
Author: Francois Caron, Arnaud Doucet
Abstract: Over recent years Dirichlet processes and the associated Chinese restaurant process (CRP) have found many applications in clustering while the Indian buffet process (IBP) is increasingly used to describe latent feature models. These models are attractive because they ensure exchangeability (over samples). We propose here extensions of these models where the dependency between samples is given by a known decomposable graph. These models have appealing properties and can be easily learned using Monte Carlo techniques. 1 Motivation The CRP and IBP have found numerous applications in machine learning over recent years [5, 10]. We consider here the case where the data we are interested in are ‘locally’ dependent; these dependencies being represented by a known graph G where each data point/object is associated to a vertex. These local dependencies can correspond to any conceptual or real (e.g. space, time) metric. For example, in the context of clustering, we might want to propose a prior distribution on partitions enforcing that data which are ‘close’ in the graph are more likely to be in the same cluster. Similarly, in the context of latent feature models, we might be interested in a prior distribution on features enforcing that data which are ‘close’ in the graph are more likely to possess similar features. The ‘standard’ CRP and IBP correspond to the case where the graph G is complete; that is it is fully connected. In this paper, we generalize the CRP and IBP to decomposable graphs. The resulting generalized versions of the CRP and IBP enjoy attractive properties. Each clique of the graph follows marginally a CRP or an IBP process and explicit expressions for the joint prior distribution on the graph is available. It makes it easy to learn those models using straightforward generalizations of Markov chain Monte Carlo (MCMC) or Sequential Monte Carlo (SMC) algorithms proposed to perform inference for the CRP and IBP [5, 10, 14]. The rest of the paper is organized as follows. In Section 2, we review the popular Dirichlet multinomial allocation model and the Dirichlet Process (DP) partition distribution. We propose an extension of these two models to decomposable graphical models. In Section 3 we discuss nonparametric latent feature models, reviewing briefly the construction in [5] and extending it to decomposable graphs. We demonstrate these models in Section 4 on two applications: an alternative to the hierarchical DP model [12] and a time-varying matrix factorization problem. 2 Prior distributions for partitions on decomposable graphs Assume we have n observations. When performing clustering, we associate to each of this observation an allocation variable zi ∈ [K] = {1, . . . , K}. Let Πn be the partition of [n] = {1, . . . , n} defined by the equivalence relation i ↔ j ⇔ zi = zj . The resulting partition Πn = {A1 , . . . , An(Πn ) } 1 is an unordered collection of disjoint non-empty subsets Aj of [n], j = 1, . . . , n(Πn ), where ∪j Aj = [n] and n(Πn ) is the number of subsets for partition Πn . We also denote by Pn be the set of all partitions of [n] and let nj , j = 1, . . . , n(Πn ), be the size of the subset Aj . Each allocation variable zi is associated to a vertex/site of an undirected graph G, which is assumed to be known. In the standard case where the graph G is complete, we first review briefly here two popular prior distributions on z1:n , equivalently on Πn . We then extend these models to undirected decomposable graphs; see [2, 8] for an introduction to decomposable graphs. Finally we briefly discuss the directed case. Note that the models proposed here are completely different from the hyper multinomial-Dirichlet in [2] and its recent DP extension [6]. 