nips nips2009 nips2009-10 knowledge-graph by maker-knowledge-mining

10 nips-2009-A Gaussian Tree Approximation for Integer Least-Squares


Source: pdf

Author: Jacob Goldberger, Amir Leshem

Abstract: This paper proposes a new algorithm for the linear least squares problem where the unknown variables are constrained to be in a finite set. The factor graph that corresponds to this problem is very loopy; in fact, it is a complete graph. Hence, applying the Belief Propagation (BP) algorithm yields very poor results. The algorithm described here is based on an optimal tree approximation of the Gaussian density of the unconstrained linear system. It is shown that even though the approximation is not directly applied to the exact discrete distribution, applying the BP algorithm to the modified factor graph outperforms current methods in terms of both performance and complexity. The improved performance of the proposed algorithm is demonstrated on the problem of MIMO detection.

Reference: text


Summary: the most important sentenses genereted by tfidf model

sentIndex sentText sentNum sentScore

1 il Abstract This paper proposes a new algorithm for the linear least squares problem where the unknown variables are constrained to be in a finite set. [sent-7, score-0.265]

2 The factor graph that corresponds to this problem is very loopy; in fact, it is a complete graph. [sent-8, score-0.057]

3 Hence, applying the Belief Propagation (BP) algorithm yields very poor results. [sent-9, score-0.039]

4 The algorithm described here is based on an optimal tree approximation of the Gaussian density of the unconstrained linear system. [sent-10, score-0.108]

5 It is shown that even though the approximation is not directly applied to the exact discrete distribution, applying the BP algorithm to the modified factor graph outperforms current methods in terms of both performance and complexity. [sent-11, score-0.122]

6 1 Introduction Finding the linear least squares fit to data is a well-known problem, with applications in almost every field of science. [sent-13, score-0.108]

7 When there are no restrictions on the variables, the problem has a closed form solution. [sent-14, score-0.039]

8 In many cases, a-priori knowledge on the values of the variables is available. [sent-15, score-0.026]

9 One example is the existence of priors, which leads to Bayesian estimators. [sent-16, score-0.027]

10 Another example of great interest in many applications is when the variables are constrained to a discrete finite set. [sent-17, score-0.159]

11 In contrast to the continuous linear least squares problem, this problem is known to be NP hard. [sent-19, score-0.108]

12 It should be noted, however, that the proposed method is general and can be applied to any integer linear least-square problem. [sent-21, score-0.116]

13 A multiple-inputmultiple-output (MIMO) is a communication system with n transmit antennas and m receive antennas. [sent-22, score-0.309]

14 The tap gain from transmit antenna i to receive antenna j is denoted by Hij . [sent-23, score-0.407]

15 In each use of ⊤ the MIMO channel a vector x = (x1 , . [sent-24, score-0.035]

16 , xn ) is independently selected from a finite set of points A according to the data to be transmitted, so that x ∈ An . [sent-27, score-0.071]

17 A standard example of a finite set A in MIMO communication is A = {−1, 1} or more generally A = {±1, ±3, . [sent-28, score-0.095]

18 The received vector y is given by: y = Hx + ǫ (1) The vector ǫ is an additive noise in which the noise components are assumed to be zero mean, statistically independent Gaussians with a known variance σ 2 I. [sent-32, score-0.15]

19 (In the MIMO application we further assume that H comprises iid elements drawn from a normal distribution of unit variance. [sent-34, score-0.079]

20 ) The MIMO detection problem consists of finding the unknown transmitted vector x given H and y. [sent-35, score-0.25]

21 The task, therefore, boils down to solving a linear system in which the unknowns are constrained to a discrete finite set. [sent-36, score-0.317]

22 Since the noise ǫ is assumed 1 to be additive Gaussian, the optimal maximum likelihood (ML) solution is: x = arg min Hx − y ˆ n 2 x∈A (2) However, going over all the |A|n vectors is unfeasible when either n or |A| are large. [sent-37, score-0.256]

23 Somewhat better performance can be obtained by using a minimum mean square error (MMSE) Bayesian estimation on the continuous linear system. [sent-39, score-0.037]

24 Let e be the variance of a uniform distribution over the members of A. [sent-40, score-0.029]

25 The MMSE estimation becomes: σ 2 −1 ⊤ I) H y (5) e and then the finite-set solution is obtained by finding the closest lattice point in each component independently. [sent-42, score-0.248]

26 A vast improvement over the linear approaches described above can be achieved by using sequential decoding: ⊤ E(x|y) = (H H + • Apply MMSE (5) and choose the most reliable symbol, i. [sent-43, score-0.173]

27 the symbol that corresponds to the column with the minimal norm of the matrix: ⊤ σ 2 −1 ⊤ (H H + I) H e • Make a discrete symbol decision for the most reliable symbol xi . [sent-45, score-0.847]

28 Eliminate the detected ˆ symbol: j=i hj xj = y − hi xi (hj is the j-th column of H) to obtain a new smaller linear ˆ system. [sent-46, score-0.295]

29 This algorithm, known as MMSE-SIC [5], has the best performance for this family of linear-based algorithms but the price is higher complexity. [sent-48, score-0.031]

30 These linear type algorithms can also easily provide probabilistic (soft-decision) estimates for each symbol. [sent-49, score-0.037]

31 However, there is still a significant gap between the detection performance of the MMSE-SIC algorithm and the performance of the optimal ML detector. [sent-50, score-0.116]

32 Many alternative structures have been proposed to approach ML detection performance. [sent-51, score-0.116]

33 For example, sphere decoding algorithm (an efficient way to go over all the possible solutions) [7], approaches using the sequential Monte Carlo framework [3] and methods based on semidefinite relaxation [17] have been implemented. [sent-52, score-0.328]

34 Although the detection schemes listed above reduce computational complexity compared to the exhaustive search of ML solution, sphere decoding is still exponential in the average case [9] and the semidefinite relaxation is a high-degree polynomial. [sent-53, score-0.452]

35 Thus, there is still a need for low complexity detection algorithms that can achieve good performance. [sent-54, score-0.116]

36 This study attempts to solve the integer least-squares problem using the Belief Propagation (BP) paradigm. [sent-55, score-0.105]

37 [14]) that a straightforward implementation of the BP algorithm to the MIMO detection problem yields very poor results since there are a large number of short cycles in the underlying factor graph. [sent-58, score-0.223]

38 In this study we introduce a novel approach to utilize the BP paradigm for MIMO detection. [sent-59, score-0.063]

39 Observing that Hx − y 2 is a quadratic expression, it can be easily verified that p(x|y) is factorized into a product of two- and single-variable potentials: p(x1 , . [sent-62, score-0.036]


similar papers computed by tfidf model

tfidf for this paper:

wordName wordTfidf (topN-words)

