nips nips2005 nips2005-40 knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Jung Hoon Lee, Xiaolong Ma, Konstantin K. Likharev
Abstract: Hybrid “CMOL” integrated circuits, combining CMOS subsystem with nanowire crossbars and simple two-terminal nanodevices, promise to extend the exponential Moore-Law development of microelectronics into the sub-10-nm range. We are developing neuromorphic network (“CrossNet”) architectures for this future technology, in which neural cell bodies are implemented in CMOS, nanowires are used as axons and dendrites, while nanodevices (bistable latching switches) are used as elementary synapses. We have shown how CrossNets may be trained to perform pattern recovery and classification despite the limitations imposed by the CMOL hardware. Preliminary estimates have shown that CMOL CrossNets may be extremely dense (~10 7 cells per cm2) and operate approximately a million times faster than biological neural networks, at manageable power consumption. In Conclusion, we discuss in brief possible short-term and long-term applications of the emerging technology. 1 Introduction: CMOL Circuits Recent results [1, 2] indicate that the current VLSI paradigm based on CMOS technology can be hardly extended beyond the 10-nm frontier: in this range the sensitivity of parameters (most importantly, the gate voltage threshold) of silicon field-effect transistors to inevitable fabrication spreads grows exponentially. This sensitivity will probably send the fabrication facilities costs skyrocketing, and may lead to the end of Moore’s Law some time during the next decade. There is a growing consensus that the impending Moore’s Law crisis may be preempted by a radical paradigm shift from the purely CMOS technology to hybrid CMOS/nanodevice circuits, e.g., those of “CMOL” variety (Fig. 1). Such circuits (see, e.g., Ref. 3 for their recent review) would combine a level of advanced CMOS devices fabricated by the lithographic patterning, and two-layer nanowire crossbar formed, e.g., by nanoimprint, with nanowires connected by simple, similar, two-terminal nanodevices at each crosspoint. For such devices, molecular single-electron latching switches [4] are presently the leading candidates, in particular because they may be fabricated using the self-assembled monolayer (SAM) technique which already gave reproducible results for simpler molecular devices [5]. (a) nanodevices nanowiring and nanodevices interface pins upper wiring level of CMOS stack (b) βFCMOS Fnano α Fig. 1. CMOL circuit: (a) schematic side view, and (b) top-view zoom-in on several adjacent interface pins. (For clarity, only two adjacent nanodevices are shown.) In order to overcome the CMOS/nanodevice interface problems pertinent to earlier proposals of hybrid circuits [6], in CMOL the interface is provided by pins that are distributed all over the circuit area, on the top of the CMOS stack. This allows to use advanced techniques of nanowire patterning (like nanoimprint) which do not have nanoscale accuracy of layer alignment [3]. The vital feature of this interface is the tilt, by angle α = arcsin(Fnano/βFCMOS), of the nanowire crossbar relative to the square arrays of interface pins (Fig. 1b). Here Fnano is the nanowiring half-pitch, FCMOS is the half-pitch of the CMOS subsystem, and β is a dimensionless factor larger than 1 that depends on the CMOS cell complexity. Figure 1b shows that this tilt allows the CMOS subsystem to address each nanodevice even if Fnano << βFCMOS. By now, it has been shown that CMOL circuits can combine high performance with high defect tolerance (which is necessary for any circuit using nanodevices) for several digital applications. In particular, CMOL circuits with defect rates below a few percent would enable terabit-scale memories [7], while the performance of FPGA-like CMOL circuits may be several hundred times above that of overcome purely CMOL FPGA (implemented with the same FCMOS), at acceptable power dissipation and defect tolerance above 20% [8]. In addition, the very structure of CMOL circuits makes them uniquely suitable for the implementation of more complex, mixed-signal information processing systems, including ultradense and ultrafast neuromorphic networks. The objective of this paper is to describe in brief the current status of our work on the development of so-called Distributed Crossbar Networks (“CrossNets”) that could provide high performance despite the limitations imposed by CMOL hardware. A more detailed description of our earlier results may be found in Ref. 9. 2 Synapses The central device of CrossNet is a two-terminal latching switch [3, 4] (Fig. 2a) which is a combination of two single-electron devices, a transistor and a trap [3]. The device may be naturally implemented as a single organic molecule (Fig. 2b). Qualitatively, the device operates as follows: if voltage V = Vj – Vk applied between the external electrodes (in CMOL, nanowires) is low, the trap island has no net electric charge, and the single-electron transistor is closed. If voltage V approaches certain threshold value V+ > 0, an additional electron is inserted into the trap island, and its field lifts the Coulomb blockade of the single-electron transistor, thus connecting the nanowires. The switch state may be reset (e.g., wires disconnected) by applying a lower voltage V < V- < V+. Due to the random character of single-electron tunneling [2], the quantitative description of the switch is by necessity probabilistic: actually, V determines only the rates Γ↑↓ of device switching between its ON and OFF states. The rates, in turn, determine the dynamics of probability p to have the transistor opened (i.e. wires connected): dp/dt = Γ↑(1 - p) - Γ↓p. (1) The theory of single-electron tunneling [2] shows that, in a good approximation, the rates may be presented as Γ↑↓ = Γ0 exp{±e(V - S)/kBT} , (2) (a) single-electron trap tunnel junction Vj Vk single-electron transistor (b) O clipping group O N C R diimide acceptor groups O O C N R R O OPE wires O N R R N O O R O N R R = hexyl N O O R R O N C R R R Fig. 2. (a) Schematics and (b) possible molecular implementation of the two-terminal single-electron latching switch where Γ0 and S are constants depending on physical parameters of the latching switches. Note that despite the random character of switching, the strong nonlinearity of Eq. (2) allows to limit the degree of the device “fuzziness”. 3 CrossNets Figure 3a shows the generic structure of a CrossNet. CMOS-implemented somatic cells (within the Fire Rate model, just nonlinear differential amplifiers, see Fig. 3b,c) apply their output voltages to “axonic” nanowires. If the latching switch, working as an elementary synapse, on the crosspoint of an axonic wire with the perpendicular “dendritic” wire is open, some current flows into the latter wire, charging it. Since such currents are injected into each dendritic wire through several (many) open synapses, their addition provides a natural passive analog summation of signals from the corresponding somas, typical for all neural networks. Examining Fig. 3a, please note the open-circuit terminations of axonic and dendritic lines at the borders of the somatic cells; due to these terminations the somas do not communicate directly (but only via synapses). The network shown on Fig. 3 is evidently feedforward; recurrent networks are achieved in the evident way by doubling the number of synapses and nanowires per somatic cell (Fig. 3c). Moreover, using dual-rail (bipolar) representation of the signal, and hence doubling the number of nanowires and elementary synapses once again, one gets a CrossNet with somas coupled by compact 4-switch groups [9]. Using Eqs. (1) and (2), it is straightforward to show that that the average synaptic weight wjk of the group obeys the “quasi-Hebbian” rule: d w jk = −4Γ0 sinh (γ S ) sinh (γ V j ) sinh (γ Vk ) . dt (3) (a) - +soma j (b) RL + -- jk+ RL (c) jk- RL + -- -+soma k RL Fig. 3. (a) Generic structure of the simplest, (feedforward, non-Hebbian) CrossNet. Red lines show “axonic”, and blue lines “dendritic” nanowires. Gray squares are interfaces between nanowires and CMOS-based somas (b, c). Signs show the dendrite input polarities. Green circles denote molecular latching switches forming elementary synapses. Bold red and blue points are open-circuit terminations of the nanowires, that do not allow somas to interact in bypass of synapses In the simplest cases (e.g., quasi-Hopfield networks with finite connectivity), the tri-level synaptic weights of the generic CrossNets are quite satisfactory, leading to just a very modest (~30%) network capacity loss. However, some applications (in particular, pattern classification) may require a larger number of weight quantization levels L (e.g., L ≈ 30 for a 1% fidelity [9]). This may be achieved by using compact square arrays (e.g., 4×4) of latching switches (Fig. 4). Various species of CrossNets [9] differ also by the way the somatic cells are distributed around the synaptic field. Figure 5 shows feedforward versions of two CrossNet types most explored so far: the so-called FlossBar and InBar. The former network is more natural for the implementation of multilayered perceptrons (MLP), while the latter system is preferable for recurrent network implementations and also allows a simpler CMOS design of somatic cells. The most important advantage of CrossNets over the hardware neural networks suggested earlier is that these networks allow to achieve enormous density combined with large cell connectivity M >> 1 in quasi-2D electronic circuits. 4 CrossNet training CrossNet training faces several hardware-imposed challenges: (i) The synaptic weight contribution provided by the elementary latching switch is binary, so that for most applications the multi-switch synapses (Fig. 4) are necessary. (ii) The only way to adjust any particular synaptic weight is to turn ON or OFF the corresponding latching switch(es). This is only possible to do by applying certain voltage V = Vj – Vk between the two corresponding nanowires. At this procedure, other nanodevices attached to the same wires should not be disturbed. (iii) As stated above, synapse state switching is a statistical progress, so that the degree of its “fuzziness” should be carefully controlled. (a) Vj (b) V w – A/2 i=1 i=1 2 2 … … n n Vj V w+ A/2 i' = 1 RL 2 … i' = 1 n RS ±(V t –A/2) 2 … RS n ±(V t +A/2) Fig. 4. Composite synapse for providing L = 2n2+1 discrete levels of the weight in (a) operation and (b) weight adjustment modes. The dark-gray rectangles are resistive metallic strips at soma/nanowire interfaces (a) (b) Fig. 5. Two main CrossNet species: (a) FlossBar and (b) InBar, in the generic (feedforward, non-Hebbian, ternary-weight) case for the connectivity parameter M = 9. Only the nanowires and nanodevices coupling one cell (indicated with red dashed lines) to M post-synaptic cells (blue dashed lines) are shown; actually all the cells are similarly coupled We have shown that these challenges may be met using (at least) the following training methods [9]: (i) Synaptic weight import. This procedure is started with training of a homomorphic “precursor” artificial neural network with continuous synaptic weighs wjk, implemented in software, using one of established methods (e.g., error backpropagation). Then the synaptic weights wjk are transferred to the CrossNet, with some “clipping” (rounding) due to the binary nature of elementary synaptic weights. To accomplish the transfer, pairs of somatic cells are sequentially selected via CMOS-level wiring. Using the flexibility of CMOS circuitry, these cells are reconfigured to apply external voltages ±VW to the axonic and dendritic nanowires leading to a particular synapse, while all other nanowires are grounded. The voltage level V W is selected so that it does not switch the synapses attached to only one of the selected nanowires, while voltage 2VW applied to the synapse at the crosspoint of the selected wires is sufficient for its reliable switching. (In the composite synapses with quasi-continuous weights (Fig. 4), only a part of the corresponding switches is turned ON or OFF.) (ii) Error backpropagation. The synaptic weight import procedure is straightforward when wjk may be simply calculated, e.g., for the Hopfield-type networks. However, for very large CrossNets used, e.g., as pattern classifiers the precursor network training may take an impracticably long time. In this case the direct training of a CrossNet may become necessary. We have developed two methods of such training, both based on “Hebbian” synapses consisting of 4 elementary synapses (latching switches) whose average weight dynamics obeys Eq. (3). This quasi-Hebbian rule may be used to implement the backpropagation algorithm either using a periodic time-multiplexing [9] or in a continuous fashion, using the simultaneous propagation of signals and errors along the same dual-rail channels. As a result, presently we may state that CrossNets may be taught to perform virtually all major functions demonstrated earlier with the usual neural networks, including the corrupted pattern restoration in the recurrent quasi-Hopfield mode and pattern classification in the feedforward MLP mode [11]. 5 C r o s s N e t p e r f o r m an c e e s t i m a t e s The significance of this result may be only appreciated in the context of unparalleled physical parameters of CMOL CrossNets. The only fundamental limitation on the half-pitch Fnano (Fig. 1) comes from quantum-mechanical tunneling between nanowires. If the wires are separated by vacuum, the corresponding specific leakage conductance becomes uncomfortably large (~10-12 Ω-1m-1) only at Fnano = 1.5 nm; however, since realistic insulation materials (SiO2, etc.) provide somewhat lower tunnel barriers, let us use a more conservative value Fnano= 3 nm. Note that this value corresponds to 1012 elementary synapses per cm2, so that for 4M = 104 and n = 4 the areal density of neural cells is close to 2×107 cm-2. Both numbers are higher than those for the human cerebral cortex, despite the fact that the quasi-2D CMOL circuits have to compete with quasi-3D cerebral cortex. With the typical specific capacitance of 3×10-10 F/m = 0.3 aF/nm, this gives nanowire capacitance C0 ≈ 1 aF per working elementary synapse, because the corresponding segment has length 4Fnano. The CrossNet operation speed is determined mostly by the time constant τ0 of dendrite nanowire capacitance recharging through resistances of open nanodevices. Since both the relevant conductance and capacitance increase similarly with M and n, τ0 ≈ R0C0. The possibilities of reduction of R0, and hence τ0, are limited mostly by acceptable power dissipation per unit area, that is close to Vs2/(2Fnano)2R0. For room-temperature operation, the voltage scale V0 ≈ Vt should be of the order of at least 30 kBT/e ≈ 1 V to avoid thermally-induced errors [9]. With our number for Fnano, and a relatively high but acceptable power consumption of 100 W/cm2, we get R0 ≈ 1010Ω (which is a very realistic value for single-molecule single-electron devices like one shown in Fig. 3). With this number, τ0 is as small as ~10 ns. This means that the CrossNet speed may be approximately six orders of magnitude (!) higher than that of the biological neural networks. Even scaling R0 up by a factor of 100 to bring power consumption to a more comfortable level of 1 W/cm2, would still leave us at least a four-orders-of-magnitude speed advantage. 6 D i s c u s s i on: P o s s i bl e a p p l i c at i o n s These estimates make us believe that that CMOL CrossNet chips may revolutionize the neuromorphic network applications. Let us start with the example of relatively small (1-cm2-scale) chips used for recognition of a face in a crowd [11]. The most difficult feature of such recognition is the search for face location, i.e. optimal placement of a face on the image relative to the panel providing input for the processing network. The enormous density and speed of CMOL hardware gives a possibility to time-and-space multiplex this task (Fig. 6). In this approach, the full image (say, formed by CMOS photodetectors on the same chip) is divided into P rectangular panels of h×w pixels, corresponding to the expected size and approximate shape of a single face. A CMOS-implemented communication channel passes input data from each panel to the corresponding CMOL neural network, providing its shift in time, say using the TV scanning pattern (red line in Fig. 6). The standard methods of image classification require the network to have just a few hidden layers, so that the time interval Δt necessary for each mapping position may be so short that the total pattern recognition time T = hwΔt may be acceptable even for online face recognition. w h image network input Fig. 6. Scan mapping of the input image on CMOL CrossNet inputs. Red lines show the possible time sequence of image pixels sent to a certain input of the network processing image from the upper-left panel of the pattern Indeed, let us consider a 4-Megapixel image partitioned into 4K 32×32-pixel panels (h = w = 32). This panel will require an MLP net with several (say, four) layers with 1K cells each in order to compare the panel image with ~10 3 stored faces. With the feasible 4-nm nanowire half-pitch, and 65-level synapses (sufficient for better than 99% fidelity [9]), each interlayer crossbar would require chip area about (4K×64 nm)2 = 64×64 μm2, fitting 4×4K of them on a ~0.6 cm2 chip. (The CMOS somatic-layer and communication-system overheads are negligible.) With the acceptable power consumption of the order of 10 W/cm2, the input-to-output signal propagation in such a network will take only about 50 ns, so that Δt may be of the order of 100 ns and the total time T = hwΔt of processing one frame of the order of 100 microseconds, much shorter than the typical TV frame time of ~10 milliseconds. The remaining two-orders-of-magnitude time gap may be used, for example, for double-checking the results via stopping the scan mapping (Fig. 6) at the most promising position. (For this, a simple feedback from the recognition output to the mapping communication system is necessary.) It is instructive to compare the estimated CMOL chip speed with that of the implementation of a similar parallel network ensemble on a CMOS signal processor (say, also combined on the same chip with an array of CMOS photodetectors). Even assuming an extremely high performance of 30 billion additions/multiplications per second, we would need ~4×4K×1K×(4K)2/(30×109) ≈ 104 seconds ~ 3 hours per frame, evidently incompatible with the online image stream processing. Let us finish with a brief (and much more speculative) discussion of possible long-term prospects of CMOL CrossNets. Eventually, large-scale (~30×30 cm2) CMOL circuits may become available. According to the estimates given in the previous section, the integration scale of such a system (in terms of both neural cells and synapses) will be comparable with that of the human cerebral cortex. Equipped with a set of broadband sensor/actuator interfaces, such (necessarily, hierarchical) system may be capable, after a period of initial supervised training, of further self-training in the process of interaction with environment, with the speed several orders of magnitude higher than that of its biological prototypes. Needless to say, the successful development of such self-developing systems would have a major impact not only on all information technologies, but also on the society as a whole. Acknowledgments This work has been supported in part by the AFOSR, MARCO (via FENA Center), and NSF. Valuable contributions made by Simon Fölling, Özgür Türel and Ibrahim Muckra, as well as useful discussions with P. Adams, J. Barhen, D. Hammerstrom, V. Protopopescu, T. Sejnowski, and D. Strukov are gratefully acknowledged. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Frank, D. J. et al. (2001) Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3): 259-288. Likharev, K. K. (2003) Electronics below 10 nm, in J. Greer et al. (eds.), Nano and Giga Challenges in Microelectronics, pp. 27-68. Amsterdam: Elsevier. Likharev, K. K. and Strukov, D. B. (2005) CMOL: Devices, circuits, and architectures, in G. Cuniberti et al. (eds.), Introducing Molecular Electronics, Ch. 16. Springer, Berlin. Fölling, S., Türel, Ö. & Likharev, K. K. (2001) Single-electron latching switches as nanoscale synapses, in Proc. of the 2001 Int. Joint Conf. on Neural Networks, pp. 216-221. Mount Royal, NJ: Int. Neural Network Society. Wang, W. et al. (2003) Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68(3): 035416 1-8. Stan M. et al. (2003) Molecular electronics: From devices and interconnect to circuits and architecture, Proc. IEEE 91(11): 1940-1957. Strukov, D. B. & Likharev, K. K. (2005) Prospects for terabit-scale nanoelectronic memories. Nanotechnology 16(1): 137-148. Strukov, D. B. & Likharev, K. K. (2005) CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6): 888-900. Türel, Ö. et al. (2004) Neuromorphic architectures for nanoelectronic circuits”, Int. J. of Circuit Theory and Appl. 32(5): 277-302. See, e.g., Hertz J. et al. (1991) Introduction to the Theory of Neural Computation. Cambridge, MA: Perseus. Lee, J. H. & Likharev, K. K. (2005) CrossNets as pattern classifiers. Lecture Notes in Computer Sciences 3575: 434-441.