2.1 Dirichlet multinomial allocation model and DP partition distribution Assume for the time being that K is finite. When the graph is complete, a popular choice for the allocation variables is to consider a Dirichlet multinomial allocation model [11] θ θ , . . . , ), zi |π ∼ π (1) K K where D is the standard Dirichlet distribution and θ > 0. Integrating out π, we obtain the following Dirichlet multinomial prior distribution π ∼ D( Pr(z1:n ) = K j=1 Γ(θ) Γ(nj + θ K) (2) θ Γ(θ + n)Γ( K )K and then, using the straightforward equality Pr(Πn ) = PK where PK = {Πn ∈ Pn |n(Πn ) ≤ K}, we obtain K! (K−n(Πn ))! Pr(z1:n ) valid for for all Πn ∈ n(Π ) Pr(Πn ) = θ Γ(θ) j=1n Γ(nj + K ) K! . θ (K − n(Πn ))! Γ(θ + n)Γ( K )n(Πn ) (3) DP may be seen as a generalization of the Dirichlet multinomial model when the number of components K → ∞; see for example [10]. In this case the distribution over the partition Πn of [n] is given by [11] n(Π ) θn(Πn ) j=1n Γ(nj ) . (4) Pr(Πn ) = n i=1 (θ + i − 1) Let Π−k = {A1,−k , . . . , An(Π−k ),−k } be the partition induced by removing item k to Πn and nj,−k be the size of cluster j for j = 1, . . . , n(Π−k ). It follows from (4) that an item k is assigned to an existing cluster j, j = 1, . . . , n(Π−k ), with probability proportional to nj,−k / (n − 1 + θ) and forms a new cluster with probability θ/ (n − 1 + θ). This property is the basis of the CRP. We now extend the Dirichlet multinomial allocation and the DP partition distribution models to decomposable graphs. 2.2 Markov combination of Dirichlet multinomial and DP partition distributions Let G be a decomposable undirected graph, C = {C1 , . . . , Cp } a perfect ordering of the cliques and S = {S2 , . . . , Cp } the associated separators. It can be easily checked that if the marginal distribution of zC for each clique C ∈ C is defined by (2) then these distributions are consistent as they yield the same distribution (2) over the separators. Therefore, the unique Markov distribution over G with Dirichlet multinomial distribution over the cliques is defined by [8] Pr(zC ) S∈S Pr(zS ) C∈C Pr(z1:n ) = (5) where for each complete set B ⊆ G, we have Pr(zB ) given by (2). It follows that we have for any Πn ∈ PK Γ(θ) K! Pr(Πn ) = (K − n(Πn ))! C∈C Γ(θ) S∈S 2 K j=1 θ Γ(nj,C + K ) θ Γ(θ+nC )Γ( K )K K j=1 θ Γ(nj,S + K ) θ Γ(θ+nS )Γ( K )K (6) where for each complete set B ⊆ G, nj,B is the number of items associated to cluster j, j = 1, . . . , K in B and nB is the total number of items in B. Within each complete set B, the allocation variables define a partition distributed according to the Dirichlet-multinomial distribution. We now extend this approach to DP partition distributions; that is we derive a joint distribution over Πn such that the distribution of ΠB over each complete set B of the graph is given by (4) with θ > 0. Such a distribution satisfies the consistency condition over the separators as the restriction of any partition distributed according to (4) still follows (4) [7]. G Proposition. Let Pn be the set of partitions Πn ∈ Pn such that for each decomposition A, B, and any (i, j) ∈ A × B, i ↔ j ⇒ ∃k ∈ A ∩ B such that k ↔ i ↔ j. As K → ∞, the prior distribution G over partitions (6) is given for each Πn ∈ Pn by Pr(Πn ) = θn(Πn ) n(ΠC ) Γ(nj,C ) j=1 nC i=1 (θ+i−1) n(ΠS ) Γ(nj,S ) j=1 nS (θ+i−1) i=1 C∈C S∈S (7) where n(ΠB ) is the number of clusters in the complete set B. Proof. From (6), we have θ n(ΠC ) K(K − 1) . . . (K − n(Πn ) + 1) Pr(Πn ) = K C∈C n(ΠC )− S∈S n(ΠS ) C∈C θ n(ΠS ) S∈S n(ΠC ) θ Γ(nj,C + K ) j=1 nC (θ+i−1) i=1 n(ΠS ) θ Γ(nj,S + K ) j=1 nS (θ+i−1) i=1 Thus when K → ∞, we obtain (7) if n(Πn ) = C∈C n(ΠC ) − S∈S n(ΠS ) and 0 otherwise. We have n(Πn ) ≤ C∈C n(ΠC ) − S∈S n(ΠS ) for any Πn ∈ Pn and the subset of Pn verifying G n(Πn ) = C∈C n(ΠC ) − S∈S n(ΠS ) corresponds to the set Pn . Example. Let the notation i ∼ j (resp. i j) indicates an edge (resp. no edge) between two sites. Let n = 3 and G be the decomposable graph defined by the relations 1 ∼ 2, 2 ∼ 3 and 1 3. G The set P3 is then equal to {{{1, 2, 3}}; {{1, 2}, {3}}; {{1}, {2, 3}}; {{1}, {2}, {3}}}. Note that G the partition {{1, 3}, {2}} does not belong to P3 . Indeed, as there is no edge between 1 and 3, they cannot be in the same cluster if 2 is in another cluster. The cliques are C1 = {1, 2} and C2 = {2, 3} Pr(ΠC1 ) Pr(ΠC2 ) hence we can and the separator is S2 = {2}. The distribution is given by Pr(Π3 ) = Pr(ΠS ) 2 check that we obtain Pr({1, 2, 3}) = (θ + 1)−2 , Pr({1, 2}, {3}) = Pr({1, 2}, {3}) = θ(θ + 1)−2 and Pr({1}, {2}, {3}) = θ2 (θ + 1)−2 . Let now define the full conditional distributions. Based on (7) the conditional assignment of an item k is proportional to the conditional over the cliques divided by the conditional over the separators. G Let denote G−k the undirected graph obtained by removing vertex k from G. Suppose that Πn ∈ Pn . G−k If Π−k ∈ Pn−1 , then do not change the value of item k. Otherwise, item k is assigned to cluster j / where j = 1, . . . , n(Π−k ) with probability proportional to {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (8) and to a new cluster with probability proportional to θ, where n−k,j,C is the number of items in the set C \ {k} belonging to cluster j. The updating process is illustrated by the Chinese wedding party process1 in Fig. 1. The results of this section can be extended to the Pitman-Yor process, and more generally to species sampling models. Example (continuing). Given Π−2 = {A1 = {1}, A2 = {3}}, we have −1 Pr( item 2 assigned to A1 = {1}| Π−2 ) = Pr( item 2 assigned to A2 = {3}| Π−2 ) = (θ + 2) −1 and Pr( item 2 assigned to new cluster A3 | Π−2 ) = θ (θ + 2) . Given Π−2 = {A1 = {1, 3}}, item 2 is assigned to A1 with probability 1. 1 Note that this representation describes the full conditionals while the CRP represents the sequential updat- ing. 3 (a) (b) (d) (c) (e) Figure 1: Chinese wedding party. Consider a group of n guests attending a wedding party. Each of the n guests may belong to one or several cliques, i.e. maximal groups of people such that everybody knows everybody. The belonging of each guest to the different cliques is represented by color patches on the figures, and the graphical representation of the relationship between the guests is represented by the graphical model (e). (a) Suppose that the guests are already seated such that two guests cannot be together at the same table is they are not part of the same clique, or if there does not exist a group of other guests such that they are related (“Any friend of yours is a friend of mine”). (b) The guest number k leaves his table and either (c) joins a table where there are guests from the same clique as him, with probability proportional to the product of the number of guests from each clique over the product of the number of guests belonging to several cliques on that table or (d) he joins a new table with probability proportional to θ. 2.3 Monte Carlo inference 2.3.1 MCMC algorithm Using the full conditionals, a single site Gibbs sampler can easily be designed to approximate the posterior distribution Pr(Πn |z1:n ). Given a partition Πn , an item k is taken out of the partition. If G−k Π−k ∈ Pn−1 , item k keeps the same value. Otherwise, the item will be assigned to a cluster j, / j = 1, . . . , n(Π−k ), with probability proportional to p(z{k}∪Aj,−k ) × p(zAj,−k ) {C∈C|n−k,j,C >0} n−k,j,C {S∈S|n−k,j,S >0} n−k,j,S (9) and the item will be assigned to a new cluster with probability proportional to p(z{k} ) × θ. Similarly to [3], we can also define a procedure to sample from p(θ|n(Πn ) = k)). We assume that θ ∼ G(a, b) and use p auxiliary variables x1 , . . . , xp . The procedure is as follows. • For