[('mimo', 0.697), ('hx', 0.248), ('bp', 0.231), ('symbol', 0.205), ('mmse', 0.183), ('lattice', 0.136), ('ml', 0.131), ('antenna', 0.122), ('decoding', 0.118), ('detection', 0.116), ('transmit', 0.112), ('transmitted', 0.105), ('communication', 0.095), ('closest', 0.084), ('hj', 0.079), ('integer', 0.079), ('loopy', 0.077), ('propagation', 0.077), ('sphere', 0.073), ('squares', 0.071), ('constrained', 0.068), ('discrete', 0.065), ('belief', 0.064), ('semide', 0.062), ('hij', 0.061), ('nite', 0.06), ('reliable', 0.058), ('jacob', 0.056), ('unfeasible', 0.056), ('unknowns', 0.052), ('additive', 0.052), ('system', 0.051), ('receive', 0.051), ('go', 0.05), ('concentrates', 0.05), ('inability', 0.05), ('neglecting', 0.05), ('school', 0.048), ('goldberger', 0.047), ('gps', 0.047), ('relaxation', 0.047), ('xi', 0.047), ('realizations', 0.045), ('comprises', 0.044), ('amir', 0.044), ('boils', 0.044), ('xn', 0.042), ('ambiguity', 0.042), ('nding', 0.042), ('sequential', 0.04), ('symbols', 0.04), ('poor', 0.039), ('tree', 0.039), ('restrictions', 0.039), ('stands', 0.038), ('vast', 0.038), ('cycles', 0.038), ('exhaustive', 0.038), ('np', 0.038), ('linear', 0.037), ('xj', 0.036), ('factorized', 0.036), ('channel', 0.035), ('iid', 0.035), ('digital', 0.034), ('ignores', 0.034), ('paradigm', 0.034), ('potentials', 0.034), ('proposes', 0.034), ('noise', 0.034), ('listed', 0.033), ('hi', 0.033), ('ei', 0.033), ('detected', 0.032), ('unconstrained', 0.032), ('column', 0.031), ('price', 0.031), ('decision', 0.031), ('assumed', 0.03), ('factor', 0.03), ('engineering', 0.03), ('utilize', 0.029), ('eliminate', 0.029), ('members', 0.029), ('independently', 0.029), ('unknown', 0.029), ('resolution', 0.029), ('going', 0.028), ('arg', 0.028), ('solution', 0.028), ('diverse', 0.028), ('gaussians', 0.028), ('poorly', 0.028), ('existence', 0.027), ('graph', 0.027), ('gaussian', 0.027), ('detect', 0.027), ('schemes', 0.027), ('attempts', 0.026), ('variables', 0.026)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.99999982 10 nips-2009-A Gaussian Tree Approximation for Integer Least-Squares

Author: Jacob Goldberger, Amir Leshem

Abstract: This paper proposes a new algorithm for the linear least squares problem where the unknown variables are constrained to be in a finite set. The factor graph that corresponds to this problem is very loopy; in fact, it is a complete graph. Hence, applying the Belief Propagation (BP) algorithm yields very poor results. The algorithm described here is based on an optimal tree approximation of the Gaussian density of the unconstrained linear system. It is shown that even though the approximation is not directly applied to the exact discrete distribution, applying the BP algorithm to the modified factor graph outperforms current methods in terms of both performance and complexity. The improved performance of the proposed algorithm is demonstrated on the problem of MIMO detection.

2 0.11678847 124 nips-2009-Lattice Regression

Author: Eric Garcia, Maya Gupta

Abstract: We present a new empirical risk minimization framework for approximating functions from training samples for low-dimensional regression applications where a lattice (look-up table) is stored and interpolated at run-time for an efficient implementation. Rather than evaluating a fitted function at the lattice nodes without regard to the fact that samples will be interpolated, the proposed lattice regression approach estimates the lattice to minimize the interpolation error on the given training samples. Experiments show that lattice regression can reduce mean test error by as much as 25% compared to Gaussian process regression (GPR) for digital color management of printers, an application for which linearly interpolating a look-up table is standard. Simulations confirm that lattice regression performs consistently better than the naive approach to learning the lattice. Surprisingly, in some cases the proposed method — although motivated by computational efficiency — performs better than directly applying GPR with no lattice at all. 1

3 0.10554307 167 nips-2009-Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations

Author: Mingyuan Zhou, Haojun Chen, Lu Ren, Guillermo Sapiro, Lawrence Carin, John W. Paisley

Abstract: Non-parametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and compressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this non-parametric method naturally infers an appropriate dictionary size. The Dirichlet process and a probit stick-breaking process are also considered to exploit structure within an image. The proposed method can learn a sparse dictionary in situ; training images may be exploited if available, but they are not required. Further, the noise variance need not be known, and can be nonstationary. Another virtue of the proposed method is that sequential inference can be readily employed, thereby allowing scaling to large images. Several example results are presented, using both Gibbs and variational Bayesian inference, with comparisons to other state-of-the-art approaches. 1

4 0.09694875 187 nips-2009-Particle-based Variational Inference for Continuous Systems

Author: Andrew Frank, Padhraic Smyth, Alexander T. Ihler

Abstract: Since the development of loopy belief propagation, there has been considerable work on advancing the state of the art for approximate inference over distributions defined on discrete random variables. Improvements include guarantees of convergence, approximations that are provably more accurate, and bounds on the results of exact inference. However, extending these methods to continuous-valued systems has lagged behind. While several methods have been developed to use belief propagation on systems with continuous values, recent advances for discrete variables have not as yet been incorporated. In this context we extend a recently proposed particle-based belief propagation algorithm to provide a general framework for adapting discrete message-passing algorithms to inference in continuous systems. The resulting algorithms behave similarly to their purely discrete counterparts, extending the benefits of these more advanced inference techniques to the continuous domain. 1

5 0.08196222 35 nips-2009-Approximating MAP by Compensating for Structural Relaxations

Author: Arthur Choi, Adnan Darwiche

Abstract: We introduce a new perspective on approximations to the maximum a posteriori (MAP) task in probabilistic graphical models, that is based on simplifying a given instance, and then tightening the approximation. First, we start with a structural relaxation of the original model. We then infer from the relaxation its deficiencies, and compensate for them. This perspective allows us to identify two distinct classes of approximations. First, we find that max-product belief propagation can be viewed as a way to compensate for a relaxation, based on a particular idealized case for exactness. We identify a second approach to compensation that is based on a more refined idealized case, resulting in a new approximation with distinct properties. We go on to propose a new class of algorithms that, starting with a relaxation, iteratively seeks tighter approximations. 1

6 0.07482259 36 nips-2009-Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing

7 0.070783928 31 nips-2009-An LP View of the M-best MAP problem

8 0.067831382 131 nips-2009-Learning from Neighboring Strokes: Combining Appearance and Context for Multi-Domain Sketch Recognition

9 0.064018503 47 nips-2009-Boosting with Spatial Regularization

10 0.052148525 30 nips-2009-An Integer Projected Fixed Point Method for Graph Matching and MAP Inference

11 0.050939761 170 nips-2009-Nonlinear directed acyclic structure learning with weakly additive noise models

12 0.046461012 144 nips-2009-Lower bounds on minimax rates for nonparametric regression with additive sparsity and smoothness

13 0.046384342 138 nips-2009-Learning with Compressible Priors

14 0.043648355 129 nips-2009-Learning a Small Mixture of Trees

15 0.042165171 103 nips-2009-Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation

16 0.040699843 141 nips-2009-Local Rules for Global MAP: When Do They Work ?