Reference: text
sentIndex sentText sentNum sentScore
1 edu Abstract Hybrid “CMOL” integrated circuits, combining CMOS subsystem with nanowire crossbars and simple two-terminal nanodevices, promise to extend the exponential Moore-Law development of microelectronics into the sub-10-nm range. [sent-5, score-0.218]
2 We are developing neuromorphic network (“CrossNet”) architectures for this future technology, in which neural cell bodies are implemented in CMOS, nanowires are used as axons and dendrites, while nanodevices (bistable latching switches) are used as elementary synapses. [sent-6, score-0.922]
3 We have shown how CrossNets may be trained to perform pattern recovery and classification despite the limitations imposed by the CMOL hardware. [sent-7, score-0.127]
4 Preliminary estimates have shown that CMOL CrossNets may be extremely dense (~10 7 cells per cm2) and operate approximately a million times faster than biological neural networks, at manageable power consumption. [sent-8, score-0.104]
5 This sensitivity will probably send the fabrication facilities costs skyrocketing, and may lead to the end of Moore’s Law some time during the next decade. [sent-11, score-0.031]
6 There is a growing consensus that the impending Moore’s Law crisis may be preempted by a radical paradigm shift from the purely CMOS technology to hybrid CMOS/nanodevice circuits, e. [sent-12, score-0.074]
7 3 for their recent review) would combine a level of advanced CMOS devices fabricated by the lithographic patterning, and two-layer nanowire crossbar formed, e. [sent-19, score-0.288]
8 , by nanoimprint, with nanowires connected by simple, similar, two-terminal nanodevices at each crosspoint. [sent-21, score-0.392]
9 For such devices, molecular single-electron latching switches [4] are presently the leading candidates, in particular because they may be fabricated using the self-assembled monolayer (SAM) technique which already gave reproducible results for simpler molecular devices [5]. [sent-22, score-0.677]
10 (a) nanodevices nanowiring and nanodevices interface pins upper wiring level of CMOS stack (b) βFCMOS Fnano α Fig. [sent-23, score-0.505]
11 CMOL circuit: (a) schematic side view, and (b) top-view zoom-in on several adjacent interface pins. [sent-25, score-0.063]
12 ) In order to overcome the CMOS/nanodevice interface problems pertinent to earlier proposals of hybrid circuits [6], in CMOL the interface is provided by pins that are distributed all over the circuit area, on the top of the CMOS stack. [sent-27, score-0.404]
13 This allows to use advanced techniques of nanowire patterning (like nanoimprint) which do not have nanoscale accuracy of layer alignment [3]. [sent-28, score-0.215]
14 The vital feature of this interface is the tilt, by angle α = arcsin(Fnano/βFCMOS), of the nanowire crossbar relative to the square arrays of interface pins (Fig. [sent-29, score-0.392]
15 Here Fnano is the nanowiring half-pitch, FCMOS is the half-pitch of the CMOS subsystem, and β is a dimensionless factor larger than 1 that depends on the CMOS cell complexity. [sent-31, score-0.072]
16 Figure 1b shows that this tilt allows the CMOS subsystem to address each nanodevice even if Fnano << βFCMOS. [sent-32, score-0.047]
17 By now, it has been shown that CMOL circuits can combine high performance with high defect tolerance (which is necessary for any circuit using nanodevices) for several digital applications. [sent-33, score-0.243]
18 In addition, the very structure of CMOL circuits makes them uniquely suitable for the implementation of more complex, mixed-signal information processing systems, including ultradense and ultrafast neuromorphic networks. [sent-35, score-0.209]
19 A more detailed description of our earlier results may be found in Ref. [sent-37, score-0.031]
20 2 Synapses The central device of CrossNet is a two-terminal latching switch [3, 4] (Fig. [sent-39, score-0.389]
21 2a) which is a combination of two single-electron devices, a transistor and a trap [3]. [sent-40, score-0.136]
22 The device may be naturally implemented as a single organic molecule (Fig. [sent-41, score-0.106]
23 Qualitatively, the device operates as follows: if voltage V = Vj – Vk applied between the external electrodes (in CMOL, nanowires) is low, the trap island has no net electric charge, and the single-electron transistor is closed. [sent-43, score-0.29]
24 If voltage V approaches certain threshold value V+ > 0, an additional electron is inserted into the trap island, and its field lifts the Coulomb blockade of the single-electron transistor, thus connecting the nanowires. [sent-44, score-0.181]
25 , wires disconnected) by applying a lower voltage V < V- < V+. [sent-47, score-0.172]
26 Due to the random character of single-electron tunneling [2], the quantitative description of the switch is by necessity probabilistic: actually, V determines only the rates Γ↑↓ of device switching between its ON and OFF states. [sent-48, score-0.246]
27 The rates, in turn, determine the dynamics of probability p to have the transistor opened (i. [sent-49, score-0.068]
28 (a) Schematics and (b) possible molecular implementation of the two-terminal single-electron latching switch where Γ0 and S are constants depending on physical parameters of the latching switches. [sent-54, score-0.636]
29 (2) allows to limit the degree of the device “fuzziness”. [sent-56, score-0.075]
30 CMOS-implemented somatic cells (within the Fire Rate model, just nonlinear differential amplifiers, see Fig. [sent-58, score-0.166]
31 If the latching switch, working as an elementary synapse, on the crosspoint of an axonic wire with the perpendicular “dendritic” wire is open, some current flows into the latter wire, charging it. [sent-60, score-0.625]
32 Since such currents are injected into each dendritic wire through several (many) open synapses, their addition provides a natural passive analog summation of signals from the corresponding somas, typical for all neural networks. [sent-61, score-0.13]
33 3a, please note the open-circuit terminations of axonic and dendritic lines at the borders of the somatic cells; due to these terminations the somas do not communicate directly (but only via synapses). [sent-63, score-0.484]
34 3 is evidently feedforward; recurrent networks are achieved in the evident way by doubling the number of synapses and nanowires per somatic cell (Fig. [sent-65, score-0.581]
35 Moreover, using dual-rail (bipolar) representation of the signal, and hence doubling the number of nanowires and elementary synapses once again, one gets a CrossNet with somas coupled by compact 4-switch groups [9]. [sent-67, score-0.575]
36 (1) and (2), it is straightforward to show that that the average synaptic weight wjk of the group obeys the “quasi-Hebbian” rule: d w jk = −4Γ0 sinh (γ S ) sinh (γ V j ) sinh (γ Vk ) . [sent-69, score-0.377]
37 Red lines show “axonic”, and blue lines “dendritic” nanowires. [sent-73, score-0.062]
38 Gray squares are interfaces between nanowires and CMOS-based somas (b, c). [sent-74, score-0.349]
39 Green circles denote molecular latching switches forming elementary synapses. [sent-76, score-0.53]
40 Bold red and blue points are open-circuit terminations of the nanowires, that do not allow somas to interact in bypass of synapses In the simplest cases (e. [sent-77, score-0.326]
41 , quasi-Hopfield networks with finite connectivity), the tri-level synaptic weights of the generic CrossNets are quite satisfactory, leading to just a very modest (~30%) network capacity loss. [sent-79, score-0.163]
42 However, some applications (in particular, pattern classification) may require a larger number of weight quantization levels L (e. [sent-80, score-0.101]
43 This may be achieved by using compact square arrays (e. [sent-83, score-0.031]
44 Various species of CrossNets [9] differ also by the way the somatic cells are distributed around the synaptic field. [sent-87, score-0.252]
45 Figure 5 shows feedforward versions of two CrossNet types most explored so far: the so-called FlossBar and InBar. [sent-88, score-0.058]
46 The former network is more natural for the implementation of multilayered perceptrons (MLP), while the latter system is preferable for recurrent network implementations and also allows a simpler CMOS design of somatic cells. [sent-89, score-0.218]
47 The most important advantage of CrossNets over the hardware neural networks suggested earlier is that these networks allow to achieve enormous density combined with large cell connectivity M >> 1 in quasi-2D electronic circuits. [sent-90, score-0.093]
48 4 CrossNet training CrossNet training faces several hardware-imposed challenges: (i) The synaptic weight contribution provided by the elementary latching switch is binary, so that for most applications the multi-switch synapses (Fig. [sent-91, score-0.697]
49 (ii) The only way to adjust any particular synaptic weight is to turn ON or OFF the corresponding latching switch(es). [sent-93, score-0.357]
50 This is only possible to do by applying certain voltage V = Vj – Vk between the two corresponding nanowires. [sent-94, score-0.079]
51 At this procedure, other nanodevices attached to the same wires should not be disturbed. [sent-95, score-0.269]
52 (iii) As stated above, synapse state switching is a statistical progress, so that the degree of its “fuzziness” should be carefully controlled. [sent-96, score-0.094]
53 Composite synapse for providing L = 2n2+1 discrete levels of the weight in (a) operation and (b) weight adjustment modes. [sent-99, score-0.133]
54 The dark-gray rectangles are resistive metallic strips at soma/nanowire interfaces (a) (b) Fig. [sent-100, score-0.035]
55 This procedure is started with training of a homomorphic “precursor” artificial neural network with continuous synaptic weighs wjk, implemented in software, using one of established methods (e. [sent-104, score-0.133]
56 Then the synaptic weights wjk are transferred to the CrossNet, with some “clipping” (rounding) due to the binary nature of elementary synaptic weights. [sent-107, score-0.367]
57 To accomplish the transfer, pairs of somatic cells are sequentially selected via CMOS-level wiring. [sent-108, score-0.166]
58 Using the flexibility of CMOS circuitry, these cells are reconfigured to apply external voltages ±VW to the axonic and dendritic nanowires leading to a particular synapse, while all other nanowires are grounded. [sent-109, score-0.665]
59 The voltage level V W is selected so that it does not switch the synapses attached to only one of the selected nanowires, while voltage 2VW applied to the synapse at the crosspoint of the selected wires is sufficient for its reliable switching. [sent-110, score-0.605]
60 4), only a part of the corresponding switches is turned ON or OFF. [sent-112, score-0.091]
61 The synaptic weight import procedure is straightforward when wjk may be simply calculated, e. [sent-114, score-0.231]
62 , as pattern classifiers the precursor network training may take an impracticably long time. [sent-119, score-0.151]
63 In this case the direct training of a CrossNet may become necessary. [sent-120, score-0.031]
64 We have developed two methods of such training, both based on “Hebbian” synapses consisting of 4 elementary synapses (latching switches) whose average weight dynamics obeys Eq. [sent-121, score-0.441]
65 This quasi-Hebbian rule may be used to implement the backpropagation algorithm either using a periodic time-multiplexing [9] or in a continuous fashion, using the simultaneous propagation of signals and errors along the same dual-rail channels. [sent-123, score-0.031]
66 5 C r o s s N e t p e r f o r m an c e e s t i m a t e s The significance of this result may be only appreciated in the context of unparalleled physical parameters of CMOL CrossNets. [sent-125, score-0.031]
67 If the wires are separated by vacuum, the corresponding specific leakage conductance becomes uncomfortably large (~10-12 Ω-1m-1) only at Fnano = 1. [sent-128, score-0.093]
68 ) provide somewhat lower tunnel barriers, let us use a more conservative value Fnano= 3 nm. [sent-130, score-0.039]
69 Note that this value corresponds to 1012 elementary synapses per cm2, so that for 4M = 104 and n = 4 the areal density of neural cells is close to 2×107 cm-2. [sent-131, score-0.334]
70 Both numbers are higher than those for the human cerebral cortex, despite the fact that the quasi-2D CMOL circuits have to compete with quasi-3D cerebral cortex. [sent-132, score-0.241]
71 With the typical specific capacitance of 3×10-10 F/m = 0. [sent-133, score-0.058]
72 3 aF/nm, this gives nanowire capacitance C0 ≈ 1 aF per working elementary synapse, because the corresponding segment has length 4Fnano. [sent-134, score-0.312]
73 The CrossNet operation speed is determined mostly by the time constant τ0 of dendrite nanowire capacitance recharging through resistances of open nanodevices. [sent-135, score-0.26]
74 Since both the relevant conductance and capacitance increase similarly with M and n, τ0 ≈ R0C0. [sent-136, score-0.058]
75 The possibilities of reduction of R0, and hence τ0, are limited mostly by acceptable power dissipation per unit area, that is close to Vs2/(2Fnano)2R0. [sent-137, score-0.096]
76 For room-temperature operation, the voltage scale V0 ≈ Vt should be of the order of at least 30 kBT/e ≈ 1 V to avoid thermally-induced errors [9]. [sent-138, score-0.079]
77 With our number for Fnano, and a relatively high but acceptable power consumption of 100 W/cm2, we get R0 ≈ 1010Ω (which is a very realistic value for single-molecule single-electron devices like one shown in Fig. [sent-139, score-0.176]
78 This means that the CrossNet speed may be approximately six orders of magnitude (! [sent-142, score-0.065]
79 Even scaling R0 up by a factor of 100 to bring power consumption to a more comfortable level of 1 W/cm2, would still leave us at least a four-orders-of-magnitude speed advantage. [sent-144, score-0.075]
80 6 D i s c u s s i on: P o s s i bl e a p p l i c at i o n s These estimates make us believe that that CMOL CrossNet chips may revolutionize the neuromorphic network applications. [sent-145, score-0.14]
81 Let us start with the example of relatively small (1-cm2-scale) chips used for recognition of a face in a crowd [11]. [sent-146, score-0.032]
82 The most difficult feature of such recognition is the search for face location, i. [sent-147, score-0.032]
83 optimal placement of a face on the image relative to the panel providing input for the processing network. [sent-149, score-0.105]
84 The enormous density and speed of CMOL hardware gives a possibility to time-and-space multiplex this task (Fig. [sent-150, score-0.034]
85 In this approach, the full image (say, formed by CMOS photodetectors on the same chip) is divided into P rectangular panels of h×w pixels, corresponding to the expected size and approximate shape of a single face. [sent-152, score-0.075]
86 A CMOS-implemented communication channel passes input data from each panel to the corresponding CMOL neural network, providing its shift in time, say using the TV scanning pattern (red line in Fig. [sent-153, score-0.071]
87 The standard methods of image classification require the network to have just a few hidden layers, so that the time interval Δt necessary for each mapping position may be so short that the total pattern recognition time T = hwΔt may be acceptable even for online face recognition. [sent-155, score-0.335]
88 Scan mapping of the input image on CMOL CrossNet inputs. [sent-158, score-0.036]
89 Red lines show the possible time sequence of image pixels sent to a certain input of the network processing image from the upper-left panel of the pattern Indeed, let us consider a 4-Megapixel image partitioned into 4K 32×32-pixel panels (h = w = 32). [sent-159, score-0.257]
90 This panel will require an MLP net with several (say, four) layers with 1K cells each in order to compare the panel image with ~10 3 stored faces. [sent-160, score-0.183]
91 With the feasible 4-nm nanowire half-pitch, and 65-level synapses (sufficient for better than 99% fidelity [9]), each interlayer crossbar would require chip area about (4K×64 nm)2 = 64×64 μm2, fitting 4×4K of them on a ~0. [sent-161, score-0.442]
92 ) It is instructive to compare the estimated CMOL chip speed with that of the implementation of a similar parallel network ensemble on a CMOS signal processor (say, also combined on the same chip with an array of CMOS photodetectors). [sent-168, score-0.169]
93 Even assuming an extremely high performance of 30 billion additions/multiplications per second, we would need ~4×4K×1K×(4K)2/(30×109) ≈ 104 seconds ~ 3 hours per frame, evidently incompatible with the online image stream processing. [sent-169, score-0.07]
94 Let us finish with a brief (and much more speculative) discussion of possible long-term prospects of CMOL CrossNets. [sent-170, score-0.039]
95 Eventually, large-scale (~30×30 cm2) CMOL circuits may become available. [sent-171, score-0.178]
96 According to the estimates given in the previous section, the integration scale of such a system (in terms of both neural cells and synapses) will be comparable with that of the human cerebral cortex. [sent-172, score-0.12]
97 (2001) Single-electron latching switches as nanoscale synapses, in Proc. [sent-211, score-0.365]
98 (2003) Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. [sent-220, score-0.073]
99 (2003) Molecular electronics: From devices and interconnect to circuits and architecture, Proc. [sent-226, score-0.22]
100 (2005) CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. [sent-238, score-0.19]
wordName wordTfidf (topN-words)
[('cmol', 0.509), ('crossnet', 0.255), ('latching', 0.235), ('crossnets', 0.216), ('nanowires', 0.216), ('cmos', 0.208), ('nanodevices', 0.176), ('circuits', 0.147), ('synapses', 0.144), ('fnano', 0.137), ('likharev', 0.137), ('nanowire', 0.137), ('elementary', 0.117), ('axonic', 0.098), ('somas', 0.098), ('wires', 0.093), ('somatic', 0.093), ('switches', 0.091), ('molecular', 0.087), ('synaptic', 0.086), ('voltage', 0.079), ('switch', 0.079), ('crossbar', 0.078), ('fcmos', 0.078), ('strukov', 0.078), ('wjk', 0.078), ('device', 0.075), ('devices', 0.073), ('cells', 0.073), ('transistor', 0.068), ('trap', 0.068), ('wire', 0.068), ('interface', 0.063), ('classification', 0.062), ('neuromorphic', 0.062), ('dendritic', 0.062), ('acceptable', 0.062), ('synapse', 0.061), ('defect', 0.059), ('nanoelectronic', 0.059), ('sinh', 0.059), ('tunneling', 0.059), ('capacitance', 0.058), ('feedforward', 0.058), ('rl', 0.052), ('pins', 0.051), ('mlp', 0.051), ('terminations', 0.051), ('vj', 0.049), ('vk', 0.048), ('network', 0.047), ('subsystem', 0.047), ('rel', 0.047), ('cerebral', 0.047), ('chip', 0.044), ('hybrid', 0.043), ('consumption', 0.041), ('crosspoint', 0.039), ('fidelity', 0.039), ('flossbar', 0.039), ('fuzziness', 0.039), ('monolayer', 0.039), ('nanoimprint', 0.039), ('nanoscale', 0.039), ('nanotechnology', 0.039), ('nanowiring', 0.039), ('patterning', 0.039), ('photodetectors', 0.039), ('precursor', 0.039), ('prospects', 0.039), ('tunnel', 0.039), ('panel', 0.037), ('circuit', 0.037), ('weight', 0.036), ('architectures', 0.036), ('image', 0.036), ('electronics', 0.035), ('interfaces', 0.035), ('nm', 0.035), ('challenges', 0.035), ('speed', 0.034), ('fpga', 0.034), ('microelectronics', 0.034), ('dissipation', 0.034), ('electron', 0.034), ('clipping', 0.034), ('evidently', 0.034), ('presently', 0.034), ('tv', 0.034), ('pattern', 0.034), ('switching', 0.033), ('cell', 0.033), ('red', 0.033), ('face', 0.032), ('recurrent', 0.031), ('sufficient', 0.031), ('dendrite', 0.031), ('may', 0.031), ('lines', 0.031), ('networks', 0.03)]
simIndex simValue paperId paperTitle
same-paper 1 1.0000002 40 nips-2005-CMOL CrossNets: Possible Neuromorphic Nanoelectronic Circuits
Author: Jung Hoon Lee, Xiaolong Ma, Konstantin K. Likharev