j = 1, . . . , p, sample xj |k, θ ∼ Beta(θ + nSj , nCj − nSj ) • Sample θ|k, x1:p ∼ G(a + k, b − j log xj ) 2.3.2 Sequential Monte Carlo We have so far only treated the case of an undirected decomposable graph G. We can formulate a sequential updating rule for the corresponding perfect directed version D of G. Indeed, let (a1 , . . . a|V | ) be a perfect ordering and pa(ak ) be the set of parents of ak which is by definition complete. Let Πk−1 = {A1,k−1 , . . . , An(Πk−1 ),k−1 } denote the partition of the first k−1 vertices a1:k−1 and let nj,pa(ak ) be the number of elements with value j in the set pa(ak ), j = 1, . . . , n(Πk−1 ). Then the vertex ak joins the set j with probability nj,pa(ak ) / θ + cluster with probability θ/ θ + q q nq,pa(ak ) and creates a new nq,pa(ak ) . One can then design a particle filter/SMC method in a similar fashion as [4]. Consider a set of (i) (i) (i) (i) N N particles Πk−1 with weights wk−1 ∝ Pr(Πk−1 , z1:k−1 ) ( i=1 wk−1 = 1) that approximate (i) the posterior distribution Pr(Πk−1 |z1:k−1 ). For each particle i, there are n(Πk−1 ) + 1 possible 4 (i,j) allocations for component ak . We denote Πk the partition obtained by associating component ak (i,j) to cluster j. The weight associated to Πk is given by nj,pa(ak ) (i) if j = 1, . . . , n(Πk−1 ) θ+ q nq,pa(ak ) (i,j) (i) p(z{ak }∪Aj,k−1 ) wk−1 = wk−1 × (10) (i) θ θ+ n p(zAj,k−1 ) if j = n(Πk−1 ) + 1 q q,pa(ak ) (i,j) Then we can perform a deterministic resampling step by keeping the N particles Πk with highest (i,j) (i) (i) weights wk−1 . Let Πk be the resampled particles and wk the associated normalized weights. 3 Prior distributions for infinite binary matrices on decomposable graphs Assume we have n objects; each of these objects being associated to the vertex of a graph G. To K each object is associated a K-dimensional binary vector zn = (zn,1 , . . . , zn,K ) ∈ {0, 1} where zn,i = 1 if object n possesses feature i and zn,i = 0 otherwise. These vectors zt form a binary n × K matrix denoted Z1:n . We denote by ξ1:n the associated equivalence class of left-ordered matrices and let EK be the set of left-ordered matrices with at most K features. In the standard case where the graph G is complete, we review briefly here two popular prior distributions on Z1:n , equivalently on ξ1:n : the Beta-Bernoulli model and the IBP [5]. We then extend these models to undirected decomposable graphs. This can be used for example to define a time-varying IBP as illustrated in Section 4. 3.1 Beta-Bernoulli and IBP distributions The Beta-Bernoulli distribution over the allocation Z1:n is K Pr(Z1:n ) = α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) α K Γ(nj j=1 (11) where nj is the number of objects having feature j. It follows that Pr(ξ1:n ) = K K! 2n −1 h=0 α K Γ(nj α + K )Γ(n − nj + 1) α Γ(n + 1 + K ) Kh ! j=1 (12) where Kh is the number of features possessing the history h (see [5] for details). The nonparametric model is obtained by taking the limit when K → ∞ Pr(ξ1:n ) = αK K+ + 2n −1 h=1 Kh ! exp(−αHn ) where K + is the total number of features and Hn = 3.2 (n − nj )!(nj − 1)! n! j=1 n 1 k=1 k . (13) The IBP follows from (13). Markov combination of Beta-Bernoulli and IBP distributions Let G be a decomposable undirected graph, C = {C1 , . . . , Cp } a perfect ordering of the cliques and S = {S2 , . . . , Cp } the associated separators. As in the Dirichlet-multinomial case, it is easily seen that if for each clique C ∈ C, the marginal distribution is defined by (11), then these distributions are consistent as they yield the same distribution (11) over the separators. Therefore, the unique Markov distribution over G with Beta-Bernoulli distribution over the cliques is defined by [8] Pr(ZC ) S∈S Pr(ZS ) C∈C Pr(Z1:n ) = (14) where Pr(ZB ) given by (11) for each complete set B ⊆ G. The prior over ξ1:n is thus given, for ξ1:n ∈ EK , by Pr(ξ1:n ) = K! 2n −1 h=0 Kh ! α K α Γ(nj,C + K )Γ(nC −nj,C +1) α Γ(nC +1+ K ) α α Γ(nj,S + K )Γ(nS −nj,S +1) K K α j=1 Γ(nS +1+ K ) K j=1 C∈C S∈S 5 (15) where for each complete set B ⊆ G, nj,B is the number of items having feature j, j = 1, . . . , K in the set B and nB is the whole set of objects in set B. Taking the limit when K → ∞, we obtain after a few calculations Pr(ξ1:n ) = α + K[n] exp [−α ( C HnC − 2n −1 h=1 Kh ! HnS )] × C∈C + KC (nC −nj,C )!