17 0.038512152 58 nips-2009-Constructing Topological Maps using Markov Random Fields and Loop-Closure Detection

18 0.038136359 18 nips-2009-A Stochastic approximation method for inference in probabilistic graphical models

19 0.037925955 61 nips-2009-Convex Relaxation of Mixture Regression with Efficient Algorithms

20 0.036218524 92 nips-2009-Fast Graph Laplacian Regularized Kernel Learning via Semidefinite–Quadratic–Linear Programming


similar papers computed by lsi model

lsi for this paper:

topicId topicWeight

[(0, -0.13), (1, 0.006), (2, -0.003), (3, 0.008), (4, -0.018), (5, -0.037), (6, 0.069), (7, -0.006), (8, 0.017), (9, -0.084), (10, -0.074), (11, 0.03), (12, 0.04), (13, 0.043), (14, 0.009), (15, 0.006), (16, -0.02), (17, 0.01), (18, 0.024), (19, -0.071), (20, -0.065), (21, -0.097), (22, 0.007), (23, 0.05), (24, 0.007), (25, 0.094), (26, 0.092), (27, 0.049), (28, -0.086), (29, 0.097), (30, -0.091), (31, 0.077), (32, 0.088), (33, 0.016), (34, 0.048), (35, 0.003), (36, 0.102), (37, -0.028), (38, 0.054), (39, 0.044), (40, 0.003), (41, 0.084), (42, -0.033), (43, -0.157), (44, -0.016), (45, 0.024), (46, -0.129), (47, 0.054), (48, 0.119), (49, -0.005)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.91196179 10 nips-2009-A Gaussian Tree Approximation for Integer Least-Squares

Author: Jacob Goldberger, Amir Leshem

Abstract: This paper proposes a new algorithm for the linear least squares problem where the unknown variables are constrained to be in a finite set. The factor graph that corresponds to this problem is very loopy; in fact, it is a complete graph. Hence, applying the Belief Propagation (BP) algorithm yields very poor results. The algorithm described here is based on an optimal tree approximation of the Gaussian density of the unconstrained linear system. It is shown that even though the approximation is not directly applied to the exact discrete distribution, applying the BP algorithm to the modified factor graph outperforms current methods in terms of both performance and complexity. The improved performance of the proposed algorithm is demonstrated on the problem of MIMO detection.

2 0.68873817 35 nips-2009-Approximating MAP by Compensating for Structural Relaxations

Author: Arthur Choi, Adnan Darwiche

Abstract: We introduce a new perspective on approximations to the maximum a posteriori (MAP) task in probabilistic graphical models, that is based on simplifying a given instance, and then tightening the approximation. First, we start with a structural relaxation of the original model. We then infer from the relaxation its deficiencies, and compensate for them. This perspective allows us to identify two distinct classes of approximations. First, we find that max-product belief propagation can be viewed as a way to compensate for a relaxation, based on a particular idealized case for exactness. We identify a second approach to compensation that is based on a more refined idealized case, resulting in a new approximation with distinct properties. We go on to propose a new class of algorithms that, starting with a relaxation, iteratively seeks tighter approximations. 1

3 0.57239431 124 nips-2009-Lattice Regression

Author: Eric Garcia, Maya Gupta

Abstract: We present a new empirical risk minimization framework for approximating functions from training samples for low-dimensional regression applications where a lattice (look-up table) is stored and interpolated at run-time for an efficient implementation. Rather than evaluating a fitted function at the lattice nodes without regard to the fact that samples will be interpolated, the proposed lattice regression approach estimates the lattice to minimize the interpolation error on the given training samples. Experiments show that lattice regression can reduce mean test error by as much as 25% compared to Gaussian process regression (GPR) for digital color management of printers, an application for which linearly interpolating a look-up table is standard. Simulations confirm that lattice regression performs consistently better than the naive approach to learning the lattice. Surprisingly, in some cases the proposed method — although motivated by computational efficiency — performs better than directly applying GPR with no lattice at all. 1

4 0.54082179 36 nips-2009-Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing

Author: Sundeep Rangan, Vivek Goyal, Alyson K. Fletcher

Abstract: The replica method is a non-rigorous but widely-accepted technique from statistical physics used in the asymptotic analysis of large, random, nonlinear problems. This paper applies the replica method to non-Gaussian maximum a posteriori (MAP) estimation. It is shown that with random linear measurements and Gaussian noise, the asymptotic behavior of the MAP estimate of an n-dimensional vector “decouples” as n scalar MAP estimators. The result is a counterpart to Guo and Verd´ ’s replica analysis of minimum mean-squared error estimation. u The replica MAP analysis can be readily applied to many estimators used in compressed sensing, including basis pursuit, lasso, linear estimation with thresholding, and zero norm-regularized estimation. In the case of lasso estimation the scalar estimator reduces to a soft-thresholding operator, and for zero normregularized estimation it reduces to a hard-threshold. Among other benefits, the replica method provides a computationally-tractable method for exactly computing various performance metrics including mean-squared error and sparsity pattern recovery probability.

5 0.53738058 187 nips-2009-Particle-based Variational Inference for Continuous Systems

Author: Andrew Frank, Padhraic Smyth, Alexander T. Ihler

Abstract: Since the development of loopy belief propagation, there has been considerable work on advancing the state of the art for approximate inference over distributions defined on discrete random variables. Improvements include guarantees of convergence, approximations that are provably more accurate, and bounds on the results of exact inference. However, extending these methods to continuous-valued systems has lagged behind. While several methods have been developed to use belief propagation on systems with continuous values, recent advances for discrete variables have not as yet been incorporated. In this context we extend a recently proposed particle-based belief propagation algorithm to provide a general framework for adapting discrete message-passing algorithms to inference in continuous systems. The resulting algorithms behave similarly to their purely discrete counterparts, extending the benefits of these more advanced inference techniques to the continuous domain. 1

6 0.49527177 103 nips-2009-Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation

7 0.48322615 131 nips-2009-Learning from Neighboring Strokes: Combining Appearance and Context for Multi-Domain Sketch Recognition

8 0.47523218 31 nips-2009-An LP View of the M-best MAP problem

9 0.44163617 167 nips-2009-Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations

10 0.43329427 39 nips-2009-Bayesian Belief Polarization

11 0.41471976 30 nips-2009-An Integer Projected Fixed Point Method for Graph Matching and MAP Inference

12 0.41216454 141 nips-2009-Local Rules for Global MAP: When Do They Work ?