Abstract: Hybrid “CMOL” integrated circuits, combining CMOS subsystem with nanowire crossbars and simple two-terminal nanodevices, promise to extend the exponential Moore-Law development of microelectronics into the sub-10-nm range. We are developing neuromorphic network (“CrossNet”) architectures for this future technology, in which neural cell bodies are implemented in CMOS, nanowires are used as axons and dendrites, while nanodevices (bistable latching switches) are used as elementary synapses. We have shown how CrossNets may be trained to perform pattern recovery and classification despite the limitations imposed by the CMOL hardware. Preliminary estimates have shown that CMOL CrossNets may be extremely dense (~10 7 cells per cm2) and operate approximately a million times faster than biological neural networks, at manageable power consumption. In Conclusion, we discuss in brief possible short-term and long-term applications of the emerging technology. 1 Introduction: CMOL Circuits Recent results [1, 2] indicate that the current VLSI paradigm based on CMOS technology can be hardly extended beyond the 10-nm frontier: in this range the sensitivity of parameters (most importantly, the gate voltage threshold) of silicon field-effect transistors to inevitable fabrication spreads grows exponentially. This sensitivity will probably send the fabrication facilities costs skyrocketing, and may lead to the end of Moore’s Law some time during the next decade. There is a growing consensus that the impending Moore’s Law crisis may be preempted by a radical paradigm shift from the purely CMOS technology to hybrid CMOS/nanodevice circuits, e.g., those of “CMOL” variety (Fig. 1). Such circuits (see, e.g., Ref. 3 for their recent review) would combine a level of advanced CMOS devices fabricated by the lithographic patterning, and two-layer nanowire crossbar formed, e.g., by nanoimprint, with nanowires connected by simple, similar, two-terminal nanodevices at each crosspoint. For such devices, molecular single-electron latching switches [4] are presently the leading candidates, in particular because they may be fabricated using the self-assembled monolayer (SAM) technique which already gave reproducible results for simpler molecular devices [5]. (a) nanodevices nanowiring and nanodevices interface pins upper wiring level of CMOS stack (b) βFCMOS Fnano α Fig. 1. CMOL circuit: (a) schematic side view, and (b) top-view zoom-in on several adjacent interface pins. (For clarity, only two adjacent nanodevices are shown.) In order to overcome the CMOS/nanodevice interface problems pertinent to earlier proposals of hybrid circuits [6], in CMOL the interface is provided by pins that are distributed all over the circuit area, on the top of the CMOS stack. This allows to use advanced techniques of nanowire patterning (like nanoimprint) which do not have nanoscale accuracy of layer alignment [3]. The vital feature of this interface is the tilt, by angle α = arcsin(Fnano/βFCMOS), of the nanowire crossbar relative to the square arrays of interface pins (Fig. 1b). Here Fnano is the nanowiring half-pitch, FCMOS is the half-pitch of the CMOS subsystem, and β is a dimensionless factor larger than 1 that depends on the CMOS cell complexity. Figure 1b shows that this tilt allows the CMOS subsystem to address each nanodevice even if Fnano << βFCMOS. By now, it has been shown that CMOL circuits can combine high performance with high defect tolerance (which is necessary for any circuit using nanodevices) for several digital applications. In particular, CMOL circuits with defect rates below a few percent would enable terabit-scale memories [7], while the performance of FPGA-like CMOL circuits may be several hundred times above that of overcome purely CMOL FPGA (implemented with the same FCMOS), at acceptable power dissipation and defect tolerance above 20% [8]. In addition, the very structure of CMOL circuits makes them uniquely suitable for the implementation of more complex, mixed-signal information processing systems, including ultradense and ultrafast neuromorphic networks. The objective of this paper is to describe in brief the current status of our work on the development of so-called Distributed Crossbar Networks (“CrossNets”) that could provide high performance despite the limitations imposed by CMOL hardware. A more detailed description of our earlier results may be found in Ref. 9. 2 Synapses The central device of CrossNet is a two-terminal latching switch [3, 4] (Fig. 2a) which is a combination of two single-electron devices, a transistor and a trap [3]. The device may be naturally implemented as a single organic molecule (Fig. 2b). Qualitatively, the device operates as follows: if voltage V = Vj – Vk applied between the external electrodes (in CMOL, nanowires) is low, the trap island has no net electric charge, and the single-electron transistor is closed. If voltage V approaches certain threshold value V+ > 0, an additional electron is inserted into the trap island, and its field lifts the Coulomb blockade of the single-electron transistor, thus connecting the nanowires. The switch state may be reset (e.g., wires disconnected) by applying a lower voltage V < V- < V+. Due to the random character of single-electron tunneling [2], the quantitative description of the switch is by necessity probabilistic: actually, V determines only the rates Γ↑↓ of device switching between its ON and OFF states. The rates, in turn, determine the dynamics of probability p to have the transistor opened (i.e. wires connected): dp/dt = Γ↑(1 - p) - Γ↓p. (1) The theory of single-electron tunneling [2] shows that, in a good approximation, the rates may be presented as Γ↑↓ = Γ0 exp{±e(V - S)/kBT} , (2) (a) single-electron trap tunnel junction Vj Vk single-electron transistor (b) O clipping group O N C R diimide acceptor groups O O C N R R O OPE wires O N R R N O O R O N R R = hexyl N O O R R O N C R R R Fig. 2. (a) Schematics and (b) possible molecular implementation of the two-terminal single-electron latching switch where Γ0 and S are constants depending on physical parameters of the latching switches. Note that despite the random character of switching, the strong nonlinearity of Eq. (2) allows to limit the degree of the device “fuzziness”. 3 CrossNets Figure 3a shows the generic structure of a CrossNet. CMOS-implemented somatic cells (within the Fire Rate model, just nonlinear differential amplifiers, see Fig. 3b,c) apply their output voltages to “axonic” nanowires. If the latching switch, working as an elementary synapse, on the crosspoint of an axonic wire with the perpendicular “dendritic” wire is open, some current flows into the latter wire, charging it. Since such currents are injected into each dendritic wire through several (many) open synapses, their addition provides a natural passive analog summation of signals from the corresponding somas, typical for all neural networks. Examining Fig. 3a, please note the open-circuit terminations of axonic and dendritic lines at the borders of the somatic cells; due to these terminations the somas do not communicate directly (but only via synapses). The network shown on Fig. 3 is evidently feedforward; recurrent networks are achieved in the evident way by doubling the number of synapses and nanowires per somatic cell (Fig. 3c). Moreover, using dual-rail (bipolar) representation of the signal, and hence doubling the number of nanowires and elementary synapses once again, one gets a CrossNet with somas coupled by compact 4-switch groups [9]. Using Eqs. (1) and (2), it is straightforward to show that that the average synaptic weight wjk of the group obeys the “quasi-Hebbian” rule: d w jk = −4Γ0 sinh (γ S ) sinh (γ V j ) sinh (γ Vk ) . dt (3) (a) - +soma j (b) RL + -- jk+ RL (c) jk- RL + -- -+soma k RL Fig. 3. (a) Generic structure of the simplest, (feedforward, non-Hebbian) CrossNet. Red lines show “axonic”, and blue lines “dendritic” nanowires. Gray squares are interfaces between nanowires and CMOS-based somas (b, c). Signs show the dendrite input polarities. Green circles denote molecular latching switches forming elementary synapses. Bold red and blue points are open-circuit terminations of the nanowires, that do not allow somas to interact in bypass of synapses In the simplest cases (e.g., quasi-Hopfield networks with finite connectivity), the tri-level synaptic weights of the generic CrossNets are quite satisfactory, leading to just a very modest (~30%) network capacity loss. However, some applications (in particular, pattern classification) may require a larger number of weight quantization levels L (e.g., L ≈ 30 for a 1% fidelity [9]). This may be achieved by using compact square arrays (e.g., 4×4) of latching switches (Fig. 4). Various species of CrossNets [9] differ also by the way the somatic cells are distributed around the synaptic field. Figure 5 shows feedforward versions of two CrossNet types most explored so far: the so-called FlossBar and InBar. The former network is more natural for the implementation of multilayered perceptrons (MLP), while the latter system is preferable for recurrent network implementations and also allows a simpler CMOS design of somatic cells. The most important advantage of CrossNets over the hardware neural networks suggested earlier is that these networks allow to achieve enormous density combined with large cell connectivity M >> 1 in quasi-2D electronic circuits. 4 CrossNet training CrossNet training faces several hardware-imposed challenges: (i) The synaptic weight contribution provided by the elementary latching switch is binary, so that for most applications the multi-switch synapses (Fig. 4) are necessary. (ii) The only way to adjust any particular synaptic weight is to turn ON or OFF the corresponding latching switch(es). This is only possible to do by applying certain voltage V = Vj – Vk between the two corresponding nanowires. At this procedure, other nanodevices attached to the same wires should not be disturbed. (iii) As stated above, synapse state switching is a statistical progress, so that the degree of its “fuzziness” should be carefully controlled. (a) Vj (b) V w – A/2 i=1 i=1 2 2 … … n n Vj V w+ A/2 i' = 1 RL 2 … i' = 1 n RS ±(V t –A/2) 2 … RS n ±(V t +A/2) Fig. 4. Composite synapse for providing L = 2n2+1 discrete levels of the weight in (a) operation and (b) weight adjustment modes. The dark-gray rectangles are resistive metallic strips at soma/nanowire interfaces (a) (b) Fig. 5. Two main CrossNet species: (a) FlossBar and (b) InBar, in the generic (feedforward, non-Hebbian, ternary-weight) case for the connectivity parameter M = 9. Only the nanowires and nanodevices coupling one cell (indicated with red dashed lines) to M post-synaptic cells (blue dashed lines) are shown; actually all the cells are similarly coupled We have shown that these challenges may be met using (at least) the following training methods [9]: (i) Synaptic weight import. This procedure is started with training of a homomorphic “precursor” artificial neural network with continuous synaptic weighs wjk, implemented in software, using one of established methods (e.g., error backpropagation). Then the synaptic weights wjk are transferred to the CrossNet, with some “clipping” (rounding) due to the binary nature of elementary synaptic weights. To accomplish the transfer, pairs of somatic cells are sequentially selected via CMOS-level wiring. Using the flexibility of CMOS circuitry, these cells are reconfigured to apply external voltages ±VW to the axonic and dendritic nanowires leading to a particular synapse, while all other nanowires are grounded. The voltage level V W is selected so that it does not switch the synapses attached to only one of the selected nanowires, while voltage 2VW applied to the synapse at the crosspoint of the selected wires is sufficient for its reliable switching. (In the composite synapses with quasi-continuous weights (Fig. 4), only a part of the corresponding switches is turned ON or OFF.) (ii) Error backpropagation. The synaptic weight import procedure is straightforward when wjk may be simply calculated, e.g., for the Hopfield-type networks. However, for very large CrossNets used, e.g., as pattern classifiers the precursor network training may take an impracticably long time. In this case the direct training of a CrossNet may become necessary. We have developed two methods of such training, both based on “Hebbian” synapses consisting of 4 elementary synapses (latching switches) whose average weight dynamics obeys Eq. (3). This quasi-Hebbian rule may be used to implement the backpropagation algorithm either using a periodic time-multiplexing [9] or in a continuous fashion, using the simultaneous propagation of signals and errors along the same dual-rail channels. As a result, presently we may state that CrossNets may be taught to perform virtually all major functions demonstrated earlier with the usual neural networks, including the corrupted pattern restoration in the recurrent quasi-Hopfield mode and pattern classification in the feedforward MLP mode [11]. 5 C r o s s N e t p e r f o r m an c e e s t i m a t e s The significance of this result may be only appreciated in the context of unparalleled physical parameters of CMOL CrossNets. The only fundamental limitation on the half-pitch Fnano (Fig. 1) comes from quantum-mechanical tunneling between nanowires. If the wires are separated by vacuum, the corresponding specific leakage conductance becomes uncomfortably large (~10-12 Ω-1m-1) only at Fnano = 1.5 nm; however, since realistic insulation materials (SiO2, etc.) provide somewhat lower tunnel barriers, let us use a more conservative value Fnano= 3 nm. Note that this value corresponds to 1012 elementary synapses per cm2, so that for 4M = 104 and n = 4 the areal density of neural cells is close to 2×107 cm-2. Both numbers are higher than those for the human cerebral cortex, despite the fact that the quasi-2D CMOL circuits have to compete with quasi-3D cerebral cortex. With the typical specific capacitance of 3×10-10 F/m = 0.3 aF/nm, this gives nanowire capacitance C0 ≈ 1 aF per working elementary synapse, because the corresponding segment has length 4Fnano. The CrossNet operation speed is determined mostly by the time constant τ0 of dendrite nanowire capacitance recharging through resistances of open nanodevices. Since both the relevant conductance and capacitance increase similarly with M and n, τ0 ≈ R0C0. The possibilities of reduction of R0, and hence τ0, are limited mostly by acceptable power dissipation per unit area, that is close to Vs2/(2Fnano)2R0. For room-temperature operation, the voltage scale V0 ≈ Vt should be of the order of at least 30 kBT/e ≈ 1 V to avoid thermally-induced errors [9]. With our number for Fnano, and a relatively high but acceptable power consumption of 100 W/cm2, we get R0 ≈ 1010Ω (which is a very realistic value for single-molecule single-electron devices like one shown in Fig. 3). With this number, τ0 is as small as ~10 ns. This means that the CrossNet speed may be approximately six orders of magnitude (!) higher than that of the biological neural networks. Even scaling R0 up by a factor of 100 to bring power consumption to a more comfortable level of 1 W/cm2, would still leave us at least a four-orders-of-magnitude speed advantage. 6 D i s c u s s i on: P o s s i bl e a p p l i c at i o n s These estimates make us believe that that CMOL CrossNet chips may revolutionize the neuromorphic network applications. Let us start with the example of relatively small (1-cm2-scale) chips used for recognition of a face in a crowd [11]. The most difficult feature of such recognition is the search for face location, i.e. optimal placement of a face on the image relative to the panel providing input for the processing network. The enormous density and speed of CMOL hardware gives a possibility to time-and-space multiplex this task (Fig. 6). In this approach, the full image (say, formed by CMOS photodetectors on the same chip) is divided into P rectangular panels of h×w pixels, corresponding to the expected size and approximate shape of a single face. A CMOS-implemented communication channel passes input data from each panel to the corresponding CMOL neural network, providing its shift in time, say using the TV scanning pattern (red line in Fig. 6). The standard methods of image classification require the network to have just a few hidden layers, so that the time interval Δt necessary for each mapping position may be so short that the total pattern recognition time T = hwΔt may be acceptable even for online face recognition. w h image network input Fig. 6. Scan mapping of the input image on CMOL CrossNet inputs. Red lines show the possible time sequence of image pixels sent to a certain input of the network processing image from the upper-left panel of the pattern Indeed, let us consider a 4-Megapixel image partitioned into 4K 32×32-pixel panels (h = w = 32). This panel will require an MLP net with several (say, four) layers with 1K cells each in order to compare the panel image with ~10 3 stored faces. With the feasible 4-nm nanowire half-pitch, and 65-level synapses (sufficient for better than 99% fidelity [9]), each interlayer crossbar would require chip area about (4K×64 nm)2 = 64×64 μm2, fitting 4×4K of them on a ~0.6 cm2 chip. (The CMOS somatic-layer and communication-system overheads are negligible.) With the acceptable power consumption of the order of 10 W/cm2, the input-to-output signal propagation in such a network will take only about 50 ns, so that Δt may be of the order of 100 ns and the total time T = hwΔt of processing one frame of the order of 100 microseconds, much shorter than the typical TV frame time of ~10 milliseconds. The remaining two-orders-of-magnitude time gap may be used, for example, for double-checking the results via stopping the scan mapping (Fig. 6) at the most promising position. (For this, a simple feedback from the recognition output to the mapping communication system is necessary.) It is instructive to compare the estimated CMOL chip speed with that of the implementation of a similar parallel network ensemble on a CMOS signal processor (say, also combined on the same chip with an array of CMOS photodetectors). Even assuming an extremely high performance of 30 billion additions/multiplications per second, we would need ~4×4K×1K×(4K)2/(30×109) ≈ 104 seconds ~ 3 hours per frame, evidently incompatible with the online image stream processing. Let us finish with a brief (and much more speculative) discussion of possible long-term prospects of CMOL CrossNets. Eventually, large-scale (~30×30 cm2) CMOL circuits may become available. According to the estimates given in the previous section, the integration scale of such a system (in terms of both neural cells and synapses) will be comparable with that of the human cerebral cortex. Equipped with a set of broadband sensor/actuator interfaces, such (necessarily, hierarchical) system may be capable, after a period of initial supervised training, of further self-training in the process of interaction with environment, with the speed several orders of magnitude higher than that of its biological prototypes. Needless to say, the successful development of such self-developing systems would have a major impact not only on all information technologies, but also on the society as a whole. Acknowledgments This work has been supported in part by the AFOSR, MARCO (via FENA Center), and NSF. Valuable contributions made by Simon Fölling, Özgür Türel and Ibrahim Muckra, as well as useful discussions with P. Adams, J. Barhen, D. Hammerstrom, V. Protopopescu, T. Sejnowski, and D. Strukov are gratefully acknowledged. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Frank, D. J. et al. (2001) Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3): 259-288. Likharev, K. K. (2003) Electronics below 10 nm, in J. Greer et al. (eds.), Nano and Giga Challenges in Microelectronics, pp. 27-68. Amsterdam: Elsevier. Likharev, K. K. and Strukov, D. B. (2005) CMOL: Devices, circuits, and architectures, in G. Cuniberti et al. (eds.), Introducing Molecular Electronics, Ch. 16. Springer, Berlin. Fölling, S., Türel, Ö. & Likharev, K. K. (2001) Single-electron latching switches as nanoscale synapses, in Proc. of the 2001 Int. Joint Conf. on Neural Networks, pp. 216-221. Mount Royal, NJ: Int. Neural Network Society. Wang, W. et al. (2003) Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68(3): 035416 1-8. Stan M. et al. (2003) Molecular electronics: From devices and interconnect to circuits and architecture, Proc. IEEE 91(11): 1940-1957. Strukov, D. B. & Likharev, K. K. (2005) Prospects for terabit-scale nanoelectronic memories. Nanotechnology 16(1): 137-148. Strukov, D. B. & Likharev, K. K. (2005) CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6): 888-900. Türel, Ö. et al. (2004) Neuromorphic architectures for nanoelectronic circuits”, Int. J. of Circuit Theory and Appl. 32(5): 277-302. See, e.g., Hertz J. et al. (1991) Introduction to the Theory of Neural Computation. Cambridge, MA: Perseus. Lee, J. H. & Likharev, K. K. (2005) CrossNets as pattern classifiers. Lecture Notes in Computer Sciences 3575: 434-441.