(nj,C −1)! j=1 nC ! S∈S S + KS (nS −nj,S )!(nj,S −1)! j=1 nS ! + + + + if K[n] = C KC − S KS and 0 otherwise, where KB is the number of different features possessed by objects in B. G Let En be the subset of En such that for each decomposition A, B and any (u, v) ∈ A × B: {u and v possess feature j} ⇒ ∃k ∈ A ∩ B such that {k possesses feature j}. Let ξ−k be the left-ordered + matrix obtained by removing object k from ξn and K−k be the total number of different features in G−k + ξ−k . For each feature j = 1, . . . , K−k , if ξ−k ∈ En−1 then we have b C∈C nj,C if i = 1 S∈C nj,S Pr(ξk,j = i) = (16) b C∈C (nC −nj,C ) if i = 0 (nS −nj,S ) S∈C nS where b is the appropriate normalizing constant then the customer k tries Poisson α {S∈S|k∈S} nC {C∈C|k∈C} new dishes. We can easily generalize this construction to a directed version D of G using arguments similar to those presented in Section 2; see Section 4 for an application to time-varying matrix factorization. 4 4.1 Applications Sharing clusters among relative groups: An alternative to HDP Consider that we are given d groups with nj data yi,j in each group, i = 1, . . . , nj , j = 1, . . . , d. We consider latent cluster variables zi,j that define the partition of the data. We will use alternatively the notation θi,j = Uzi,j in the following. Hierarchical Dirichlet Process [12] (HDP) is a very popular model for sharing clusters among related groups. It is based on a hierarchy of DPs G0 ∼ DP (γ, H), Gj |G0 ∼ DP (α, G0 ) j = 1, . . . d θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f (θi,j ) i = 1, . . . , nj . Under conjugacy assumptions, G0 , Gj and U can be integrated out and we can approximate the marginal posterior of (zi,j ) given y = (yi,j ) with Gibbs sampling using the Chinese restaurant franchise to sample from the full conditional p(zi,j |z−{i,j} , y). Using the graph formulation defined in Section 2, we propose an alternative to HDP. Let θ0,1 , . . . , θ0,N be N auxiliary variables belonging to what we call group 0. We define each clique Cj (j = 1, . . . , d) to be composed of elements from group j and elements from group 0. This defines a decomposable graphical model whose separator is given by the elements of group 0. We can rewrite the model in a way quite similar to HDP G0 ∼ DP (α, H), θ0,i |G0 ∼ G0 i = 1, ..., N α α Gj |θ0,1 , . . . , θ0,N ∼ DP (α + N, α+N H + α+N θi,j |Gj ∼ Gj , yi,j |θi,j ∼ f (θi,j ) i = 1, . . . , nj N i=1 δθ0,i ) j = 1, . . . d, N For any subset A and j = k ∈ {1, . . . , p} we have corr(Gj (A), Gk (A)) = α+N . Again, under conjugacy conditions, we can integrate out G0 , Gj and U and approximate the marginal posterior distribution over the partition using the Chinese wedding party process defined in Section 2. Note that for latent variables zi,j , j = 1, . . . , d, associated to data, this is the usual CRP update. As in HDP, multiple layers can be added to the model. Figures 2 (a) and (b) resp. give the graphical DP alternative to HDP and 2-layer HDP. 6 z0 root z0 root corpora docs z1 z2 z1 z2 z3 z1,1 z1,2 z2,1 z2,2 z2,3 docs (a) Graphical DP alternative to HDP (b) Graphical DP alternative to 2-layer HDP Figure 2: Hierarchical Graphs of dependency with (a) one layer and (b) two layers of hierarchy. If N = 0, then Gj ∼ DP (α, H) for all j and this is equivalent to setting γ → ∞ in HDP. If N → ∞ then Gj = G0 for all j, G0 ∼ DP (α, H). This is equivalent to setting α → ∞ in the HDP. One interesting feature of the model is that, contrary to HDP, the marginal distribution of Gj at any layer of the tree is DP (α, H). As a consequence, the total number of clusters scales logarithmically (as in the usual DP) with the size of each group, whereas it scales doubly logarithmically in HDP. Contrary to HDP, there are at most N clusters shared between different groups. Our model is in that sense reminiscent of [9] where only a limited number of clusters can be shared. Note however that contrary to [9] we have a simple CRP-like process. The proposed methodology can be straightforwardly extended to the infinite HMM [12]. The main issue of the proposed model is the setting of the number N of auxiliary parameters. Another issue is that to achieve high correlation, we need a large number of auxiliary variables. Nonetheless, the computational time used to sample from auxiliary variables is negligible compared to the time used for latent variables associated to data. Moreover, it can be easily parallelized. The model proposed offers a far richer framework and ensures that at each level of the tree, the marginal distribution of the partition is given by a DP partition model. 4.2 Time-varying matrix factorization Let X1:n be an observed matrix of dimension n × D. We want to find a representation of this matrix in terms of two latent matrices Z1:n of dimension n × K and Y of dimension K × D. Here Z1:n 2 is a binary matrix whereas Y is a matrix of latent features. By assuming that Y ∼ N 0, σY IK×D and 2 X1:n = Z1:n Y + σX εn where εn ∼ N 0, σX In×D , we obtain p(X1:n |Z1:n ) ∝ −D/2 2 2 + Z+T Z+ + σX /σY IKn 1:n 1:n + (n−Kn )D σX exp − + Kn D σY 2 2 + where Σ−1 = I − Z+ Z+T Z+ + σX /σY IKn n 1:n 1:n 1:n −1 1 T −1 2 tr X1:n Σn X1:n 2σX (17) + Z+T , Kn the number of non-zero columns of 1:n + Z1:n and Z+ is the first Kn columns of Z1:n . To avoid having to set K, [5, 14] assume that Z1:n 1:n follows an IBP. The resulting posterior distribution p(Z1:n |X1:n ) can be estimated through MCMC [5] or SMC [14]. We consider here a different model where the object Xt is assumed to arrive at time index t and we want a prior distribution on Z1:n ensuring that objects close in time are more likely to possess similar features. To achieve this, we consider the simple directed graphical model D of Fig. 3 where the site numbering corresponds to a time index in that case and a perfect numbering of D is (1, 2, . . .). The set of parents pa(t) is composed of the r preceding sites {{t − r}, . . . , {t − 1}}. The time-varying IBP to sample from p(Z1:n ) associated to this directed graph follows from (16) and proceeds as follows. At time t = 1 + new new • Sample K1 ∼Poisson(α), set z1,i = 1 for i = 1, ..., K1 and set K1 = Knew . At times t = 2, . . . , r n + new ∼Poisson( α ). • For k = 1, . . . Kt , sample zt,k ∼ Ber( 1:t−1,k ) and Kt t t 7 ? ? - t−r - t−r+1 - . . . - t−1 - t - t+1 6 6 Figure 3: Directed graph. At times t = r + 1, . . . , n n + α new ∼Poisson( r+1 ). • For k = 1, . . . Kt , sample zt,k ∼ Ber( t−r:t−1,k ) and Kt r+1 + Here Kt is the total number of features appearing from time max(1, t − r) to t − 1 and nt−r:t−1,k the restriction of n1:t−1 to the r last customers. Using (17) and the prior distribution of Z1:n which can be sampled using the time-varying IBP described above, we can easily design an SMC method to sample from p(Z1:n |X1:n ). We do not detail it here. Note that contrary to [14], our algorithm does not require inverting a matrix whose dimension grows linearly with the size of the data but only a matrix of dimension r × r. In order to illustrate the model and SMC algorithm, we create 200 6 × 6 images using a ground truth Y consisting of 4 different 6 × 6 