13 0.41193342 227 nips-2009-Speaker Comparison with Inner Product Discriminant Functions

14 0.40733156 58 nips-2009-Constructing Topological Maps using Markov Random Fields and Loop-Closure Detection

15 0.36818469 47 nips-2009-Boosting with Spatial Regularization

16 0.36596149 34 nips-2009-Anomaly Detection with Score functions based on Nearest Neighbor Graphs

17 0.361054 170 nips-2009-Nonlinear directed acyclic structure learning with weakly additive noise models

18 0.36064541 173 nips-2009-Nonparametric Greedy Algorithms for the Sparse Learning Problem

19 0.33742961 129 nips-2009-Learning a Small Mixture of Trees

20 0.33389542 165 nips-2009-Noise Characterization, Modeling, and Reduction for In Vivo Neural Recording


similar papers computed by lda model

lda for this paper:

topicId topicWeight

[(24, 0.022), (25, 0.034), (35, 0.639), (36, 0.07), (39, 0.021), (58, 0.052), (71, 0.022), (86, 0.039)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.95174092 10 nips-2009-A Gaussian Tree Approximation for Integer Least-Squares

Author: Jacob Goldberger, Amir Leshem

Abstract: This paper proposes a new algorithm for the linear least squares problem where the unknown variables are constrained to be in a finite set. The factor graph that corresponds to this problem is very loopy; in fact, it is a complete graph. Hence, applying the Belief Propagation (BP) algorithm yields very poor results. The algorithm described here is based on an optimal tree approximation of the Gaussian density of the unconstrained linear system. It is shown that even though the approximation is not directly applied to the exact discrete distribution, applying the BP algorithm to the modified factor graph outperforms current methods in terms of both performance and complexity. The improved performance of the proposed algorithm is demonstrated on the problem of MIMO detection.

2 0.88451517 42 nips-2009-Bayesian Sparse Factor Models and DAGs Inference and Comparison

Author: Ricardo Henao, Ole Winther

Abstract: In this paper we present a novel approach to learn directed acyclic graphs (DAGs) and factor models within the same framework while also allowing for model comparison between them. For this purpose, we exploit the connection between factor models and DAGs to propose Bayesian hierarchies based on spike and slab priors to promote sparsity, heavy-tailed priors to ensure identifiability and predictive densities to perform the model comparison. We require identifiability to be able to produce variable orderings leading to valid DAGs and sparsity to learn the structures. The effectiveness of our approach is demonstrated through extensive experiments on artificial and biological data showing that our approach outperform a number of state of the art methods. 1

3 0.87445092 236 nips-2009-Structured output regression for detection with partial truncation

Author: Andrea Vedaldi, Andrew Zisserman

Abstract: We develop a structured output model for object category detection that explicitly accounts for alignment, multiple aspects and partial truncation in both training and inference. The model is formulated as large margin learning with latent variables and slack rescaling, and both training and inference are computationally efficient. We make the following contributions: (i) we note that extending the Structured Output Regression formulation of Blaschko and Lampert [1] to include a bias term significantly improves performance; (ii) that alignment (to account for small rotations and anisotropic scalings) can be included as a latent variable and efficiently determined and implemented; (iii) that the latent variable extends to multiple aspects (e.g. left facing, right facing, front) with the same formulation; and (iv), most significantly for performance, that truncated and truncated instances can be included in both training and inference with an explicit truncation mask. We demonstrate the method by training and testing on the PASCAL VOC 2007 data set – training includes the truncated examples, and in testing object instances are detected at multiple scales, alignments, and with significant truncations. 1

4 0.85615587 209 nips-2009-Robust Value Function Approximation Using Bilinear Programming