2 0.10352764 188 nips-2005-Temporally changing synaptic plasticity
Author: Minija Tamosiunaite, Bernd Porr, Florentin Wörgötter
Abstract: Recent experimental results suggest that dendritic and back-propagating spikes can influence synaptic plasticity in different ways [1]. In this study we investigate how these signals could temporally interact at dendrites leading to changing plasticity properties at local synapse clusters. Similar to a previous study [2], we employ a differential Hebbian plasticity rule to emulate spike-timing dependent plasticity. We use dendritic (D-) and back-propagating (BP-) spikes as post-synaptic signals in the learning rule and investigate how their interaction will influence plasticity. We will analyze a situation where synapse plasticity characteristics change in the course of time, depending on the type of post-synaptic activity momentarily elicited. Starting with weak synapses, which only elicit local D-spikes, a slow, unspecific growth process is induced. As soon as the soma begins to spike this process is replaced by fast synaptic changes as the consequence of the much stronger and sharper BP-spike, which now dominates the plasticity rule. This way a winner-take-all-mechanism emerges in a two-stage process, enhancing the best-correlated inputs. These results suggest that synaptic plasticity is a temporal changing process by which the computational properties of dendrites or complete neurons can be substantially augmented. 1
3 0.091259569 118 nips-2005-Learning in Silicon: Timing is Everything
Author: John V. Arthur, Kwabena Boahen
Abstract: We describe a neuromorphic chip that uses binary synapses with spike timing-dependent plasticity (STDP) to learn stimulated patterns of activity and to compensate for variability in excitability. Specifically, STDP preferentially potentiates (turns on) synapses that project from excitable neurons, which spike early, to lethargic neurons, which spike late. The additional excitatory synaptic current makes lethargic neurons spike earlier, thereby causing neurons that belong to the same pattern to spike in synchrony. Once learned, an entire pattern can be recalled by stimulating a subset. 1 Variability in Neural Systems Evidence suggests precise spike timing is important in neural coding, specifically, in the hippocampus. The hippocampus uses timing in the spike activity of place cells (in addition to rate) to encode location in space [1]. Place cells employ a phase code: the timing at which a neuron spikes relative to the phase of the inhibitory theta rhythm (5-12Hz) conveys information. As an animal approaches a place cell’s preferred location, the place cell not only increases its spike rate, but also spikes at earlier phases in the theta cycle. To implement a phase code, the theta rhythm is thought to prevent spiking until the input synaptic current exceeds the sum of the neuron threshold and the decreasing inhibition on the downward phase of the cycle [2]. However, even with identical inputs and common theta inhibition, neurons do not spike in synchrony. Variability in excitability spreads the activity in phase. Lethargic neurons (such as those with high thresholds) spike late in the theta cycle, since their input exceeds the sum of the neuron threshold and theta inhibition only after the theta inhibition has had time to decrease. Conversely, excitable neurons (such as those with low thresholds) spike early in the theta cycle. Consequently, variability in excitability translates into variability in timing. We hypothesize that the hippocampus achieves its precise spike timing (about 10ms) through plasticity enhanced phase-coding (PEP). The source of hippocampal timing precision in the presence of variability (and noise) remains unexplained. Synaptic plasticity can compensate for variability in excitability if it increases excitatory synaptic input to neurons in inverse proportion to their excitabilities. Recasting this in a phase-coding framework, we desire a learning rule that increases excitatory synaptic input to neurons directly related to their phases. Neurons that lag require additional synaptic input, whereas neurons that lead 120µm 190µm A B Figure 1: STDP Chip. A The chip has a 16-by-16 array of microcircuits; one microcircuit includes four principal neurons, each with 21 STDP circuits. B The STDP Chip is embedded in a circuit board including DACs, a CPLD, a RAM chip, and a USB chip, which communicates with a PC. require none. The spike timing-dependent plasticity (STDP) observed in the hippocampus satisfies this requirement [3]. It requires repeated pre-before-post spike pairings (within a time window) to potentiate and repeated post-before-pre pairings to depress a synapse. Here we validate our hypothesis with a model implemented in silicon, where variability is as ubiquitous as it is in biology [4]. Section 2 presents our silicon system, including the STDP Chip. Section 3 describes and characterizes the STDP circuit. Section 4 demonstrates that PEP compensates for variability and provides evidence that STDP is the compensation mechanism. Section 5 explores a desirable consequence of PEP: unconventional associative pattern recall. Section 6 discusses the implications of the PEP model, including its benefits and applications in the engineering of neuromorphic systems and in the study of neurobiology. 2 Silicon System We have designed, submitted, and tested a silicon implementation of PEP. The STDP Chip was fabricated through MOSIS in a 1P5M 0.25µm CMOS process, with just under 750,000 transistors in just over 10mm2 of area. It has a 32 by 32 array of excitatory principal neurons commingled with a 16 by 16 array of inhibitory interneurons that are not used here (Figure 1A). Each principal neuron has 21 STDP synapses. The address-event representation (AER) [5] is used to transmit spikes off chip and to receive afferent and recurrent spike input. To configure the STDP Chip as a recurrent network, we embedded it in a circuit board (Figure 1B). The board has five primary components: a CPLD (complex programmable logic device), the STDP Chip, a RAM chip, a USB interface chip, and DACs (digital-to-analog converters). The central component in the system is the CPLD. The CPLD handles AER traffic, mediates communication between devices, and implements recurrent connections by accessing a lookup table, stored in the RAM chip. The USB interface chip provides a bidirectional link with a PC. The DACs control the analog biases in the system, including the leak current, which the PC varies in real-time to create the global inhibitory theta rhythm. The principal neuron consists of a refractory period and calcium-dependent potassium circuit (RCK), a synapse circuit, and a soma circuit (Figure 2A). RCK and the synapse are ISOMA Soma Synapse STDP Presyn. Spike PE LPF A Presyn. Spike Raster AH 0 0.1 Spike probability RCK Postsyn. Spike B 0.05 0.1 0.05 0.1 0.08 0.06 0.04 0.02 0 0 Time(s) Figure 2: Principal neuron. A A simplified schematic is shown, including: the synapse, refractory and calcium-dependent potassium channel (RCK), soma, and axon-hillock (AH) circuits, plus their constituent elements, the pulse extender (PE) and the low-pass filter (LPF). B Spikes (dots) from 81 principal neurons are temporally dispersed, when excited by poisson-like inputs (58Hz) and inhibited by the common 8.3Hz theta rhythm (solid line). The histogram includes spikes from five theta cycles. composed of two reusable blocks: the low-pass filter (LPF) and the pulse extender (PE). The soma is a modified version of the LPF, which receives additional input from an axonhillock circuit (AH). RCK is inhibitory to the neuron. It consists of a PE, which models calcium influx during a spike, and a LPF, which models calcium buffering. When AH fires a spike, a packet of charge is dumped onto a capacitor in the PE. The PE’s output activates until the charge decays away, which takes a few milliseconds. Also, while the PE is active, charge accumulates on the LPF’s capacitor, lowering the LPF’s output voltage. Once the PE deactivates, this charge leaks away as well, but this takes tens of milliseconds because the leak is smaller. The PE’s and the LPF’s inhibitory effects on the soma are both described below in terms of the sum (ISHUNT ) of the currents their output voltages produce in pMOS transistors whose sources are at Vdd (see Figure 2A). Note that, in the absence of spikes, these currents decay exponentially, with a time-constant determined by their respective leaks. The synapse circuit is excitatory to the neuron. It is composed of a PE, which represents the neurotransmitter released into the synaptic cleft, and a LPF, which represents the bound neurotransmitter. The synapse circuit is similar to RCK in structure but differs in function: It is activated not by the principal neuron itself but by the STDP circuits (or directly by afferent spikes that bypass these circuits, i.e., fixed synapses). The synapse’s effect on the soma is also described below in terms of the current (ISYN ) its output voltage produces in a pMOS transistor whose source is at Vdd. The soma circuit is a leaky integrator. It receives excitation from the synapse circuit and shunting inhibition from RCK and has a leak current as well. Its temporal behavior is described by: τ dISOMA ISYN I0 + ISOMA = dt ISHUNT where ISOMA is the current the capacitor’s voltage produces in a pMOS transistor whose source is at Vdd (see Figure 2A). ISHUNT is the sum of the leak, refractory, and calciumdependent potassium currents. These currents also determine the time constant: τ = C Ut κISHUNT , where I0 and κ are transistor parameters and Ut is the thermal voltage. STDP circuit ~LTP SRAM Presynaptic spike A ~LTD Inverse number of pairings Integrator Decay Postsynaptic spike Potentiation 0.1 0.05 0 0.05 0.1 Depression -80 -40 0 Presynaptic spike Postsynaptic spike 40 Spike timing: t pre - t post (ms) 80 B Figure 3: STDP circuit design and characterization. A The circuit is composed of three subcircuits: decay, integrator, and SRAM. B The circuit potentiates when the presynaptic spike precedes the postsynaptic spike and depresses when the postsynaptic spike precedes the presynaptic spike. The soma circuit is connected to an AH, the locus of spike generation. The AH consists of model voltage-dependent sodium and potassium channel populations (modified from [6] by Kai Hynna). It initiates the AER signaling process required to send a spike off chip. To characterize principal neuron variability, we excited 81 neurons with poisson-like 58Hz spike trains (Figure 2B). We made these spike trains poisson-like by starting with a regular 200Hz spike train and dropping spikes randomly, with probability of 0.71. Thus spikes were delivered to neurons that won the coin toss in synchrony every 5ms. However, neurons did not lock onto the input synchrony due to filtering by the synaptic time constant (see Figure 2B). They also received a common inhibitory input at the theta frequency (8.3Hz), via their leak current. Each neuron was prevented from firing more than one spike in a theta cycle by its model calcium-dependent potassium channel population. The principal neurons’ spike times were variable. To quantify the spike variability, we used timing precision, which we define as twice the standard deviation of spike times accumulated from five theta cycles. With an input rate of 58Hz the timing precision was 34ms. 3 STDP Circuit The STDP circuit (related to [7]-[8]), for which the STDP Chip is named, is the most abundant, with 21,504 copies on the chip. This circuit is built from three subcircuits: decay, integrator, and SRAM (Figure 3A). The decay and integrator are used to implement potentiation, and depression, in a symmetric fashion. The SRAM holds the current binary state of the synapse, either potentiated or depressed. For potentiation, the decay remembers the last presynaptic spike. Its capacitor is charged when that spike occurs and discharges linearly thereafter. A postsynaptic spike samples the charge remaining on the capacitor, passes it through an exponential function, and dumps the resultant charge into the integrator. This charge decays linearly thereafter. At the time of the postsynaptic spike, the SRAM, a cross-coupled inverter pair, reads the voltage on the integrator’s capacitor. If it exceeds a threshold, the SRAM switches state from depressed to potentiated (∼LTD goes high and ∼LTP goes low). The depression side of the STDP circuit is exactly symmetric, except that it responds to postsynaptic activation followed by presynaptic activation and switches the SRAM’s state from potentiated to depressed (∼LTP goes high and ∼LTD goes low). When the SRAM is in the potentiated state, the presynaptic 50 After STDP 83 92 100 Timing precision(ms) Before STDP 75 B Before STDP After STDP 40 30 20 10 0 50 60 70 80 90 Input rate(Hz) 100 50 58 67 text A 0.2 0.4 Time(s) 0.6 0.2 0.4 Time(s) 0.6 C Figure 4: Plasticity enhanced phase-coding. A Spike rasters of 81 neurons (9 by 9 cluster) display synchrony over a two-fold range of input rates after STDP. B The degree of enhancement is quantified by timing precision. C Each neuron (center box) sends synapses to (dark gray) and receives synapses from (light gray) twenty-one randomly chosen neighbors up to five nodes away (black indicates both connections). spike activates the principal neuron’s synapse; otherwise the spike has no effect. We characterized the STDP circuit by activating a plastic synapse and a fixed synapse– which elicits a spike at different relative times. We repeated this pairing at 16Hz. We counted the number of pairings required to potentiate (or depress) the synapse. Based on this count, we calculated the efficacy of each pairing as the inverse number of pairings required (Figure 3B). For example, if twenty pairings were required to potentiate the synapse, the efficacy of that pre-before-post time-interval was one twentieth. The efficacy of both potentiation and depression are fit by exponentials with time constants of 11.4ms and 94.9ms, respectively. This behavior is similar to that observed in the hippocampus: potentiation has a shorter time constant and higher maximum efficacy than depression [3]. 4 Recurrent Network We carried out an experiment designed to test the STDP circuit’s ability to compensate for variability in spike timing through PEP. Each neuron received recurrent connections from 21 randomly selected neurons within an 11 by 11 neighborhood centered on itself (see Figure 4C). Conversely, it made recurrent connections to randomly chosen neurons within the same neighborhood. These connections were mediated by STDP circuits, initialized to the depressed state. We chose a 9 by 9 cluster of neurons and delivered spikes at a mean rate of 50 to 100Hz to each one (dropping spikes with a probability of 0.75 to 0.5 from a regular 200Hz train) and provided common theta inhibition as before. We compared the variability in spike timing after five seconds of learning with the initial distribution. Phase coding was enhanced after STDP (Figure 4A). Before STDP, spike timing among neurons was highly variable (except for the very highest input rate). After STDP, variability was virtually eliminated (except for the very lowest input rate). Initially, the variability, characterized by timing precision, was inversely related to the input rate, decreasing from 34 to 13ms. After five seconds of STDP, variability decreased and was largely independent of input rate, remaining below 11ms. Potentiated synapses 25 A Synaptic state after STDP 20 15 10 5 0 B 50 100 150 200 Spiking order 250 Figure 5: Compensating for variability. A Some synapses (dots) become potentiated (light) while others remain depressed (dark) after STDP. B The number of potentiated synapses neurons make (pluses) and receive (circles) is negatively (r = -0.71) and positively (r = 0.76) correlated to their rank in the spiking order, respectively. Comparing the number of potentiated synapses each neuron made or received with its excitability confirmed the PEP hypothesis (i.e., leading neurons provide additional synaptic current to lagging neurons via potentiated recurrent synapses). In this experiment, to eliminate variability due to noise (as opposed to excitability), we provided a 17 by 17 cluster of neurons with a regular 200Hz excitatory input. Theta inhibition was present as before and all synapses were initialized to the depressed state. After 10 seconds of STDP, a large fraction of the synapses were potentiated (Figure 5A). When the number of potentiated synapses each neuron made or received was plotted versus its rank in spiking order (Figure 5B), a clear correlation emerged (r = -0.71 or 0.76, respectively). As expected, neurons that spiked early made more and received fewer potentiated synapses. In contrast, neurons that spiked late made fewer and received more potentiated synapses. 5 Pattern Completion After STDP, we found that the network could recall an entire pattern given a subset, thus the same mechanisms that compensated for variability and noise could also compensate for lack of information. We chose a 9 by 9 cluster of neurons as our pattern and delivered a poisson-like spike train with mean rate of 67Hz to each one as in the first experiment. Theta inhibition was present as before and all synapses were initialized to the depressed state. Before STDP, we stimulated a subset of the pattern and only neurons in that subset spiked (Figure 6A). After five seconds of STDP, we stimulated the same subset again. This time they recruited spikes from other neurons in the pattern, completing it (Figure 6B). Upon varying the fraction of the pattern presented, we found that the fraction recalled increased faster than the fraction presented. We selected subsets of the original pattern randomly, varying the fraction of neurons chosen from 0.1 to 1.0 (ten trials for each). We classified neurons as active if they spiked in the two second period over which we recorded. Thus, we characterized PEP’s pattern-recall performance as a function of the probability that the pattern in question’s neurons are activated (Figure 6C). At a fraction of 0.50 presented, nearly all of the neurons in the pattern are consistently activated (0.91±0.06), showing robust pattern completion. We fitted the recall performance with a sigmoid that reached 0.50 recall fraction with an input fraction of 0.30. No spurious neurons were activated during any trials. Rate(Hz) Rate(Hz) 8 7 7 6 6 5 5 0.6 0.4 2 0.2 0 0 3 3 2 1 1 A 0.8 4 4 Network activity before STDP 1 Fraction of pattern actived 8 0 B Network activity after STDP C 0 0.2 0.4 0.6 0.8 Fraction of pattern stimulated 1 Figure 6: Associative recall. A Before STDP, half of the neurons in a pattern are stimulated; only they are activated. B After STDP, half of the neurons in a pattern are stimulated, and all are activated. C The fraction of the pattern activated grows faster than the fraction stimulated. 