latent images. The 200 × 4 binary matrix was generated from Pr(zt,k = 1) = πt,k , where πt = ( .6 .5 0 0 ) if t = 1, . . . , 30, πt = ( .4 .8 .4 0 ) if t = 31, . . . , 50 and πt = ( 0 .3 .6 .6 ) if t = 51, . . . , 200. The order of the model is set to r = 50. The feature occurences Z1:n and true features Y and their estimates are represented in Figure 4. Two spurious features are detected by the model (features 2 and 5 on Fig. 3(c)) but quickly discarded (Fig. 4(d)). The algorithm is able to correctly estimate the varying prior occurences of the features over time. Feature1 Feature2 Feature1 Feature2 Feature3 20 20 40 40 60 60 Feature4 80 100 Feature4 Feature5 Feature6 Time Feature3 Time 80 100 120 120 140 140 160 160 180 200 180 1 2 3 200 4 Feature (a) 1 2 3 4 5 6 Feature (b) (c) (d) Figure 4: (a) True features, (b) True features occurences, (c) MAP estimate ZM AP and (d) associated E[Y|ZM AP ] t=20 t=50 t=20 t=50 t=100 t=200 t=100 t=200 (a) (b) Figure 5: (a) E[Xt |πt , Y] and (b) E[Xt |X1:t−1 ] at t = 20, 50, 100, 200. 5 Related work and Discussion The fixed-lag version of the time-varying DP of Caron et al. [1] is a special case of the proposed model when G is given by Fig. 3. The bivariate DP of Walker and Muliere [13] is also a special case when G has only two cliques. In this paper, we have assumed that the structure of the graph was known beforehand and we have shown that many flexible models arise from this framework. It would be interesting in the future to investigate the case where the graphical structure is unknown and must be estimated from the data. Acknowledgment The authors thank the reviewers for their comments that helped to improve the writing of the paper. 8 References [1] F. Caron, M. Davy, and A. Doucet. Generalized Polya urn for time-varying Dirichlet process mixtures. In Uncertainty in Artificial Intelligence, 2007. [2] A.P. Dawid and S.L. Lauritzen. Hyper Markov laws in the statistical analysis of decomposable graphical models. The Annals of Statistics, 21:1272–1317, 1993. [3] M.D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90:577–588, 1995. [4] P. Fearnhead. Particle filters for mixture models with an unknown number of components. Statistics and Computing, 14:11–21, 2004. [5] T.L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In Advances in Neural Information Processing Systems, 2006. [6] D. Heinz. Building hyper dirichlet processes for graphical models. Electonic Journal of Statistics, 3:290–315, 2009. [7] J.F.C. Kingman. Random partitions in population genetics. Proceedings of the Royal Society of London, 361:1–20, 1978. [8] S.L. Lauritzen. Graphical Models. Oxford University Press, 1996. [9] P. M¨ ller, F. Quintana, and G. Rosner. A method for combining inference across related nonu parametric Bayesian models. Journal of the Royal Statistical Society B, 66:735–749, 2004. [10] R.M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249–265, 2000. [11] J. Pitman. Exchangeable and partially exchangeable random partitions. Probability theory and related fields, 102:145–158, 1995. [12] Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101:1566–1581, 2006. [13] S. Walker and P. Muliere. A bivariate Dirichlet process. Statistics and Probability Letters, 64:1–7, 2003. [14] F. Wood and T.L. Griffiths. Particle filtering for nonparametric Bayesian matrix factorization. In Advances in Neural Information Processing Systems, 2007. 9
3 0.82756907 145 nips-2009-Manifold Embeddings for Model-Based Reinforcement Learning under Partial Observability
Author: Keith Bush, Joelle Pineau