Author: Marek Petrik, Shlomo Zilberstein

Abstract: Existing value function approximation methods have been successfully used in many applications, but they often lack useful a priori error bounds. We propose approximate bilinear programming, a new formulation of value function approximation that provides strong a priori guarantees. In particular, this approach provably finds an approximate value function that minimizes the Bellman residual. Solving a bilinear program optimally is NP-hard, but this is unavoidable because the Bellman-residual minimization itself is NP-hard. We therefore employ and analyze a common approximate algorithm for bilinear programs. The analysis shows that this algorithm offers a convergent generalization of approximate policy iteration. Finally, we demonstrate that the proposed approach can consistently minimize the Bellman residual on a simple benchmark problem. 1 Motivation Solving large Markov Decision Problems (MDPs) is a very useful, but computationally challenging problem addressed widely in the AI literature, particularly in the area of reinforcement learning. It is widely accepted that large MDPs can only be solved approximately. The commonly used approximation methods can be divided into three broad categories: 1) policy search, which explores a restricted space of all policies, 2) approximate dynamic programming, which searches a restricted space of value functions, and 3) approximate linear programming, which approximates the solution using a linear program. While all of these methods have achieved impressive results in many domains, they have significant limitations. Policy search methods rely on local search in a restricted policy space. The policy may be represented, for example, as a finite-state controller [22] or as a greedy policy with respect to an approximate value function [24]. Policy search methods have achieved impressive results in such domains as Tetris [24] and helicopter control [1]. However, they are notoriously hard to analyze. We are not aware of any theoretical guarantees regarding the quality of the solution. Approximate dynamic programming (ADP) methods iteratively approximate the value function [4, 20, 23]. They have been extensively analyzed and are the most commonly used methods. However, ADP methods typically do not converge and they only provide weak guarantees of approximation quality. The approximation error bounds are usually expressed in terms of the worst-case approximation of the value function over all policies [4]. In addition, most available bounds are with respect to the L∞ norm, while the algorithms often minimize the L2 norm. While there exist some L2 -based bounds [14], they require values that are difficult to obtain. Approximate linear programming (ALP) uses a linear program to compute the approximate value function in a particular vector space [7]. ALP has been previously used in a wide variety of settings [2, 9, 10]. Although ALP often does not perform as well as ADP, there have been some recent 1 efforts to close the gap [18]. ALP has better theoretical properties than ADP and policy search. It is guaranteed to converge and return the closest L1 -norm approximation v of the optimal value func˜ tion v ∗ up to a multiplicative factor. However, the L1 norm must be properly weighted to guarantee a small policy loss, and there is no reliable method for selecting appropriate weights [7]. To summarize, the existing reinforcement learning techniques often provide good solutions, but typically require significant domain knowledge [20]. The domain knowledge is needed partly because useful a priori error bounds are not available, as mentioned above. Our goal is to develop a more robust method that is guaranteed to minimize an actual bound on the policy loss. We present a new formulation of value function approximation that provably minimizes a bound on the policy loss. Unlike in some other algorithms, the bound in this case does not rely on values that are hard to obtain. The new method unifies policy search and value-function search methods to minimize the L∞ norm of the Bellman residual, which bounds the policy loss. We start with a description of the framework and notation in Section 2. Then, in Section 3, we describe the proposed Approximate Bilinear Programming (ABP) formulation. A drawback of this formulation is its computational complexity, which may be exponential. We show in Section 4 that this is unavoidable, because minimizing the approximation error bound is in fact NP-hard. Although our focus is on the formulation and its properties, we also discuss some simple algorithms for solving bilinear programs. Section 5 shows that ABP can be seen as an improvement of ALP and Approximate Policy Iteration (API). Section 6 demonstrates the applicability of ABP using a common reinforcement learning benchmark problem. A complete discussion of sampling strategies–an essential component for achieving robustness–is beyond the scope of this paper, but the issue is briefly discussed in Section 6. Complete proofs of the theorems can be found in [19]. 2 Solving MDPs using ALP In this section, we formally define MDPs, their ALP formulation, and the approximation errors involved. These notions serve as a basis for developing the ABP formulation. A Markov Decision Process is a tuple (S, A, P, r, α), where S is the finite set of states, A is the finite set of actions. P : S × S × A → [0, 1] is the transition function, where P (s , s, a) represents the probability of transiting to state s from state s, given action a. The function r : S × A → R is the reward function, and α : S → [0, 1] is the initial state distribution. The objective is to maximize the infinite-horizon discounted cumulative reward. To shorten the notation, we assume an arbitrary ordering of the states: s1 , s2 , . . . , sn . Then, Pa and ra are used to denote the probabilistic transition matrix and reward for action a. The solution of an MDP is a policy π : S × A → [0, 1] from a set of possible policies Π, such that for all s ∈ S, a∈A π(s, a) = 1. We assume that the policies may be stochastic, but stationary [21]. A policy is deterministic when π(s, a) ∈ {0, 1} for all s ∈ S and a ∈ A. The transition and reward functions for a given policy are denoted by Pπ and rπ . The value function update for a policy π is denoted by Lπ , and the Bellman operator is denoted by L. That is: Lπ v = Pπ v + rπ Lv = max Lπ v. π∈Π The optimal value function, denoted v ∗ , satisfies v ∗ = Lv ∗ . We focus on linear value function approximation for discounted infinite-horizon problems. In linear value function approximation, the value function is represented as a linear combination of nonlinear basis functions (vectors). For each state s, we define a row-vector φ(s) of features. The rows of the basis matrix M correspond to φ(s), and the approximation space is generated by the columns of the matrix. That is, the basis matrix M , and the value function v are represented as:   − φ(s1 ) −   M = − φ(s2 ) − v = M x. . . . Definition 1. A value function, v, is representable if v ∈ M ⊆ R|S| , where M = colspan (M ), and is transitive-feasible when v ≥ Lv. We denote the set of transitive-feasible value functions as: K = {v ∈ R|S| v ≥ Lv}. 2 Notice that the optimal value function v ∗ is transitive-feasible, and M is a linear space. Also, all the inequalities are element-wise. Because the new formulation is related to ALP, we introduce it first. It is well known that an infinite horizon discounted MDP problem may be formulated in terms of solving the following linear program: minimize v c(s)v(s) s∈S v(s) − γ s.t. P (s , s, a)v(s ) ≥ r(s, a) ∀(s, a) ∈ (S, A) (1) s ∈S We use A as a shorthand notation for the constraint matrix and b for the right-hand side. The value c represents a distribution over the states, usually a uniform one. That is, s∈S c(s) = 1. The linear program in Eq. (1) is often too large to be solved precisely, so it is approximated to get an approximate linear program by assuming that v ∈ M [8], as follows: minimize cT v x Av ≥ b s.t. (2) v∈M The constraint v ∈ M denotes the approximation. To actually solve this linear program, the value function is represented as v = M x. In the remainder of the paper, we assume that 1 ∈ M to guarantee the feasibility of the ALP, where 1 is a vector of all ones. The optimal solution of the ALP, v , satisfies that v ≥ v ∗ . Then, the objective of Eq. (2) represents the minimization of v − v ∗ 1,c , ˜ ˜ ˜ where · 1,c is a c-weighted L1 norm [7]. The ultimate goal of the optimization is not to obtain a good value function v , but a good policy. ˜ The quality of the policy, typically chosen to be greedy with respect to v , depends non-trivially on ˜ the approximate value function. The ABP formulation will minimize policy loss by minimizing L˜ − v ∞ , which bounds the policy loss as follows. v ˜ Theorem 2 (e.g. [25]). Let v be an arbitrary value function, and let v be the value of the greedy ˜ ˆ policy with respect to v . Then: ˜ 2 v∗ − v ∞ ≤ ˆ L˜ − v ∞ , v ˜ 1−γ In addition, if v ≥ L˜, the policy loss is smallest for the greedy policy. ˜ v Policies, like value functions, can be represented as vectors. Assume an arbitrary ordering of the state-action pairs, such that o(s, a) → N maps a state and an action to its position. The policies are represented as θ ∈ R|S|×|A| , and we use the shorthand notation θ(s, a) = θ(o(s, a)). Remark 3. The corresponding π and θ are denoted as π θ and θπ and satisfy: π θ (s, a) = θπ (s, a). We will also consider approximations of the policies in the policy-space, generated by columns of a matrix N . A policy is representable when π ∈ N , where N = colspan (N ). 