6 Discussion Our results demonstrate that PEP successfully compensates for graded variations in our silicon recurrent network using binary (on–off) synapses (in contrast with [8], where weights are graded). While our chip results are encouraging, variability was not eliminated in every case. In the case of the lowest input (50Hz), we see virtually no change (Figure 4A). We suspect the timing remains imprecise because, with such low input, neurons do not spike every theta cycle and, consequently, provide fewer opportunities for the STDP synapses to potentiate. This shortfall illustrates the system’s limits; it can only compensate for variability within certain bounds, and only for activity appropriate to the PEP model. As expected, STDP is the mechanism responsible for PEP. STDP potentiated recurrent synapses from leading neurons to lagging neurons, reducing the disparity among the diverse population of neurons. Even though the STDP circuits are themselves variable, with different efficacies and time constants, when using timing the sign of the weight-change is always correct (data not shown). For this reason, we chose STDP over other more physiological implementations of plasticity, such as membrane-voltage-dependent plasticity (MVDP), which has the capability to learn with graded voltage signals [9], such as those found in active dendrites, providing more computational power [10]. Previously, we investigated a MVDP circuit, which modeled a voltage-dependent NMDAreceptor-gated synapse [11]. It potentiated when the calcium current analog exceeded a threshold, which was designed to occur only during a dendritic action potential. This circuit produced behavior similar to STDP, implying it could be used in PEP. However, it was sensitive to variability in the NMDA and potentiation thresholds, causing a fraction of the population to potentiate anytime the synapse received an input and another fraction to never potentiate, rendering both subpopulations useless. Therefore, the simpler, less biophysical STDP circuit won out over the MVDP circuit: In our system timing is everything. Associative storage and recall naturally emerge in the PEP network when synapses between neurons coactivated by a pattern are potentiated. These synapses allow neurons to recruit their peers when a subset of the pattern is presented, thereby completing the pattern. However, this form of pattern storage and completion differs from Hopfield’s attractor model [12] . Rather than forming symmetric, recurrent neuronal circuits, our recurrent network forms asymmetric circuits in which neurons make connections exclusively to less excitable neurons in the pattern. In both the poisson-like and regular cases (Figures 4 & 5), only about six percent of potentiated connections were reciprocated, as expected by chance. We plan to investigate the storage capacity of this asymmetric form of associative memory. Our system lends itself to modeling brain regions that use precise spike timing, such as the hippocampus. We plan to extend the work presented to store and recall sequences of patterns, as the hippocampus is hypothesized to do. Place cells that represent different locations spike at different phases of the theta cycle, in relation to the distance to their preferred locations. This sequential spiking will allow us to link patterns representing different locations in the order those locations are visited, thereby realizing episodic memory. We propose PEP as a candidate neural mechanism for information coding and storage in the hippocampal system. Observations from the CA1 region of the hippocampus suggest that basal dendrites (which primarily receive excitation from recurrent connections) support submillisecond timing precision, consistent with PEP [13]. We have shown, in a silicon model, PEP’s ability to exploit such fast recurrent connections to sharpen timing precision as well as to associatively store and recall patterns. Acknowledgments We thank Joe Lin for assistance with chip generation. The Office of Naval Research funded this work (Award No. N000140210468). References [1] O’Keefe J. & Recce M.L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3(3):317-330. [2] Mehta M.R., Lee A.K. & Wilson M.A. (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417(6890):741-746. [3] Bi G.Q. & Wang H.X. (2002) Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiology & Behavior 77:551-555. [4] Rodriguez-Vazquez, A., Linan, G., Espejo S. & Dominguez-Castro R. (2003) Mismatch-induced trade-offs and scalability of analog preprocessing visual microprocessor chips. Analog Integrated Circuits and Signal Processing 37:73-83. [5] Boahen K.A. (2000) Point-to-point connectivity between neuromorphic chips using address events. IEEE Transactions on Circuits and Systems II 47:416-434. [6] Culurciello E.R., Etienne-Cummings R. & Boahen K.A. (2003) A biomorphic digital image sensor. IEEE Journal of Solid State Circuits 38:281-294. [7] Bofill A., Murray A.F & Thompson D.P. (2005) Citcuits for VLSI Implementation of Temporally Asymmetric Hebbian Learning. In: Advances in Neural Information Processing Systems 14, MIT Press, 2002. [8] Cameron K., Boonsobhak V., Murray A. & Renshaw D. (2005) Spike timing dependent plasticity (STDP) can ameliorate process variations in neuromorphic VLSI. IEEE Transactions on Neural Networks 16(6):1626-1627. [9] Chicca E., Badoni D., Dante V., D’Andreagiovanni M., Salina G., Carota L., Fusi S. & Del Giudice P. (2003) A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory. IEEE Transaction on Neural Networks 14(5):1297-1307. [10] Poirazi P., & Mel B.W. (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29(3)779-796. [11] Arthur J.V. & Boahen K. (2004) Recurrently connected silicon neurons with active dendrites for one-shot learning. In: IEEE International Joint Conference on Neural Networks 3, pp.1699-1704. [12] Hopfield J.J. (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Science 81(10):3088-3092. [13] Ariav G., Polsky A. & Schiller J. (2003) Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. Journal of Neuroscience 23(21):7750-7758.
Author: Yusuke Nakashita, Yoshio Mita, Tadashi Shibata
Abstract: An analog focal-plane processor having a 128¢128 photodiode array has been developed for directional edge filtering. It can perform 4¢4-pixel kernel convolution for entire pixels only with 256 steps of simple analog processing. Newly developed cyclic line access and row-parallel processing scheme in conjunction with the “only-nearest-neighbor interconnects” architecture has enabled a very simple implementation. A proof-of-concept chip was fabricated in a 0.35- m 2-poly 3-metal CMOS technology and the edge filtering at a rate of 200 frames/sec. has been experimentally demonstrated.
5 0.087597281 106 nips-2005-Large-scale biophysical parameter estimation in single neurons via constrained linear regression
Author: Misha Ahrens, Liam Paninski, Quentin J. Huys
Abstract: Our understanding of the input-output function of single cells has been substantially advanced by biophysically accurate multi-compartmental models. The large number of parameters needing hand tuning in these models has, however, somewhat hampered their applicability and interpretability. Here we propose a simple and well-founded method for automatic estimation of many of these key parameters: 1) the spatial distribution of channel densities on the cell’s membrane; 2) the spatiotemporal pattern of synaptic input; 3) the channels’ reversal potentials; 4) the intercompartmental conductances; and 5) the noise level in each compartment. We assume experimental access to: a) the spatiotemporal voltage signal in the dendrite (or some contiguous subpart thereof, e.g. via voltage sensitive imaging techniques), b) an approximate kinetic description of the channels and synapses present in each compartment, and c) the morphology of the part of the neuron under investigation. The key observation is that, given data a)-c), all of the parameters 1)-4) may be simultaneously inferred by a version of constrained linear regression; this regression, in turn, is efficiently solved using standard algorithms, without any “local minima” problems despite the large number of parameters and complex dynamics. The noise level 5) may also be estimated by standard techniques. We demonstrate the method’s accuracy on several model datasets, and describe techniques for quantifying the uncertainty in our estimates. 1
6 0.071420208 157 nips-2005-Principles of real-time computing with feedback applied to cortical microcircuit models
7 0.069126703 88 nips-2005-Gradient Flow Independent Component Analysis in Micropower VLSI
8 0.063871264 1 nips-2005-AER Building Blocks for Multi-Layer Multi-Chip Neuromorphic Vision Systems
9 0.062183686 25 nips-2005-An aVLSI Cricket Ear Model
10 0.055413499 8 nips-2005-A Criterion for the Convergence of Learning with Spike Timing Dependent Plasticity
11 0.055177651 109 nips-2005-Learning Cue-Invariant Visual Responses
12 0.049862102 61 nips-2005-Dynamical Synapses Give Rise to a Power-Law Distribution of Neuronal Avalanches
13 0.049848631 181 nips-2005-Spiking Inputs to a Winner-take-all Network
14 0.049462743 176 nips-2005-Silicon growth cones map silicon retina
15 0.046567168 7 nips-2005-A Cortically-Plausible Inverse Problem Solving Method Applied to Recognizing Static and Kinematic 3D Objects
16 0.045600753 164 nips-2005-Representing Part-Whole Relationships in Recurrent Neural Networks
17 0.042120658 17 nips-2005-Active Bidirectional Coupling in a Cochlear Chip
18 0.041737098 38 nips-2005-Beyond Gaussian Processes: On the Distributions of Infinite Networks
19 0.039566986 99 nips-2005-Integrate-and-Fire models with adaptation are good enough
20 0.034026973 169 nips-2005-Saliency Based on Information Maximization
topicId topicWeight
[(0, 0.112), (1, -0.132), (2, -0.04), (3, 0.005), (4, -0.041), (5, 0.024), (6, -0.069), (7, 0.01), (8, 0.07), (9, -0.025), (10, -0.155), (11, 0.012), (12, -0.026), (13, 0.074), (14, -0.059), (15, -0.05), (16, -0.009), (17, 0.008), (18, 0.025), (19, 0.055), (20, -0.003), (21, 0.008), (22, -0.101), (23, 0.018), (24, -0.082), (25, 0.059), (26, -0.015), (27, 0.026), (28, 0.073), (29, 0.064), (30, -0.128), (31, 0.107), (32, -0.099), (33, -0.148), (34, 0.028), (35, 0.047), (36, -0.027), (37, -0.016), (38, 0.048), (39, 0.053), (40, -0.084), (41, 0.024), (42, -0.007), (43, -0.02), (44, -0.019), (45, 0.05), (46, 0.087), (47, 0.062), (48, 0.188), (49, 0.005)]
simIndex simValue paperId paperTitle
same-paper 1 0.94744939 40 nips-2005-CMOL CrossNets: Possible Neuromorphic Nanoelectronic Circuits
Author: Jung Hoon Lee, Xiaolong Ma, Konstantin K. Likharev
Abstract: Hybrid “CMOL” integrated circuits, combining CMOS subsystem with nanowire crossbars and simple two-terminal nanodevices, promise to extend the exponential Moore-Law development of microelectronics into the sub-10-nm range. We are developing neuromorphic network (“CrossNet”) architectures for this future technology, in which neural cell bodies are implemented in CMOS, nanowires are used as axons and dendrites, while nanodevices (bistable latching switches) are used as elementary synapses. We have shown how CrossNets may be trained to perform pattern recovery and classification despite the limitations imposed by the CMOL hardware. Preliminary estimates have shown that CMOL CrossNets may be extremely dense (~10 7 cells per cm2) and operate approximately a million times faster than biological neural networks, at manageable power consumption. In Conclusion, we discuss in brief possible short-term and long-term applications of the emerging technology. 1 Introduction: CMOL Circuits Recent results [1, 2] indicate that the current VLSI paradigm based on CMOS technology can be hardly extended beyond the 10-nm frontier: in this range the sensitivity of parameters (most importantly, the gate voltage threshold) of silicon field-effect transistors to inevitable fabrication spreads grows exponentially. This sensitivity will probably send the fabrication facilities costs skyrocketing, and may lead to the end of Moore’s Law some time during the next decade. There is a growing consensus that the impending Moore’s Law crisis may be preempted by a radical paradigm shift from the purely CMOS technology to hybrid CMOS/nanodevice circuits, e.g., those of “CMOL” variety (Fig. 1). Such circuits (see, e.g., Ref. 3 for their recent review) would combine a level of advanced CMOS devices fabricated by the lithographic patterning, and two-layer nanowire crossbar formed, e.g., by nanoimprint, with nanowires connected by simple, similar, two-terminal nanodevices at each crosspoint. For such devices, molecular single-electron latching switches [4] are presently the leading candidates, in particular because they may be fabricated using the self-assembled monolayer (SAM) technique which already gave reproducible results for simpler molecular devices [5]. (a) nanodevices nanowiring and nanodevices interface pins upper wiring level of CMOS stack (b) βFCMOS Fnano α Fig. 1. CMOL circuit: (a) schematic side view, and (b) top-view zoom-in on several adjacent interface pins. (For clarity, only two adjacent nanodevices are shown.) In order to overcome the CMOS/nanodevice interface problems pertinent to earlier proposals of hybrid circuits [6], in CMOL the interface is provided by pins that are distributed all over the circuit area, on the top of the CMOS stack. This allows to use advanced techniques of nanowire patterning (like nanoimprint) which do not have nanoscale accuracy of layer alignment [3]. The vital feature of this interface is the tilt, by angle α = arcsin(Fnano/βFCMOS), of the nanowire crossbar relative to the square arrays of interface pins (Fig. 1b). Here Fnano is the nanowiring half-pitch, FCMOS is the half-pitch of the CMOS subsystem, and β is a dimensionless factor larger than 1 that depends on the CMOS cell complexity. Figure 1b shows that this tilt allows the CMOS subsystem to address each nanodevice even if Fnano << βFCMOS. By now, it has been shown that CMOL circuits can combine high performance with high defect tolerance (which is necessary for any circuit using nanodevices) for several digital applications. In particular, CMOL circuits with defect rates below a few percent would enable terabit-scale memories [7], while the performance of FPGA-like CMOL circuits may be several hundred times above that of overcome purely CMOL FPGA (implemented with the same FCMOS), at acceptable power dissipation and defect tolerance above 20% [8]. In addition, the very structure of CMOL circuits makes them uniquely suitable for the implementation of more complex, mixed-signal information processing systems, including ultradense and ultrafast neuromorphic networks. The objective of this paper is to describe in brief the current status of our work on the development of so-called Distributed Crossbar Networks (“CrossNets”) that could provide high performance despite the limitations imposed by CMOL hardware. A more detailed description of our earlier results may be found in Ref. 9. 2 Synapses The central device of CrossNet is a two-terminal latching switch [3, 4] (Fig. 2a) which is a combination of two single-electron devices, a transistor and a trap [3]. The device may be naturally implemented as a single organic molecule (Fig. 2b). Qualitatively, the device operates as follows: if voltage V = Vj – Vk applied between the external electrodes (in CMOL, nanowires) is low, the trap island has no net electric charge, and the single-electron transistor is closed. If voltage V approaches certain threshold value V+ > 0, an additional electron is inserted into the trap island, and its field lifts the Coulomb blockade of the single-electron transistor, thus connecting the nanowires. The switch state may be reset (e.g., wires disconnected) by applying a lower voltage V < V- < V+. Due to the random character of single-electron tunneling [2], the quantitative description of the switch is by necessity probabilistic: actually, V determines only the rates Γ↑↓ of device switching between its ON and OFF states. The rates, in turn, determine the dynamics of probability p to have the transistor opened (i.e. wires connected): dp/dt = Γ↑(1 - p) - Γ↓p. (1) The theory of single-electron tunneling [2] shows that, in a good approximation, the rates may be presented as Γ↑↓ = Γ0 exp{±e(V - S)/kBT} , (2) (a) single-electron trap tunnel junction Vj Vk single-electron transistor (b) O clipping group O N C R diimide acceptor groups O O C N R R O OPE wires O N R R N O O R O N R R = hexyl N O O R R O N C R R R Fig. 2. (a) Schematics and (b) possible molecular implementation of the two-terminal single-electron latching switch where Γ0 and S are constants depending on physical parameters of the latching switches. Note that despite the random character of switching, the strong nonlinearity of Eq. (2) allows to limit the degree of the device “fuzziness”. 3 CrossNets Figure 3a shows the generic structure of a CrossNet. CMOS-implemented somatic cells (within the Fire Rate model, just nonlinear differential amplifiers, see Fig. 3b,c) apply their output voltages to “axonic” nanowires. If the latching switch, working as an elementary synapse, on the crosspoint of an axonic wire with the perpendicular “dendritic” wire is open, some current flows into the latter wire, charging it. Since such currents are injected into each dendritic wire through several (many) open synapses, their addition provides a natural passive analog summation of signals from the corresponding somas, typical for all neural networks. Examining Fig. 3a, please note the open-circuit terminations of axonic and dendritic lines at the borders of the somatic cells; due to these terminations the somas do not communicate directly (but only via synapses). The network shown on Fig. 3 is evidently feedforward; recurrent networks are achieved in the evident way by doubling the number of synapses and nanowires per somatic cell (Fig. 3c). Moreover, using dual-rail (bipolar) representation of the signal, and hence doubling the number of nanowires and elementary synapses once again, one gets a CrossNet with somas coupled by compact 4-switch groups [9]. Using Eqs. (1) and (2), it is straightforward to show that that the average synaptic weight wjk of the group obeys the “quasi-Hebbian” rule: d w jk = −4Γ0 sinh (γ S ) sinh (γ V j ) sinh (γ Vk ) . dt (3) (a) - +soma j (b) RL + -- jk+ RL (c) jk- RL + -- -+soma k RL Fig. 3. (a) Generic structure of the simplest, (feedforward, non-Hebbian) CrossNet. Red lines show “axonic”, and blue lines “dendritic” nanowires. Gray squares are interfaces between nanowires and CMOS-based somas (b, c). Signs show the dendrite input polarities. Green circles denote molecular latching switches forming elementary synapses. Bold red and blue points are open-circuit terminations of the nanowires, that do not allow somas to interact in bypass of synapses In the simplest cases (e.g., quasi-Hopfield networks with finite connectivity), the tri-level synaptic weights of the generic CrossNets are quite satisfactory, leading to just a very modest (~30%) network capacity loss. However, some applications (in particular, pattern classification) may require a larger number of weight quantization levels L (e.g., L ≈ 30 for a 1% fidelity [9]). This may be achieved by using compact square arrays (e.g., 4×4) of latching switches (Fig. 4). Various species of CrossNets [9] differ also by the way the somatic cells are distributed around the synaptic field. Figure 5 shows feedforward versions of two CrossNet types most explored so far: the so-called FlossBar and InBar. The former network is more natural for the implementation of multilayered perceptrons (MLP), while the latter system is preferable for recurrent network implementations and also allows a simpler CMOS design of somatic cells. The most important advantage of CrossNets over the hardware neural networks suggested earlier is that these networks allow to achieve enormous density combined with large cell connectivity M >> 1 in quasi-2D electronic circuits. 