Abstract: Interesting real-world datasets often exhibit nonlinear, noisy, continuous-valued states that are unexplorable, are poorly described by first principles, and are only partially observable. If partial observability can be overcome, these constraints suggest the use of model-based reinforcement learning. We experiment with manifold embeddings to reconstruct the observable state-space in the context of offline, model-based reinforcement learning. We demonstrate that the embedding of a system can change as a result of learning, and we argue that the best performing embeddings well-represent the dynamics of both the uncontrolled and adaptively controlled system. We apply this approach to learn a neurostimulation policy that suppresses epileptic seizures on animal brain slices. 1
4 0.68663269 158 nips-2009-Multi-Label Prediction via Sparse Infinite CCA
Author: Piyush Rai, Hal Daume
Abstract: Canonical Correlation Analysis (CCA) is a useful technique for modeling dependencies between two (or more) sets of variables. Building upon the recently suggested probabilistic interpretation of CCA, we propose a nonparametric, fully Bayesian framework that can automatically select the number of correlation components, and effectively capture the sparsity underlying the projections. In addition, given (partially) labeled data, our algorithm can also be used as a (semi)supervised dimensionality reduction technique, and can be applied to learn useful predictive features in the context of learning a set of related tasks. Experimental results demonstrate the efficacy of the proposed approach for both CCA as a stand-alone problem, and when applied to multi-label prediction. 1
5 0.68278652 155 nips-2009-Modelling Relational Data using Bayesian Clustered Tensor Factorization
Author: Ilya Sutskever, Joshua B. Tenenbaum, Ruslan Salakhutdinov
Abstract: We consider the problem of learning probabilistic models for complex relational structures between various types of objects. A model can help us “understand” a dataset of relational facts in at least two ways, by finding interpretable structure in the data, and by supporting predictions, or inferences about whether particular unobserved relations are likely to be true. Often there is a tradeoff between these two aims: cluster-based models yield more easily interpretable representations, while factorization-based approaches have given better predictive performance on large data sets. We introduce the Bayesian Clustered Tensor Factorization (BCTF) model, which embeds a factorized representation of relations in a nonparametric Bayesian clustering framework. Inference is fully Bayesian but scales well to large data sets. The model simultaneously discovers interpretable clusters and yields predictive performance that matches or beats previous probabilistic models for relational data.
6 0.6813646 162 nips-2009-Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling
7 0.6797021 260 nips-2009-Zero-shot Learning with Semantic Output Codes
8 0.67752552 154 nips-2009-Modeling the spacing effect in sequential category learning
9 0.67683566 204 nips-2009-Replicated Softmax: an Undirected Topic Model
10 0.67675841 188 nips-2009-Perceptual Multistability as Markov Chain Monte Carlo Inference
11 0.67650741 41 nips-2009-Bayesian Source Localization with the Multivariate Laplace Prior
12 0.67395836 112 nips-2009-Human Rademacher Complexity
13 0.67287481 174 nips-2009-Nonparametric Latent Feature Models for Link Prediction
14 0.6727221 226 nips-2009-Spatial Normalized Gamma Processes
15 0.67189437 38 nips-2009-Augmenting Feature-driven fMRI Analyses: Semi-supervised learning and resting state activity
16 0.67188209 217 nips-2009-Sharing Features among Dynamical Systems with Beta Processes
17 0.67179036 250 nips-2009-Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference
18 0.66976547 70 nips-2009-Discriminative Network Models of Schizophrenia
19 0.66902024 187 nips-2009-Particle-based Variational Inference for Continuous Systems
20 0.66888916 113 nips-2009-Improving Existing Fault Recovery Policies