3 Approximate Bilinear Programs This section shows how to formulate minv∈M Lv − v ∞ as a separable bilinear program. Bilinear programs are a generalization of linear programs with an additional bilinear term in the objective function. A separable bilinear program consists of two linear programs with independent constraints and are fairly easy to solve and analyze. Definition 4 (Separable Bilinear Program). A separable bilinear program in the normal form is defined as follows: T T minimize f (w, x, y, z) = sT w + r1 x + xT Cy + r2 y + sT z 1 2 w,x y,z s.t. A1 x + B1 w = b1 A2 y + B2 z = b2 w, x ≥ 0 y, z ≥ 0 3 (3) We separate the variables using a vertical line and the constraints using different columns to emphasize the separable nature of the bilinear program. In this paper, we only use separable bilinear programs and refer to them simply as bilinear programs. An approximate bilinear program can now be formulated as follows. minimize θT λ + λ θ λ,λ ,v Bθ = 1 z = Av − b s.t. θ≥0 z≥0 (4) λ+λ1≥z λ≥0 θ∈N v∈M All variables are vectors except λ , which is a scalar. The symbol z is only used to simplify the notation and does not need to represent an optimization variable. The variable v is defined for each state and represents the value function. Matrix A represents constraints that are identical to the constraints in Eq. (2). The variables λ correspond to all state-action pairs. These variables represent the Bellman residuals that are being minimized. The variables θ are defined for all state-action pairs and represent policies in Remark 3. The matrix B represents the following constraints: θ(s, a) = 1 ∀s ∈ S. a∈A As with approximate linear programs, we initially assume that all the constraints on z are used. In realistic settings, however, the constraints would be sampled or somehow reduced. We defer the discussion of this issue until Section 6. Note that the constraints in our formulation correspond to elements of z and θ. Thus when constraints are omitted, also the corresponding elements of z and θ are omitted. To simplify the notation, the value function approximation in this problem is denoted only implicitly by v ∈ M, and the policy approximation is denoted by θ ∈ N . In an actual implementation, the optimization variables would be x, y using the relationships v = M x and θ = N y. We do not assume any approximation of the policy space, unless mentioned otherwise. We also use v or θ to refer to partial solutions of Eq. (4) with the other variables chosen appropriately to achieve feasibility. The ABP formulation is closely related to approximate linear programs, and we discuss the connection in Section 5. We first analyze the properties of the optimal solutions of the bilinear program and then show and discuss the solution methods in Section 4. The following theorem states the main property of the bilinear formulation. ˜˜ ˜ ˜ Theorem 5. b Let (θ, v , λ, λ ) be an optimal solution of Eq. (4) and assume that 1 ∈ M. Then: ˜ ˜ ˜ θT λ + λ = L˜ − v v ˜ ∞ ≤ min v∈K∩M Lv − v ∞ ≤ 2 min Lv − v v∈M ∞ ≤ 2(1 + γ) min v − v ∗ v∈M ∞. ˜ In addition, π θ minimizes the Bellman residual with regard to v , and its value function v satisfies: ˜ ˆ 2 min Lv − v ∞ . v − v∗ ∞ ≤ ˆ 1 − γ v∈M The proof of the theorem can be found in [19]. It is important to note that, as Theorem 5 states, the ABP approach is equivalent to a minimization over all representable value functions, not only the transitive-feasible ones. Notice also the missing coefficient 2 (2 instead of 4) in the last equation of Theorem 5. This follows by subtracting a constant vector 1 from v to balance the lower bounds ˜ on the Bellman residual error with the upper ones. This modified approximate value function will have 1/2 of the original Bellman residual but an identical greedy policy. Finally, note that whenever v ∗ ∈ M, both ABP and ALP will return the optimal value function. The ABP solution minimizes the L∞ norm of the Bellman residual due to: 1) the correspondence between θ and the policies, and 2) the dual representation with respect to variables λ and λ . The theorem then follows using techniques similar to those used for approximate linear programs [7]. 4 Algorithm 1: Iterative algorithm for solving Eq. (3) (x0 , w0 ) ← random ; (y0 , z0 ) ← arg miny,z f (w0 , x0 , y, z) ; i←1; while yi−1 = yi or xi−1 = xi do (yi , zi ) ← arg min{y,z A2 y+B2 z=b2 y,z≥0} f (wi−1 , xi−1 , y, z) ; (xi , wi ) ← arg min{x,w A1 x+B1 w=b1 x,w≥0} f (w, x, yi , zi ) ; i←i+1 return f (wi , xi , yi , zi ) 4 Solving Bilinear Programs In this section we describe simple methods for solving ABPs. We first describe optimal methods, which have exponential complexity, and then discuss some approximation strategies. Solving a bilinear program is an NP-complete problem [3]. The membership in NP follows from the finite number of basic feasible solutions of the individual linear programs, each of which can be checked in polynomial time. The NP-hardness is shown by a reduction from the SAT problem [3]. The NP-completeness of ABP compares unfavorably with the polynomial complexity of ALP. However, most other ADP algorithms are not guaranteed to converge to a solution in finite time. The following theorem shows that the computational complexity of the ABP formulation is asymptotically the same as the complexity of the problem it solves. Theorem 6. b Determining minv∈K∩M Lv − v ∞ < is NP-complete for the full constraint representation, 0 < γ < 1, and a given > 0. In addition, the problem remains NP-complete when 1 ∈ M, and therefore minv∈M Lv − v ∞ < is also NP-complete. As the theorem states, the value function approximation does not become computationally simpler even when 1 ∈ M – a universal assumption in the paper. Notice that ALP can determine whether minv∈K∩M Lv − v ∞ = 0 in polynomial time. The proof of Theorem 6 is based on a reduction from SAT and can be found in [19]. The policy in the reduction determines the true literal in each clause, and the approximate value function corresponds to the truth value of the literals. The approximation basis forces literals that share the same variable to have consistent values. Bilinear programs are non-convex and are typically solved using global optimization techniques. The common solution methods are based on concave cuts [11] or branch-and-bound [6]. In ABP settings with a small number of features, the successive approximation algorithm [17] may be applied efficiently. We are, however, not aware of commercial solvers available for solving bilinear programs. Bilinear programs can be formulated as concave quadratic minimization problems [11], or mixed integer linear programs [11, 16], for which there are numerous commercial solvers available. Because we are interested in solving very large bilinear programs, we describe simple approximate algorithms next. Optimal scalable methods are beyond the scope of this paper. The most common approximate method for solving bilinear programs is shown in Algorithm 1. It is designed for the general formulation shown in Eq. (3), where f (w, x, y, z) represents the objective function. The minimizations in the algorithm are linear programs which can be easily solved. Interestingly, as we will show in Section 5, Algorithm 1 applied to ABP generalizes a version of API. While Algorithm 1 is not guaranteed to find an optimal solution, its empirical performance is often remarkably good [13]. Its basic properties are summarized by the following proposition. Proposition 7 (e.g. [3]). Algorithm 1 is guaranteed to converge, assuming that the linear program solutions are in a vertex of the optimality simplex. In addition, the global optimum is a fixed point of the algorithm, and the objective value monotonically improves during execution. 5 The proof is based on the finite count of the basic feasible solutions of the individual linear programs. Because the objective function does not increase in any iteration, the algorithm will eventually converge. In the context of MDPs, Algorithm 1 can be further refined. For example, the constraint v ∈ M in Eq. (4) serves mostly to simplify the bilinear program and a value function that violates it may still be acceptable. The following proposition motivates the construction of a new value function from two transitive-feasible value functions. Proposition 8. Let v1 and v2 be feasible value functions in Eq. (4). Then the value function ˜ ˜ v (s) = min{˜1 (s), v2 (s)} is also feasible in Eq. (4). Therefore v ≥ v ∗ and v ∗ − v ∞ ≤ ˜ v ˜ ˜ ˜ min { v ∗ − v1 ∞ , v ∗ − v2 ∞ }. ˜ ˜ The proof of the proposition is based on Jensen’s inequality and can be found in [19]. Proposition 8 can be used to extend Algorithm 1 when solving ABPs. One option is to take the state-wise minimum of values from multiple random executions of Algorithm 1, which preserves the transitive feasibility of the value function. However, the increasing number of value functions used to obtain v also increases the potential sampling error. ˜ 5 Relationship to ALP and API In this section, we describe the important connections between ABP and the two closely related ADP methods: ALP, and API with L∞ minimization. Both of these methods are commonly used, for example to solve factored MDPs [10]. Our analysis sheds light on some of their observed properties and leads to a new convergent form of API. ABP addresses some important issues with ALP: 1) ALP provides value function bounds with respect to L1 norm, which does not guarantee small policy loss, 2) ALP’s solution quality depends significantly on the heuristically-chosen objective function c in Eq. (2) [7], and 3) incomplete constraint samples in ALP easily lead to unbounded linear programs. The drawback of using ABP, however, is the higher computational complexity. Both the first and the second issues in ALP can be addressed by choosing the right objective function [7]. Because this objective function depends on the optimal ALP solution, it cannot be practically computed. Instead, various heuristics are usually used. The heuristic objective functions may lead to significant improvements in specific domains, but they do not provide any guarantees. ABP, on the other hand, has no such parameters that require adjustments. The third issue arises when the constraints of an ALP need to be sampled in some large domains. The ALP may become unbounded with incomplete samples because its objective value is defined using the L1 norm on the states, and the constraints are defined using the L∞ norm of the Bellman residual. In ABP, the Bellman residual is used in both the constraints and objective function. The objective function of ABP is then bounded below by 0 for an arbitrarily small number of samples. ABP can also improve on API with L∞ minimization (L∞ -API for short), which is a leading method for solving factored MDPs [10]. Minimizing the L∞ approximation error is theoretically preferable, since it is compatible with the existing bounds on policy loss [10]. In contrast, few practical bounds exist for API with the L2 norm minimization [14], such as LSPI [12]. L∞ -API is shown in Algorithm 2, where f (π) is calculated using the following program: minimize φ φ,v s.t. (I − γPπ )v + 1φ ≥ rπ −(I − γPπ )v + 1φ ≥ −rπ (5) v∈M Here I denotes the identity matrix. We are not aware of a convergence or a divergence proof of L∞ -API, and this analysis is beyond the scope of this paper. 