4 CrossNet training CrossNet training faces several hardware-imposed challenges: (i) The synaptic weight contribution provided by the elementary latching switch is binary, so that for most applications the multi-switch synapses (Fig. 4) are necessary. (ii) The only way to adjust any particular synaptic weight is to turn ON or OFF the corresponding latching switch(es). This is only possible to do by applying certain voltage V = Vj – Vk between the two corresponding nanowires. At this procedure, other nanodevices attached to the same wires should not be disturbed. (iii) As stated above, synapse state switching is a statistical progress, so that the degree of its “fuzziness” should be carefully controlled. (a) Vj (b) V w – A/2 i=1 i=1 2 2 … … n n Vj V w+ A/2 i' = 1 RL 2 … i' = 1 n RS ±(V t –A/2) 2 … RS n ±(V t +A/2) Fig. 4. Composite synapse for providing L = 2n2+1 discrete levels of the weight in (a) operation and (b) weight adjustment modes. The dark-gray rectangles are resistive metallic strips at soma/nanowire interfaces (a) (b) Fig. 5. Two main CrossNet species: (a) FlossBar and (b) InBar, in the generic (feedforward, non-Hebbian, ternary-weight) case for the connectivity parameter M = 9. Only the nanowires and nanodevices coupling one cell (indicated with red dashed lines) to M post-synaptic cells (blue dashed lines) are shown; actually all the cells are similarly coupled We have shown that these challenges may be met using (at least) the following training methods [9]: (i) Synaptic weight import. This procedure is started with training of a homomorphic “precursor” artificial neural network with continuous synaptic weighs wjk, implemented in software, using one of established methods (e.g., error backpropagation). Then the synaptic weights wjk are transferred to the CrossNet, with some “clipping” (rounding) due to the binary nature of elementary synaptic weights. To accomplish the transfer, pairs of somatic cells are sequentially selected via CMOS-level wiring. Using the flexibility of CMOS circuitry, these cells are reconfigured to apply external voltages ±VW to the axonic and dendritic nanowires leading to a particular synapse, while all other nanowires are grounded. The voltage level V W is selected so that it does not switch the synapses attached to only one of the selected nanowires, while voltage 2VW applied to the synapse at the crosspoint of the selected wires is sufficient for its reliable switching. (In the composite synapses with quasi-continuous weights (Fig. 4), only a part of the corresponding switches is turned ON or OFF.) (ii) Error backpropagation. The synaptic weight import procedure is straightforward when wjk may be simply calculated, e.g., for the Hopfield-type networks. However, for very large CrossNets used, e.g., as pattern classifiers the precursor network training may take an impracticably long time. In this case the direct training of a CrossNet may become necessary. We have developed two methods of such training, both based on “Hebbian” synapses consisting of 4 elementary synapses (latching switches) whose average weight dynamics obeys Eq. (3). This quasi-Hebbian rule may be used to implement the backpropagation algorithm either using a periodic time-multiplexing [9] or in a continuous fashion, using the simultaneous propagation of signals and errors along the same dual-rail channels. As a result, presently we may state that CrossNets may be taught to perform virtually all major functions demonstrated earlier with the usual neural networks, including the corrupted pattern restoration in the recurrent quasi-Hopfield mode and pattern classification in the feedforward MLP mode [11]. 5 C r o s s N e t p e r f o r m an c e e s t i m a t e s The significance of this result may be only appreciated in the context of unparalleled physical parameters of CMOL CrossNets. The only fundamental limitation on the half-pitch Fnano (Fig. 1) comes from quantum-mechanical tunneling between nanowires. If the wires are separated by vacuum, the corresponding specific leakage conductance becomes uncomfortably large (~10-12 Ω-1m-1) only at Fnano = 1.5 nm; however, since realistic insulation materials (SiO2, etc.) provide somewhat lower tunnel barriers, let us use a more conservative value Fnano= 3 nm. Note that this value corresponds to 1012 elementary synapses per cm2, so that for 4M = 104 and n = 4 the areal density of neural cells is close to 2×107 cm-2. Both numbers are higher than those for the human cerebral cortex, despite the fact that the quasi-2D CMOL circuits have to compete with quasi-3D cerebral cortex. With the typical specific capacitance of 3×10-10 F/m = 0.3 aF/nm, this gives nanowire capacitance C0 ≈ 1 aF per working elementary synapse, because the corresponding segment has length 4Fnano. The CrossNet operation speed is determined mostly by the time constant τ0 of dendrite nanowire capacitance recharging through resistances of open nanodevices. Since both the relevant conductance and capacitance increase similarly with M and n, τ0 ≈ R0C0. The possibilities of reduction of R0, and hence τ0, are limited mostly by acceptable power dissipation per unit area, that is close to Vs2/(2Fnano)2R0. For room-temperature operation, the voltage scale V0 ≈ Vt should be of the order of at least 30 kBT/e ≈ 1 V to avoid thermally-induced errors [9]. With our number for Fnano, and a relatively high but acceptable power consumption of 100 W/cm2, we get R0 ≈ 1010Ω (which is a very realistic value for single-molecule single-electron devices like one shown in Fig. 3). With this number, τ0 is as small as ~10 ns. This means that the CrossNet speed may be approximately six orders of magnitude (!) higher than that of the biological neural networks. Even scaling R0 up by a factor of 100 to bring power consumption to a more comfortable level of 1 W/cm2, would still leave us at least a four-orders-of-magnitude speed advantage. 6 D i s c u s s i on: P o s s i bl e a p p l i c at i o n s These estimates make us believe that that CMOL CrossNet chips may revolutionize the neuromorphic network applications. Let us start with the example of relatively small (1-cm2-scale) chips used for recognition of a face in a crowd [11]. The most difficult feature of such recognition is the search for face location, i.e. optimal placement of a face on the image relative to the panel providing input for the processing network. The enormous density and speed of CMOL hardware gives a possibility to time-and-space multiplex this task (Fig. 6). In this approach, the full image (say, formed by CMOS photodetectors on the same chip) is divided into P rectangular panels of h×w pixels, corresponding to the expected size and approximate shape of a single face. A CMOS-implemented communication channel passes input data from each panel to the corresponding CMOL neural network, providing its shift in time, say using the TV scanning pattern (red line in Fig. 6). The standard methods of image classification require the network to have just a few hidden layers, so that the time interval Δt necessary for each mapping position may be so short that the total pattern recognition time T = hwΔt may be acceptable even for online face recognition. w h image network input Fig. 6. Scan mapping of the input image on CMOL CrossNet inputs. Red lines show the possible time sequence of image pixels sent to a certain input of the network processing image from the upper-left panel of the pattern Indeed, let us consider a 4-Megapixel image partitioned into 4K 32×32-pixel panels (h = w = 32). This panel will require an MLP net with several (say, four) layers with 1K cells each in order to compare the panel image with ~10 3 stored faces. With the feasible 4-nm nanowire half-pitch, and 65-level synapses (sufficient for better than 99% fidelity [9]), each interlayer crossbar would require chip area about (4K×64 nm)2 = 64×64 μm2, fitting 4×4K of them on a ~0.6 cm2 chip. (The CMOS somatic-layer and communication-system overheads are negligible.) With the acceptable power consumption of the order of 10 W/cm2, the input-to-output signal propagation in such a network will take only about 50 ns, so that Δt may be of the order of 100 ns and the total time T = hwΔt of processing one frame of the order of 100 microseconds, much shorter than the typical TV frame time of ~10 milliseconds. The remaining two-orders-of-magnitude time gap may be used, for example, for double-checking the results via stopping the scan mapping (Fig. 6) at the most promising position. (For this, a simple feedback from the recognition output to the mapping communication system is necessary.) It is instructive to compare the estimated CMOL chip speed with that of the implementation of a similar parallel network ensemble on a CMOS signal processor (say, also combined on the same chip with an array of CMOS photodetectors). Even assuming an extremely high performance of 30 billion additions/multiplications per second, we would need ~4×4K×1K×(4K)2/(30×109) ≈ 104 seconds ~ 3 hours per frame, evidently incompatible with the online image stream processing. Let us finish with a brief (and much more speculative) discussion of possible long-term prospects of CMOL CrossNets. Eventually, large-scale (~30×30 cm2) CMOL circuits may become available. According to the estimates given in the previous section, the integration scale of such a system (in terms of both neural cells and synapses) will be comparable with that of the human cerebral cortex. Equipped with a set of broadband sensor/actuator interfaces, such (necessarily, hierarchical) system may be capable, after a period of initial supervised training, of further self-training in the process of interaction with environment, with the speed several orders of magnitude higher than that of its biological prototypes. Needless to say, the successful development of such self-developing systems would have a major impact not only on all information technologies, but also on the society as a whole. Acknowledgments This work has been supported in part by the AFOSR, MARCO (via FENA Center), and NSF. Valuable contributions made by Simon Fölling, Özgür Türel and Ibrahim Muckra, as well as useful discussions with P. Adams, J. Barhen, D. Hammerstrom, V. Protopopescu, T. Sejnowski, and D. Strukov are gratefully acknowledged. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Frank, D. J. et al. (2001) Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3): 259-288. Likharev, K. K. (2003) Electronics below 10 nm, in J. Greer et al. (eds.), Nano and Giga Challenges in Microelectronics, pp. 27-68. Amsterdam: Elsevier. Likharev, K. K. and Strukov, D. B. (2005) CMOL: Devices, circuits, and architectures, in G. Cuniberti et al. (eds.), Introducing Molecular Electronics, Ch. 16. Springer, Berlin. Fölling, S., Türel, Ö. & Likharev, K. K. (2001) Single-electron latching switches as nanoscale synapses, in Proc. of the 2001 Int. Joint Conf. on Neural Networks, pp. 216-221. Mount Royal, NJ: Int. Neural Network Society. Wang, W. et al. (2003) Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68(3): 035416 1-8. Stan M. et al. (2003) Molecular electronics: From devices and interconnect to circuits and architecture, Proc. IEEE 91(11): 1940-1957. Strukov, D. B. & Likharev, K. K. (2005) Prospects for terabit-scale nanoelectronic memories. Nanotechnology 16(1): 137-148. Strukov, D. B. & Likharev, K. K. (2005) CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6): 888-900. Türel, Ö. et al. (2004) Neuromorphic architectures for nanoelectronic circuits”, Int. J. of Circuit Theory and Appl. 32(5): 277-302. See, e.g., Hertz J. et al. (1991) Introduction to the Theory of Neural Computation. Cambridge, MA: Perseus. Lee, J. H. & Likharev, K. K. (2005) CrossNets as pattern classifiers. Lecture Notes in Computer Sciences 3575: 434-441.
2 0.56553549 25 nips-2005-An aVLSI Cricket Ear Model
Author: Andre V. Schaik, Richard Reeve, Craig Jin, Tara Hamilton
Abstract: Female crickets can locate males by phonotaxis to the mating song they produce. The behaviour and underlying physiology has been studied in some depth showing that the cricket auditory system solves this complex problem in a unique manner. We present an analogue very large scale integrated (aVLSI) circuit model of this process and show that results from testing the circuit agree with simulation and what is known from the behaviour and physiology of the cricket auditory system. The aVLSI circuitry is now being extended to use on a robot along with previously modelled neural circuitry to better understand the complete sensorimotor pathway. 1 In trod u ction Understanding how insects carry out complex sensorimotor tasks can help in the design of simple sensory and robotic systems. Often insect sensors have evolved into intricate filters matched to extract highly specific data from the environment which solves a particular problem directly with little or no need for further processing [1]. Examples include head stabilisation in the fly, which uses vision amongst other senses to estimate self-rotation and thus to stabilise its head in flight, and phonotaxis in the cricket. Because of the narrowness of the cricket body (only a few millimetres), the Interaural Time Difference (ITD) for sounds arriving at the two sides of the head is very small (10–20µs). Even with the tympanal membranes (eardrums) located, as they are, on the forelegs of the cricket, the ITD only reaches about 40µs, which is too low to detect directly from timings of neural spikes. Because the wavelength of the cricket calling song is significantly greater than the width of the cricket body the Interaural Intensity Difference (IID) is also very low. In the absence of ITD or IID information, the cricket uses phase to determine direction. This is possible because the male cricket produces an almost pure tone for its calling song. * School of Electrical and Information Engineering, Institute of Perception, Action and Behaviour. + Figure 1: The cricket auditory system. Four acoustic inputs channel sounds directly or through tracheal tubes onto two tympanal membranes. Sound from contralateral inputs has to pass a (double) central membrane (the medial septum), inducing a phase delay and reduction in gain. The sound transmission from the contralateral tympanum is very weak, making each eardrum effectively a 3 input system. The physics of the cricket auditory system is well understood [2]; the system (see Figure 1) uses a pair of sound receivers with four acoustic inputs, two on the forelegs, which are the external surfaces of the tympana, and two on the body, the prothoracic or acoustic spiracles [3]. The connecting tracheal tubes are such that interference occurs as sounds travel inside the cricket, producing a directional response at the tympana to frequencies near to that of the calling song. The amplitude of vibration of the tympana, and hence the firing rate of the auditory afferent neurons attached to them, vary as a sound source is moved around the cricket and the sounds from the different inputs move in and out of phase. The outputs of the two tympana match when the sound is straight ahead, and the inputs are bilaterally symmetric with respect to the sound source. However, when sound at the calling song frequency is off-centre the phase of signals on the closer side comes better into alignment, and the signal increases on that side, and conversely decreases on the other. It is that crossover of tympanal vibration amplitudes which allows the cricket to track a sound source (see Figure 6 for example). A simplified version of the auditory system using only two acoustic inputs was implemented in hardware [4], and a simple 8-neuron network was all that was required to then direct a robot to carry out phonotaxis towards a species-specific calling song [5]. A simple simulator was also created to model the behaviour of the auditory system of Figure 1 at different frequencies [6]. Data from Michelsen et al. [2] (Figures 5 and 6) were digitised, and used together with average and “typical” values from the paper to choose gains and delays for the simulation. Figure 2 shows the model of the internal auditory system of the cricket from sound arriving at the acoustic inputs through to transmission down auditory receptor fibres. The simulator implements this model up to the summing of the delayed inputs, as well as modelling the external sound transmission. Results from the simulator were used to check the directionality of the system at different frequencies, and to gain a better understanding of its response. It was impractical to check the effect of leg movements or of complex sounds in the simulator due to the necessity of simulating the sound production and transmission. An aVLSI chip was designed to implement the same model, both allowing more complex experiments, such as leg movements to be run, and experiments to be run in the real world. Figure 2: A model of the auditory system of the cricket, used to build the simulator and the aVLSI implementation (shown in boxes). These experiments with the simulator and the circuits are being published in [6] and the reader is referred to those papers for more details. In the present paper we present the details of the circuits used for the aVLSI implementation. 2 Circuits The chip, implementing the aVLSI box in Figure 2, comprises two all-pass delay filters, three gain circuits, a second-order narrow-band band-pass filter, a first-order wide-band band-pass filter, a first-order high-pass filter, as well as supporting circuitry (including reference voltages, currents, etc.). A single aVLSI chip (MOSIS tiny-chip) thus includes half the necessary circuitry to model the complete auditory system of a cricket. The complete model of the auditory system can be obtained by using two appropriately connected chips. Only two all-pass delay filters need to be implemented instead of three as suggested by Figure 2, because it is only the relative delay between the three pathways arriving at the one summing node that counts. The delay circuits were implemented with fully-differential gm-C filters. In order to extend the frequency range of the delay, a first-order all-pass delay circuit was cascaded with a second-order all-pass delay circuit. The resulting addition of the first-order delay and the second-order delay allowed for an approximately flat delay response for a wider bandwidth as the decreased delay around the corner frequency of the first-order filter cancelled with the increased delay of the second-order filter around its resonant frequency. Figure 3 shows the first- and second-order sections of the all-pass delay circuit. Two of these circuits were used and, based on data presented in [2], were designed with delays of 28µs and 62µs, by way of bias current manipulation. The operational transconductance amplifier (OTA) in figure 3 is a standard OTA which includes the common-mode feedback necessary for fully differential designs. The buffers (Figure 3) are simple, cascoded differential pairs. V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ Figure 3: The first-order all-pass delay circuit (left) and the second-order all-pass delay (right). The differential output of the delay circuits is converted into a current which is multiplied by a variable gain implemented as shown in Figure 4. The gain cell includes a differential pair with source degeneration via transistors N4 and N5. The source degeneration improves the linearity of the current. The three gain cells implemented on the aVLSI have default gains of 2, 3 and 0.91 which are set by holding the default input high and appropriately ratioing the bias currents through the value of vbiasp. To correct any on-chip mismatches and/or explore other gain configurations a current splitter cell [7] (p-splitter, figure 4) allows the gain to be programmed by digital means post fabrication. The current splitter takes an input current (Ibias, figure 4) and divides it into branches which recursively halve the current, i.e., the first branch gives ½ Ibias, the second branch ¼ Ibias, the third branch 1/8 Ibias and so on. These currents can be used together with digitally controlled switches as a Digital-to-Analogue converter. By holding default low and setting C5:C0 appropriately, any gain – from 4 to 0.125 – can be set. To save on output pins the program bits (C5:C0) for each of the three gain cells are set via a single 18-bit shift register in bit-serial fashion. Summing the output of the three gain circuits in the current domain simply involves connecting three wires together. Therefore, a natural option for the filters that follow is to use current domain filters. In our case we have chosen to implement log-domain filters using MOS transistors operating in weak inversion. Figure 5 shows the basic building blocks for the filters – the Tau Cell [8] and the multiplier cell – and block diagrams showing how these blocks were connected to create the necessary filtering blocks. The Tau Cell is a log-domain filter which has the firstorder response: I out 1 , = I in sτ + 1 where τ = nC aVT Ia and n = the slope factor, VT = thermal voltage, Ca = capacitance, and Ia = bias current. In figure 5, the input currents to the Tau Cell, Imult and A*Ia, are only used when building a second-order filter. The multiplier cell is simply a translinear loop where: I out1 ∗ I mult = I out 2 ∗ AI a or Imult = AIaIout2/Iout1. The configurations of the Tau Cell to get particular responses are covered in [8] along with the corresponding equations. The high frequency filter of Figure 2 is implemented by the high-pass filter in Figure 5 with a corner frequency of 17kHz. The low frequency filter, however, is divided into two parts since the biological filter’s response (see for example Figure 3A in [9]) separates well into a narrow second-order band-pass filter with a 10kHz resonant frequency and a wide band-pass filter made from a first-order high-pass filter with a 3kHz corner frequency followed by a first-order low-pass filter with a 12kHz corner frequency. These filters are then added together to reproduce the biological filter. The filters’ responses can be adjusted post fabrication via their bias currents. This allows for compensation due to processing and matching errors. Figure 4: The Gain Cell above is used to convert the differential voltage input from the delay cells into a single-ended current output. The gain of each cell is controllable via a programmable current cell (p_splitter). An on-chip bias generator [7] was used to create all the necessary current biases on the chip. All the main blocks (delays, gain cells and filters), however, can have their on-chip bias currents overridden through external pins on the chip. The chip was fabricated using the MOSIS AMI 1.6µm technology and designed using the Cadence Custom IC Design Tools (5.0.33). 