6 Algorithm 2: Approximate policy iteration, where f (π) denotes a custom value function approximation for the policy π. π0 , k ← rand, 1 ; while πk = πk−1 do vk ← f (πk−1 ) ; ˜ πk (s) ← arg maxa∈A r(s, a) + γ s ∈S P (s , s, a)˜k (s) ∀s ∈ S ; v k ←k+1 We propose Optimistic Approximate Policy Iteration (OAPI), a modification of API. OAPI is shown in Algorithm 2, where f (π) is calculated using the following program: minimize φ φ,v s.t. Av ≥ b (≡ (I − γPπ )v ≥ rπ ∀π ∈ Π) −(I − γPπ )v + 1φ ≥ −rπ (6) v∈M In fact, OAPI corresponds to Algorithm 1 applied to ABP because Eq. (6) corresponds to Eq. (4) with fixed θ. Then, using Proposition 7, we get the following corollary. Corollary 9. Optimistic approximate policy iteration converges in finite time. In addition, the Bellman residual of the generated value functions monotonically decreases. OAPI differs from L∞ -API in two ways: 1) OAPI constrains the Bellman residuals by 0 from below and by φ from above, and then it minimizes φ. L∞ -API constrains the Bellman residuals by φ from both above and below. 2) OAPI, like API, uses only the current policy for the upper bound on the Bellman residual, but uses all the policies for the lower bound on the Bellman residual. L∞ -API cannot return an approximate value function that has a lower Bellman residual than ABP, given the optimality of ABP described in Theorem 5. However, even OAPI, an approximate ABP algorithm, performs comparably to L∞ -API, as the following theorem states. Theorem 10. b Assume that L∞ -API converges to a policy π and a value function v that both φ satisfy: φ = v − Lπ v ∞ = v − Lv ∞ . Then v = v + 1−γ 1 is feasible in Eq. (4), and it is a fixed ˜ point of OAPI. In addition, the greedy policies with respect to v and v are identical. ˜ The proof is based on two facts. First, v is feasible with respect to the constraints in Eq. (4). The ˜ Bellman residual changes for all the policies identically, since a constant vector is added. Second, because Lπ is greedy with respect to v , we have that v ≥ Lπ v ≥ L˜. The value function v is ˜ ˜ ˜ v ˜ therefore transitive-feasible. The full proof can be found in [19]. To summarize, OAPI guarantees convergence, while matching the performance of L∞ -API. The convergence of OAPI is achieved because given a non-negative Bellman residual, the greedy policy also minimizes the Bellman residual. Because OAPI ensures that the Bellman residual is always non-negative, it can progressively reduce it. In comparison, the greedy policy in L∞ -API does not minimize the Bellman residual, and therefore L∞ -API does not always reduce it. Theorem 10 also explains why API provides better solutions than ALP, as observed in [10]. From the discussion above, ALP can be seen as an L1 -norm approximation of a single iteration of OAPI. L∞ -API, on the other hand, performs many such ALP-like iterations. 6 Empirical Evaluation As we showed in Theorem 10, even OAPI, the very simple approximate algorithm for ABP, can perform as well as existing state-of-the art methods on factored MDPs. However, a deeper understanding of the formulation and potential solution methods will be necessary in order to determine the full practical impact of the proposed methods. In this section, we validate the approach by applying it to the mountain car problem, a simple reinforcement learning benchmark problem. We have so far considered that all the constraints involving z are present in the ABP in Eq. (4). Because the constraints correspond to all state-action pairs, it is often impractical to even enumerate 7 (a) L∞ error of the Bellman residual Features 100 144 OAPI 0.21 (0.23) 0.13 (0.1) ALP 13. (13.) 3.6 (4.3) LSPI 9. (14.) 3.9 (7.7) API 0.46 (0.08) 0.86 (1.18) (b) L2 error of the Bellman residual Features 100 144 OAPI 0.2 (0.3) 0.1 (1.9) ALP 9.5 (18.) 0.3 (0.4) LSPI 1.2 (1.5) 0.9 (0.1) API 0.04 (0.01) 0.08 (0.08) Table 1: Bellman residual of the final value function. The values are averages over 5 executions, with the standard deviations shown in parentheses. them. This issue can be addressed in at least two ways. First, a small randomly-selected subset of the constraints can be used in the ABP, a common approach in ALP [9, 5]. The ALP sampling bounds can be easily extended to ABP. Second, the structure of the MDP can be used to reduce the number of constraints. Such a reduction is possible, for example, in factored MDPs with L∞ -API and ALP [10], and can be easily extended to OAPI and ABP. In the mountain-car benchmark, an underpowered car needs to climb a hill [23]. To do so, it first needs to back up to an opposite hill to gain sufficient momentum. The car receives a reward of 1 when it climbs the hill. In the experiments we used a discount factor γ = 0.99. The experiments are designed to determine whether OAPI reliably minimizes the Bellman residual in comparison with API and ALP. We use a uniformly-spaced linear spline to approximate the value function. The constraints were based on 200 uniformly sampled states with all 3 actions per state. We evaluated the methods with the number of the approximation features 100 and 144, which corresponds to the number of linear segments. The results of ABP (in particular OAPI), ALP, API with L2 minimization, and LSPI are depicted in Table 1. The results are shown for both L∞ norm and uniformly-weighted L2 norm. The runtimes of all these methods are comparable, with ALP being the fastest. Since API (LSPI) is not guaranteed to converge, we ran it for at most 20 iterations, which was an upper bound on the number of iterations of OAPI. The results demonstrate that ABP minimizes the L∞ Bellman residual much more consistently than the other methods. Note, however, that all the considered algorithms would perform significantly better given a finer approximation. 7 Conclusion and Future Work We proposed and analyzed approximate bilinear programming, a new value-function approximation method, which provably minimizes the L∞ Bellman residual. ABP returns the optimal approximate value function with respect to the Bellman residual bounds, despite the formulation with regard to transitive-feasible value functions. We also showed that there is no asymptotically simpler formulation, since finding the closest value function and solving a bilinear program are both NP-complete problems. Finally, the formulation leads to the development of OAPI, a new convergent form of API which monotonically improves the objective value function. While we only discussed approximate solutions of the ABP, a deeper study of bilinear solvers may render optimal solution methods feasible. ABPs have a small number of essential variables (that determine the value function) and a large number of constraints, which can be leveraged by the solvers [15]. The L∞ error bound provides good theoretical guarantees, but it may be too conservative in practice. A similar formulation based on L2 norm minimization may be more practical. We believe that the proposed formulation will help to deepen the understanding of value function approximation and the characteristics of existing solution methods, and potentially lead to the development of more robust and widely-applicable reinforcement learning algorithms. Acknowledgements This work was supported by the Air Force Office of Scientific Research under Grant No. FA955008-1-0171. We also thank the anonymous reviewers for their useful comments. 8 References [1] Pieter Abbeel, Varun Ganapathi, and Andrew Y. Ng. Learning vehicular dynamics, with application to modeling helicopters. In Advances in Neural Information Processing Systems, pages 1–8, 2006. [2] Daniel Adelman. A price-directed approach to stochastic inventory/routing. Operations Research, 52:499–514, 2004. [3] Kristin P. Bennett and O. L. Mangasarian. Bilinear separation of two sets in n-space. Technical report, Computer Science Department, University of Wisconsin, 1992. [4] Dimitri P. Bertsekas and Sergey Ioffe. Temporal differences-based policy iteration and applications in neuro-dynamic programming. Technical Report LIDS-P-2349, LIDS, 1997. [5] Guiuseppe Calafiore and M.C. Campi. Uncertain convex programs: Randomized solutions and confidence levels. Mathematical Programming, Series A, 102:25–46, 2005. [6] Alberto Carpara and Michele Monaci. Bidimensional packing by bilinear programming. Mathematical Programming Series A, 118:75–108, 2009. [7] Daniela P. de Farias. The Linear Programming Approach to Approximate Dynamic Programming: Theory and Application. PhD thesis, Stanford University, 2002. [8] Daniela P. de Farias and Ben Van Roy. The linear programming approach to approximate dynamic programming. Operations Research, 51:850–856, 2003. [9] Daniela Pucci de Farias and Benjamin Van Roy. On constraint sampling in the linear programming approach to approximate dynamic programming. Mathematics of Operations Research, 29(3):462–478, 2004. [10] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution algorithms for factored MDPs. Journal of Artificial Intelligence Research, 19:399–468, 2003. [11] Reiner Horst and Hoang Tuy. Global optimization: Deterministic approaches. Springer, 1996. [12] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of Machine Learning Research, 4:1107–1149, 2003. [13] O. L. Mangasarian. The linear complementarity problem as a separable bilinear program. Journal of Global Optimization, 12:1–7, 1995. [14] Remi Munos. Error bounds for approximate policy iteration. In International Conference on Machine Learning, pages 560–567, 2003. [15] Marek Petrik and Shlomo Zilberstein. Anytime coordination using separable bilinear programs. In Conference on Artificial Intelligence, pages 750–755, 2007. [16] Marek Petrik and Shlomo Zilberstein. Average reward decentralized Markov decision processes. In International Joint Conference on Artificial Intelligence, pages 1997–2002, 2007. [17] Marek Petrik and Shlomo Zilberstein. A bilinear programming approach for multiagent planning. Journal of Artificial Intelligence Research, 35:235–274, 2009. [18] Marek Petrik and Shlomo Zilberstein. Constraint relaxation in approximate linear programs. In International Conference on Machine Learning, pages 809–816, 2009. [19] Marek Petrik and Shlomo Zilberstein. Robust value function approximation using bilinear programming. Technical Report UM-CS-2009-052, Department of Computer Science, University of Massachusetts Amherst, 2009. [20] Warren B. Powell. Approximate Dynamic Programming. Wiley-Interscience, 2007. [21] Martin L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John Wiley & Sons, Inc., 2005. [22] Kenneth O. Stanley and Risto Miikkulainen. Competitive coevolution through evolutionary complexification. Journal of Artificial Intelligence Research, 21:63–100, 2004. [23] Richard S. Sutton and Andrew Barto. Reinforcement learning. MIT Press, 1998. [24] Istvan Szita and Andras Lorincz. Learning Tetris using the noisy cross-entropy method. Neural Computation, 18(12):2936–2941, 2006. [25] Ronald J. Williams and Leemon C. Baird. Tight performance bounds on greedy policies based on imperfect value functions. In Yale Workshop on Adaptive and Learning Systems, 1994. 9