3 Methods The chip was tested using sound generated on a computer and played through a soundcard to the chip. Responses from the chip were recorded by an oscilloscope, and uploaded back to the computer on completion. Given that the output from the chip and the gain circuits is a current, an external current-sense circuit built with discrete components was used to enable the output to be probed by the oscilloscope. Figure 5: The circuit diagrams for the log-domain filter building blocks – The Tau Cell and The Multiplier – along with the block diagrams for the three filters used in the aVLSI model. Initial experiments were performed to tune the delays and gains. After that, recordings were taken of the directional frequency responses. Sounds were generated by computer for each chip input to simulate moving the forelegs by delaying the sound by the appropriate amount of time; this was a much simpler solution than using microphones and moving them using motors. 4 Results The aVLSI chip was tested to measure its gains and delays, which were successfully tuned to the appropriate values. The chip was then compared with the simulation to check that it was faithfully modelling the system. A result of this test at 4kHz (approximately the cricket calling-song frequency) is shown in Figure 6. Apart from a drop in amplitude of the signal, the response of the circuit was very similar to that of the simulator. The differences were expected because the aVLSI circuit has to deal with real-world noise, whereas the simulated version has perfect signals. Examples of the gain versus frequency response of the two log-domain band-pass filters are shown in Figure 7. Note that the narrow-band filter peaks at 6kHz, which is significantly above the mating song frequency of the cricket which is around 4.5kHz. This is not a mistake, but is observed in real crickets as well. As stated in the introduction, a range of further testing results with both the circuit and the simulator are being published in [6]. 5 D i s c u s s i on The aVLSI auditory sensor in this research models the hearing of the field cricket Gryllus bimaculatus. It is a more faithful model of the cricket auditory system than was previously built in [4], reproducing all the acoustic inputs, as well as the responses to frequencies of both the co specific calling song and bat echolocation chirps. It also generates outputs corresponding to the two sets of behaviourally relevant auditory receptor fibres. Results showed that it matched the biological data well, though there were some inconsistencies due to an error in the specification that will be addressed in a future iteration of the design. A more complete implementation across all frequencies was impractical because of complexity and size issues as well as serving no clear behavioural purpose. Figure 6: Vibration amplitude of the left (dotted) and right (solid) virtual tympana measured in decibels in response to a 4kHz tone in simulation (left) and on the aVLSI chip (right). The plot shows the amplitude of the tympanal responses as the sound source is rotated around the cricket. Figure 7: Frequency-Gain curves for the narrow-band and wide-band bandpass filters. The long-term aim of this work is to better understand simple sensorimotor control loops in crickets and other insects. The next step is to mount this circuitry on a robot to carry out behavioural experiments, which we will compare with existing and new behavioural data (such as that in [10]). This will allow us to refine our models of the neural circuitry involved. Modelling the sensory afferent neurons in hardware is necessary in order to reduce processor load on our robot, so the next revision will include these either onboard, or on a companion chip as we have done before [11]. We will also move both sides of the auditory system onto a single chip to conserve space on the robot. It is our belief and experience that, as a result of this intelligent pre-processing carried out at the sensor level, the neural circuits necessary to accurately model the behaviour will remain simple. Acknowledgments The authors thank the Institute of Neuromorphic Engineering and the UK Biotechnology and Biological Sciences Research Council for funding the research in this paper. References [1] R. Wehner. Matched filters – neural models of the external world. J Comp Physiol A, 161: 511–531, 1987. [2] A. Michelsen, A. V. Popov, and B. Lewis. Physics of directional hearing in the cricket Gryllus bimaculatus. Journal of Comparative Physiology A, 175:153–164, 1994. [3] A. Michelsen. The tuned cricket. News Physiol. Sci., 13:32–38, 1998. [4] H. H. Lund, B. Webb, and J. Hallam. A robot attracted to the cricket species Gryllus bimaculatus. In P. Husbands and I. Harvey, editors, Proceedings of 4th European Conference on Artificial Life, pages 246–255. MIT Press/Bradford Books, MA., 1997. [5] R Reeve and B. Webb. New neural circuits for robot phonotaxis. Phil. Trans. R. Soc. Lond. A, 361:2245–2266, August 2003. [6] R. Reeve, A. van Schaik, C. Jin, T. Hamilton, B. Torben-Nielsen and B. Webb Directional hearing in a silicon cricket. Biosystems, (in revision), 2005b [7] T. Delbrück and A. van Schaik, Bias Current Generators with Wide Dynamic Range, Analog Integrated Circuits and Signal Processing 42(2), 2005 [8] A. van Schaik and C. Jin, The Tau Cell: A New Method for the Implementation of Arbitrary Differential Equations, IEEE International Symposium on Circuits and Systems (ISCAS) 2003 [9] Kazuo Imaizumi and Gerald S. Pollack. Neural coding of sound frequency by cricket auditory receptors. The Journal of Neuroscience, 19(4):1508– 1516, 1999. [10] Berthold Hedwig and James F.A. Poulet. Complex auditory behaviour emerges from simple reactive steering. Nature, 430:781–785, 2004. [11] R. Reeve, B. Webb, A. Horchler, G. Indiveri, and R. Quinn. New technologies for testing a model of cricket phonotaxis on an outdoor robot platform. Robotics and Autonomous Systems, 51(1):41-54, 2005.
3 0.51349646 188 nips-2005-Temporally changing synaptic plasticity
Author: Minija Tamosiunaite, Bernd Porr, Florentin Wörgötter
Abstract: Recent experimental results suggest that dendritic and back-propagating spikes can influence synaptic plasticity in different ways [1]. In this study we investigate how these signals could temporally interact at dendrites leading to changing plasticity properties at local synapse clusters. Similar to a previous study [2], we employ a differential Hebbian plasticity rule to emulate spike-timing dependent plasticity. We use dendritic (D-) and back-propagating (BP-) spikes as post-synaptic signals in the learning rule and investigate how their interaction will influence plasticity. We will analyze a situation where synapse plasticity characteristics change in the course of time, depending on the type of post-synaptic activity momentarily elicited. Starting with weak synapses, which only elicit local D-spikes, a slow, unspecific growth process is induced. As soon as the soma begins to spike this process is replaced by fast synaptic changes as the consequence of the much stronger and sharper BP-spike, which now dominates the plasticity rule. This way a winner-take-all-mechanism emerges in a two-stage process, enhancing the best-correlated inputs. These results suggest that synaptic plasticity is a temporal changing process by which the computational properties of dendrites or complete neurons can be substantially augmented. 1
Author: Misha Ahrens, Liam Paninski, Quentin J. Huys
Abstract: Our understanding of the input-output function of single cells has been substantially advanced by biophysically accurate multi-compartmental models. The large number of parameters needing hand tuning in these models has, however, somewhat hampered their applicability and interpretability. Here we propose a simple and well-founded method for automatic estimation of many of these key parameters: 1) the spatial distribution of channel densities on the cell’s membrane; 2) the spatiotemporal pattern of synaptic input; 3) the channels’ reversal potentials; 4) the intercompartmental conductances; and 5) the noise level in each compartment. We assume experimental access to: a) the spatiotemporal voltage signal in the dendrite (or some contiguous subpart thereof, e.g. via voltage sensitive imaging techniques), b) an approximate kinetic description of the channels and synapses present in each compartment, and c) the morphology of the part of the neuron under investigation. The key observation is that, given data a)-c), all of the parameters 1)-4) may be simultaneously inferred by a version of constrained linear regression; this regression, in turn, is efficiently solved using standard algorithms, without any “local minima” problems despite the large number of parameters and complex dynamics. The noise level 5) may also be estimated by standard techniques. We demonstrate the method’s accuracy on several model datasets, and describe techniques for quantifying the uncertainty in our estimates. 1
5 0.50113446 128 nips-2005-Modeling Memory Transfer and Saving in Cerebellar Motor Learning
Author: Naoki Masuda, Shun-ichi Amari
Abstract: There is a long-standing controversy on the site of the cerebellar motor learning. Different theories and experimental results suggest that either the cerebellar flocculus or the brainstem learns the task and stores the memory. With a dynamical system approach, we clarify the mechanism of transferring the memory generated in the flocculus to the brainstem and that of so-called savings phenomena. The brainstem learning must comply with a sort of Hebbian rule depending on Purkinje-cell activities. In contrast to earlier numerical models, our model is simple but it accommodates explanations and predictions of experimental situations as qualitative features of trajectories in the phase space of synaptic weights, without fine parameter tuning. 1
6 0.45851663 61 nips-2005-Dynamical Synapses Give Rise to a Power-Law Distribution of Neuronal Avalanches
7 0.45369771 176 nips-2005-Silicon growth cones map silicon retina
10 0.39307597 157 nips-2005-Principles of real-time computing with feedback applied to cortical microcircuit models
11 0.38692233 165 nips-2005-Response Analysis of Neuronal Population with Synaptic Depression
12 0.37882647 118 nips-2005-Learning in Silicon: Timing is Everything
13 0.35129932 17 nips-2005-Active Bidirectional Coupling in a Cochlear Chip
14 0.32435232 73 nips-2005-Fast biped walking with a reflexive controller and real-time policy searching
15 0.32123911 1 nips-2005-AER Building Blocks for Multi-Layer Multi-Chip Neuromorphic Vision Systems
16 0.31502697 164 nips-2005-Representing Part-Whole Relationships in Recurrent Neural Networks
17 0.29714957 88 nips-2005-Gradient Flow Independent Component Analysis in Micropower VLSI
18 0.26013595 109 nips-2005-Learning Cue-Invariant Visual Responses
19 0.25714219 3 nips-2005-A Bayesian Framework for Tilt Perception and Confidence
20 0.22782888 139 nips-2005-Non-iterative Estimation with Perturbed Gaussian Markov Processes
topicId topicWeight
[(3, 0.024), (10, 0.024), (27, 0.011), (31, 0.032), (34, 0.038), (39, 0.011), (41, 0.011), (55, 0.02), (57, 0.047), (59, 0.02), (60, 0.022), (69, 0.565), (73, 0.014), (88, 0.04), (91, 0.035)]
simIndex simValue paperId paperTitle
same-paper 1 0.9760772 40 nips-2005-CMOL CrossNets: Possible Neuromorphic Nanoelectronic Circuits
Author: Jung Hoon Lee, Xiaolong Ma, Konstantin K. Likharev
Abstract: Hybrid “CMOL” integrated circuits, combining CMOS subsystem with nanowire crossbars and simple two-terminal nanodevices, promise to extend the exponential Moore-Law development of microelectronics into the sub-10-nm range. We are developing neuromorphic network (“CrossNet”) architectures for this future technology, in which neural cell bodies are implemented in CMOS, nanowires are used as axons and dendrites, while nanodevices (bistable latching switches) are used as elementary synapses. We have shown how CrossNets may be trained to perform pattern recovery and classification despite the limitations imposed by the CMOL hardware. Preliminary estimates have shown that CMOL CrossNets may be extremely dense (~10 7 cells per cm2) and operate approximately a million times faster than biological neural networks, at manageable power consumption. In Conclusion, we discuss in brief possible short-term and long-term applications of the emerging technology. 1 Introduction: CMOL Circuits Recent results [1, 2] indicate that the current VLSI paradigm based on CMOS technology can be hardly extended beyond the 10-nm frontier: in this range the sensitivity of parameters (most importantly, the gate voltage threshold) of silicon field-effect transistors to inevitable fabrication spreads grows exponentially. This sensitivity will probably send the fabrication facilities costs skyrocketing, and may lead to the end of Moore’s Law some time during the next decade. There is a growing consensus that the impending Moore’s Law crisis may be preempted by a radical paradigm shift from the purely CMOS technology to hybrid CMOS/nanodevice circuits, e.g., those of “CMOL” variety (Fig. 1). Such circuits (see, e.g., Ref. 3 for their recent review) would combine a level of advanced CMOS devices fabricated by the lithographic patterning, and two-layer nanowire crossbar formed, e.g., by nanoimprint, with nanowires connected by simple, similar, two-terminal nanodevices at each crosspoint. For such devices, molecular single-electron latching switches [4] are presently the leading candidates, in particular because they may be fabricated using the self-assembled monolayer (SAM) technique which already gave reproducible results for simpler molecular devices [5]. (a) nanodevices nanowiring and nanodevices interface pins upper wiring level of CMOS stack (b) βFCMOS Fnano α Fig. 1. CMOL circuit: (a) schematic side view, and (b) top-view zoom-in on several adjacent interface pins. (For clarity, only two adjacent nanodevices are shown.) In order to overcome the CMOS/nanodevice interface problems pertinent to earlier proposals of hybrid circuits [6], in CMOL the interface is provided by pins that are distributed all over the circuit area, on the top of the CMOS stack. This allows to use advanced techniques of nanowire patterning (like nanoimprint) which do not have nanoscale accuracy of layer alignment [3]. The vital feature of this interface is the tilt, by angle α = arcsin(Fnano/βFCMOS), of the nanowire crossbar relative to the square arrays of interface pins (Fig. 1b). Here Fnano is the nanowiring half-pitch, FCMOS is the half-pitch of the CMOS subsystem, and β is a dimensionless factor larger than 1 that depends on the CMOS cell complexity. Figure 1b shows that this tilt allows the CMOS subsystem to address each nanodevice even if Fnano << βFCMOS. By now, it has been shown that CMOL circuits can combine high performance with high defect tolerance (which is necessary for any circuit using nanodevices) for several digital applications. In particular, CMOL circuits with defect rates below a few percent would enable terabit-scale memories [7], while the performance of FPGA-like CMOL circuits may be several hundred times above that of overcome purely CMOL FPGA (implemented with the same FCMOS), at acceptable power dissipation and defect tolerance above 20% [8]. In addition, the very structure of CMOL circuits makes them uniquely suitable for the implementation of more complex, mixed-signal information processing systems, including ultradense and ultrafast neuromorphic networks. The objective of this paper is to describe in brief the current status of our work on the development of so-called Distributed Crossbar Networks (“CrossNets”) that could provide high performance despite the limitations imposed by CMOL hardware. A more detailed description of our earlier results may be found in Ref. 9. 2 Synapses The central device of CrossNet is a two-terminal latching switch [3, 4] (Fig. 2a) which is a combination of two single-electron devices, a transistor and a trap [3]. The device may be naturally implemented as a single organic molecule (Fig. 2b). Qualitatively, the device operates as follows: if voltage V = Vj – Vk applied between the external electrodes (in CMOL, nanowires) is low, the trap island has no net electric charge, and the single-electron transistor is closed. If voltage V approaches certain threshold value V+ > 0, an additional electron is inserted into the trap island, and its field lifts the Coulomb blockade of the single-electron transistor, thus connecting the nanowires. The switch state may be reset (e.g., wires disconnected) by applying a lower voltage V < V- < V+. Due to the random character of single-electron tunneling [2], the quantitative description of the switch is by necessity probabilistic: actually, V determines only the rates Γ↑↓ of device switching between its ON and OFF states. The rates, in turn, determine the dynamics of probability p to have the transistor opened (i.e. wires connected): dp/dt = Γ↑(1 - p) - Γ↓p. (1) The theory of single-electron tunneling [2] shows that, in a good approximation, the rates may be presented as Γ↑↓ = Γ0 exp{±e(V - S)/kBT} , (2) (a) single-electron trap tunnel junction Vj Vk single-electron transistor (b) O clipping group O N C R diimide acceptor groups O O C N R R O OPE wires O N R R N O O R O N R R = hexyl N O O R R O N C R R R Fig. 2. (a) Schematics and (b) possible molecular implementation of the two-terminal single-electron latching switch where Γ0 and S are constants depending on physical parameters of the latching switches. Note that despite the random character of switching, the strong nonlinearity of Eq. (2) allows to limit the degree of the device “fuzziness”. 3 CrossNets Figure 3a shows the generic structure of a CrossNet. CMOS-implemented somatic cells (within the Fire Rate model, just nonlinear differential amplifiers, see Fig. 3b,c) apply their output voltages to “axonic” nanowires. If the latching switch, working as an elementary synapse, on the crosspoint of an axonic wire with the perpendicular “dendritic” wire is open, some current flows into the latter wire, charging it. Since such currents are injected into each dendritic wire through several (many) open synapses, their addition provides a natural passive analog summation of signals from the corresponding somas, typical for all neural networks. Examining Fig. 3a, please note the open-circuit terminations of axonic and dendritic lines at the borders of the somatic cells; due to these terminations the somas do not communicate directly (but only via synapses). The network shown on Fig. 3 is evidently feedforward; recurrent networks are achieved in the evident way by doubling the number of synapses and nanowires per somatic cell (Fig. 3c). Moreover, using dual-rail (bipolar) representation of the signal, and hence doubling the number of nanowires and elementary synapses once again, one gets a CrossNet with somas coupled by compact 4-switch groups [9]. Using Eqs. (1) and (2), it is straightforward to show that that the average synaptic weight wjk of the group obeys the “quasi-Hebbian” rule: d w jk = −4Γ0 sinh (γ S ) sinh (γ V j ) sinh (γ Vk ) . dt (3) (a) - +soma j (b) RL + -- jk+ RL (c) jk- RL + -- -+soma k RL Fig. 3. (a) Generic structure of the simplest, (feedforward, non-Hebbian) CrossNet. Red lines show “axonic”, and blue lines “dendritic” nanowires. Gray squares are interfaces between nanowires and CMOS-based somas (b, c). Signs show the dendrite input polarities. Green circles denote molecular latching switches forming elementary synapses. Bold red and blue points are open-circuit terminations of the nanowires, that do not allow somas to interact in bypass of synapses In the simplest cases (e.g., quasi-Hopfield networks with finite connectivity), the tri-level synaptic weights of the generic CrossNets are quite satisfactory, leading to just a very modest (~30%) network capacity loss. However, some applications (in particular, pattern classification) may require a larger number of weight quantization levels L (e.g., L ≈ 30 for a 1% fidelity [9]). This may be achieved by using compact square arrays (e.g., 4×4) of latching switches (Fig. 4). Various species of CrossNets [9] differ also by the way the somatic cells are distributed around the synaptic field. Figure 5 shows feedforward versions of two CrossNet types most explored so far: the so-called FlossBar and InBar. The former network is more natural for the implementation of multilayered perceptrons (MLP), while the latter system is preferable for recurrent network implementations and also allows a simpler CMOS design of somatic cells. The most important advantage of CrossNets over the hardware neural networks suggested earlier is that these networks allow to achieve enormous density combined with large cell connectivity M >> 1 in quasi-2D electronic circuits. 4 CrossNet training CrossNet training faces several hardware-imposed challenges: (i) The synaptic weight contribution provided by the elementary latching switch is binary, so that for most applications the multi-switch synapses (Fig. 4) are necessary. (ii) The only way to adjust any particular synaptic weight is to turn ON or OFF the corresponding latching switch(es). This is only possible to do by applying certain voltage V = Vj – Vk between the two corresponding nanowires. At this procedure, other nanodevices attached to the same wires should not be disturbed. (iii) As stated above, synapse state switching is a statistical progress, so that the degree of its “fuzziness” should be carefully controlled. (a) Vj (b) V w – A/2 i=1 i=1 2 2 … … n n Vj V w+ A/2 i' = 1 RL 2 … i' = 1 n RS ±(V t –A/2) 2 … RS n ±(V t +A/2) Fig. 4. Composite synapse for providing L = 2n2+1 discrete levels of the weight in (a) operation and (b) weight adjustment modes. The dark-gray rectangles are resistive metallic strips at soma/nanowire interfaces (a) (b) Fig. 5. Two main CrossNet species: (a) FlossBar and (b) InBar, in the generic (feedforward, non-Hebbian, ternary-weight) case for the connectivity parameter M = 9. Only the nanowires and nanodevices coupling one cell (indicated with red dashed lines) to M post-synaptic cells (blue dashed lines) are shown; actually all the cells are similarly coupled We have shown that these challenges may be met using (at least) the following training methods [9]: (i) Synaptic weight import. This procedure is started with training of a homomorphic “precursor” artificial neural network with continuous synaptic weighs wjk, implemented in software, using one of established methods (e.g., error backpropagation). Then the synaptic weights wjk are transferred to the CrossNet, with some “clipping” (rounding) due to the binary nature of elementary synaptic weights. To accomplish the transfer, pairs of somatic cells are sequentially selected via CMOS-level wiring. Using the flexibility of CMOS circuitry, these cells are reconfigured to apply external voltages ±VW to the axonic and dendritic nanowires leading to a particular synapse, while all other nanowires are grounded. The voltage level V W is selected so that it does not switch the synapses attached to only one of the selected nanowires, while voltage 2VW applied to the synapse at the crosspoint of the selected wires is sufficient for its reliable switching. (In the composite synapses with quasi-continuous weights (Fig. 4), only a part of the corresponding switches is turned ON or OFF.) (ii) Error backpropagation. The synaptic weight import procedure is straightforward when wjk may be simply calculated, e.g., for the Hopfield-type networks. However, for very large CrossNets used, e.g., as pattern classifiers the precursor network training may take an impracticably long time. In this case the direct training of a CrossNet may become necessary. We have developed two methods of such training, both based on “Hebbian” synapses consisting of 4 elementary synapses (latching switches) whose average weight dynamics obeys Eq. (3). This quasi-Hebbian rule may be used to implement the backpropagation algorithm either using a periodic time-multiplexing [9] or in a continuous fashion, using the simultaneous propagation of signals and errors along the same dual-rail channels. As a result, presently we may state that CrossNets may be taught to perform virtually all major functions demonstrated earlier with the usual neural networks, including the corrupted pattern restoration in the recurrent quasi-Hopfield mode and pattern classification in the feedforward MLP mode [11]. 5 C r o s s N e t p e r f o r m an c e e s t i m a t e s The significance of this result may be only appreciated in the context of unparalleled physical parameters of CMOL CrossNets. The only fundamental limitation on the half-pitch Fnano (Fig. 1) comes from quantum-mechanical tunneling between nanowires. If the wires are separated by vacuum, the corresponding specific leakage conductance becomes uncomfortably large (~10-12 Ω-1m-1) only at Fnano = 1.5 nm; however, since realistic insulation materials (SiO2, etc.) provide somewhat lower tunnel barriers, let us use a more conservative value Fnano= 3 nm. Note that this value corresponds to 1012 elementary synapses per cm2, so that for 4M = 104 and n = 4 the areal density of neural cells is close to 2×107 cm-2. Both numbers are higher than those for the human cerebral cortex, despite the fact that the quasi-2D CMOL circuits have to compete with quasi-3D cerebral cortex. With the typical specific capacitance of 3×10-10 F/m = 0.3 aF/nm, this gives nanowire capacitance C0 ≈ 1 aF per working elementary synapse, because the corresponding segment has length 4Fnano. The CrossNet operation speed is determined mostly by the time constant τ0 of dendrite nanowire capacitance recharging through resistances of open nanodevices. Since both the relevant conductance and capacitance increase similarly with M and n, τ0 ≈ R0C0. The possibilities of reduction of R0, and hence τ0, are limited mostly by acceptable power dissipation per unit area, that is close to Vs2/(2Fnano)2R0. For room-temperature operation, the voltage scale V0 ≈ Vt should be of the order of at least 30 kBT/e ≈ 1 V to avoid thermally-induced errors [9]. With our number for Fnano, and a relatively high but acceptable power consumption of 100 W/cm2, we get R0 ≈ 1010Ω (which is a very realistic value for single-molecule single-electron devices like one shown in Fig. 3). With this number, τ0 is as small as ~10 ns. This means that the CrossNet speed may be approximately six orders of magnitude (!) higher than that of the biological neural networks. Even scaling R0 up by a factor of 100 to bring power consumption to a more comfortable level of 1 W/cm2, would still leave us at least a four-orders-of-magnitude speed advantage. 6 D i s c u s s i on: P o s s i bl e a p p l i c at i o n s These estimates make us believe that that CMOL CrossNet chips may revolutionize the neuromorphic network applications. Let us start with the example of relatively small (1-cm2-scale) chips used for recognition of a face in a crowd [11]. The most difficult feature of such recognition is the search for face location, i.e. optimal placement of a face on the image relative to the panel providing input for the processing network. The enormous density and speed of CMOL hardware gives a possibility to time-and-space multiplex this task (Fig. 6). In this approach, the full image (say, formed by CMOS photodetectors on the same chip) is divided into P rectangular panels of h×w pixels, corresponding to the expected size and approximate shape of a single face. A CMOS-implemented communication channel passes input data from each panel to the corresponding CMOL neural network, providing its shift in time, say using the TV scanning pattern (red line in Fig. 6). The standard methods of image classification require the network to have just a few hidden layers, so that the time interval Δt necessary for each mapping position may be so short that the total pattern recognition time T = hwΔt may be acceptable even for online face recognition. w h image network input Fig. 6. Scan mapping of the input image on CMOL CrossNet inputs. Red lines show the possible time sequence of image pixels sent to a certain input of the network processing image from the upper-left panel of the pattern Indeed, let us consider a 4-Megapixel image partitioned into 4K 32×32-pixel panels (h = w = 32). This panel will require an MLP net with several (say, four) layers with 1K cells each in order to compare the panel image with ~10 3 stored faces. With the feasible 4-nm nanowire half-pitch, and 65-level synapses (sufficient for better than 99% fidelity [9]), each interlayer crossbar would require chip area about (4K×64 nm)2 = 64×64 μm2, fitting 4×4K of them on a ~0.6 cm2 chip. (The CMOS somatic-layer and communication-system overheads are negligible.) With the acceptable power consumption of the order of 10 W/cm2, the input-to-output signal propagation in such a network will take only about 50 ns, so that Δt may be of the order of 100 ns and the total time T = hwΔt of processing one frame of the order of 100 microseconds, much shorter than the typical TV frame time of ~10 milliseconds. The remaining two-orders-of-magnitude time gap may be used, for example, for double-checking the results via stopping the scan mapping (Fig. 6) at the most promising position. (For this, a simple feedback from the recognition output to the mapping communication system is necessary.) It is instructive to compare the estimated CMOL chip speed with that of the implementation of a similar parallel network ensemble on a CMOS signal processor (say, also combined on the same chip with an array of CMOS photodetectors). Even assuming an extremely high performance of 30 billion additions/multiplications per second, we would need ~4×4K×1K×(4K)2/(30×109) ≈ 104 seconds ~ 3 hours per frame, evidently incompatible with the online image stream processing. Let us finish with a brief (and much more speculative) discussion of possible long-term prospects of CMOL CrossNets. Eventually, large-scale (~30×30 cm2) CMOL circuits may become available. According to the estimates given in the previous section, the integration scale of such a system (in terms of both neural cells and synapses) will be comparable with that of the human cerebral cortex. Equipped with a set of broadband sensor/actuator interfaces, such (necessarily, hierarchical) system may be capable, after a period of initial supervised training, of further self-training in the process of interaction with environment, with the speed several orders of magnitude higher than that of its biological prototypes. Needless to say, the successful development of such self-developing systems would have a major impact not only on all information technologies, but also on the society as a whole. Acknowledgments This work has been supported in part by the AFOSR, MARCO (via FENA Center), and NSF. Valuable contributions made by Simon Fölling, Özgür Türel and Ibrahim Muckra, as well as useful discussions with P. Adams, J. Barhen, D. Hammerstrom, V. Protopopescu, T. Sejnowski, and D. Strukov are gratefully acknowledged. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Frank, D. J. et al. (2001) Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3): 259-288. Likharev, K. K. (2003) Electronics below 10 nm, in J. Greer et al. (eds.), Nano and Giga Challenges in Microelectronics, pp. 27-68. Amsterdam: Elsevier. Likharev, K. K. and Strukov, D. B. (2005) CMOL: Devices, circuits, and architectures, in G. Cuniberti et al. (eds.), Introducing Molecular Electronics, Ch. 16. Springer, Berlin. Fölling, S., Türel, Ö. & Likharev, K. K. (2001) Single-electron latching switches as nanoscale synapses, in Proc. of the 2001 Int. Joint Conf. on Neural Networks, pp. 216-221. Mount Royal, NJ: Int. Neural Network Society. Wang, W. et al. (2003) Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68(3): 035416 1-8. Stan M. et al. (2003) Molecular electronics: From devices and interconnect to circuits and architecture, Proc. IEEE 91(11): 1940-1957. Strukov, D. B. & Likharev, K. K. (2005) Prospects for terabit-scale nanoelectronic memories. Nanotechnology 16(1): 137-148. Strukov, D. B. & Likharev, K. K. (2005) CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6): 888-900. Türel, Ö. et al. (2004) Neuromorphic architectures for nanoelectronic circuits”, Int. J. of Circuit Theory and Appl. 32(5): 277-302. See, e.g., Hertz J. et al. (1991) Introduction to the Theory of Neural Computation. Cambridge, MA: Perseus. Lee, J. H. & Likharev, K. K. (2005) CrossNets as pattern classifiers. Lecture Notes in Computer Sciences 3575: 434-441.
2 0.93138236 6 nips-2005-A Connectionist Model for Constructive Modal Reasoning
Author: Artur Garcez, Luis C. Lamb, Dov M. Gabbay
Abstract: We present a new connectionist model for constructive, intuitionistic modal reasoning. We use ensembles of neural networks to represent intuitionistic modal theories, and show that for each intuitionistic modal program there exists a corresponding neural network ensemble that computes the program. This provides a massively parallel model for intuitionistic modal reasoning, and sets the scene for integrated reasoning, knowledge representation, and learning of intuitionistic theories in neural networks, since the networks in the ensemble can be trained by examples using standard neural learning algorithms. 1
3 0.91801363 18 nips-2005-Active Learning For Identifying Function Threshold Boundaries
Author: Brent Bryan, Robert C. Nichol, Christopher R. Genovese, Jeff Schneider, Christopher J. Miller, Larry Wasserman
Abstract: We present an efficient algorithm to actively select queries for learning the boundaries separating a function domain into regions where the function is above and below a given threshold. We develop experiment selection methods based on entropy, misclassification rate, variance, and their combinations, and show how they perform on a number of data sets. We then show how these algorithms are used to determine simultaneously valid 1 − α confidence intervals for seven cosmological parameters. Experimentation shows that the algorithm reduces the computation necessary for the parameter estimation problem by an order of magnitude.
4 0.9022361 180 nips-2005-Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms
Author: Baback Moghaddam, Yair Weiss, Shai Avidan
Abstract: Sparse PCA seeks approximate sparse “eigenvectors” whose projections capture the maximal variance of data. As a cardinality-constrained and non-convex optimization problem, it is NP-hard and is encountered in a wide range of applied fields, from bio-informatics to finance. Recent progress has focused mainly on continuous approximation and convex relaxation of the hard cardinality constraint. In contrast, we consider an alternative discrete spectral formulation based on variational eigenvalue bounds and provide an effective greedy strategy as well as provably optimal solutions using branch-and-bound search. Moreover, the exact methodology used reveals a simple renormalization step that improves approximate solutions obtained by any continuous method. The resulting performance gain of discrete algorithms is demonstrated on real-world benchmark data and in extensive Monte Carlo evaluation trials. 1
5 0.83843523 115 nips-2005-Learning Shared Latent Structure for Image Synthesis and Robotic Imitation
Author: Aaron Shon, Keith Grochow, Aaron Hertzmann, Rajesh P. Rao
Abstract: We propose an algorithm that uses Gaussian process regression to learn common hidden structure shared between corresponding sets of heterogenous observations. The observation spaces are linked via a single, reduced-dimensionality latent variable space. We present results from two datasets demonstrating the algorithms’s ability to synthesize novel data from learned correspondences. We first show that the method can learn the nonlinear mapping between corresponding views of objects, filling in missing data as needed to synthesize novel views. We then show that the method can learn a mapping between human degrees of freedom and robotic degrees of freedom for a humanoid robot, allowing robotic imitation of human poses from motion capture data. 1
6 0.60577261 200 nips-2005-Variable KD-Tree Algorithms for Spatial Pattern Search and Discovery
7 0.58488762 181 nips-2005-Spiking Inputs to a Winner-take-all Network
8 0.54085451 149 nips-2005-Optimal cue selection strategy
9 0.50084418 99 nips-2005-Integrate-and-Fire models with adaptation are good enough
10 0.49239588 96 nips-2005-Inference with Minimal Communication: a Decision-Theoretic Variational Approach
11 0.4908039 72 nips-2005-Fast Online Policy Gradient Learning with SMD Gain Vector Adaptation
12 0.48327985 169 nips-2005-Saliency Based on Information Maximization
13 0.47592783 67 nips-2005-Extracting Dynamical Structure Embedded in Neural Activity
14 0.47479975 20 nips-2005-Affine Structure From Sound
15 0.47378406 68 nips-2005-Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care
16 0.46727988 93 nips-2005-Ideal Observers for Detecting Motion: Correspondence Noise
17 0.45253855 203 nips-2005-Visual Encoding with Jittering Eyes
18 0.45125926 9 nips-2005-A Domain Decomposition Method for Fast Manifold Learning
19 0.45109844 106 nips-2005-Large-scale biophysical parameter estimation in single neurons via constrained linear regression
20 0.45017916 163 nips-2005-Recovery of Jointly Sparse Signals from Few Random Projections