5 0.79637647 34 nips-2009-Anomaly Detection with Score functions based on Nearest Neighbor Graphs

Author: Manqi Zhao, Venkatesh Saligrama

Abstract: We propose a novel non-parametric adaptive anomaly detection algorithm for high dimensional data based on score functions derived from nearest neighbor graphs on n-point nominal data. Anomalies are declared whenever the score of a test sample falls below α, which is supposed to be the desired false alarm level. The resulting anomaly detector is shown to be asymptotically optimal in that it is uniformly most powerful for the specified false alarm level, α, for the case when the anomaly density is a mixture of the nominal and a known density. Our algorithm is computationally efficient, being linear in dimension and quadratic in data size. It does not require choosing complicated tuning parameters or function approximation classes and it can adapt to local structure such as local change in dimensionality. We demonstrate the algorithm on both artificial and real data sets in high dimensional feature spaces.

6 0.77522296 219 nips-2009-Slow, Decorrelated Features for Pretraining Complex Cell-like Networks

7 0.55416828 159 nips-2009-Multi-Step Dyna Planning for Policy Evaluation and Control

8 0.51150411 23 nips-2009-Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models

9 0.50096244 30 nips-2009-An Integer Projected Fixed Point Method for Graph Matching and MAP Inference

10 0.4937149 187 nips-2009-Particle-based Variational Inference for Continuous Systems

11 0.48635587 100 nips-2009-Gaussian process regression with Student-t likelihood

12 0.48139402 113 nips-2009-Improving Existing Fault Recovery Policies

13 0.47825167 131 nips-2009-Learning from Neighboring Strokes: Combining Appearance and Context for Multi-Domain Sketch Recognition

14 0.47038713 28 nips-2009-An Additive Latent Feature Model for Transparent Object Recognition

15 0.46966052 167 nips-2009-Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations

16 0.46205783 48 nips-2009-Bootstrapping from Game Tree Search

17 0.46146101 250 nips-2009-Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference

18 0.45758739 3 nips-2009-AUC optimization and the two-sample problem

19 0.45068008 35 nips-2009-Approximating MAP by Compensating for Structural Relaxations

20 0.44533825 31 nips-2009-An LP View of the M-best MAP problem