nips nips2005 nips2005-25 knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Andre V. Schaik, Richard Reeve, Craig Jin, Tara Hamilton
Abstract: Female crickets can locate males by phonotaxis to the mating song they produce. The behaviour and underlying physiology has been studied in some depth showing that the cricket auditory system solves this complex problem in a unique manner. We present an analogue very large scale integrated (aVLSI) circuit model of this process and show that results from testing the circuit agree with simulation and what is known from the behaviour and physiology of the cricket auditory system. The aVLSI circuitry is now being extended to use on a robot along with previously modelled neural circuitry to better understand the complete sensorimotor pathway. 1 In trod u ction Understanding how insects carry out complex sensorimotor tasks can help in the design of simple sensory and robotic systems. Often insect sensors have evolved into intricate filters matched to extract highly specific data from the environment which solves a particular problem directly with little or no need for further processing [1]. Examples include head stabilisation in the fly, which uses vision amongst other senses to estimate self-rotation and thus to stabilise its head in flight, and phonotaxis in the cricket. Because of the narrowness of the cricket body (only a few millimetres), the Interaural Time Difference (ITD) for sounds arriving at the two sides of the head is very small (10–20µs). Even with the tympanal membranes (eardrums) located, as they are, on the forelegs of the cricket, the ITD only reaches about 40µs, which is too low to detect directly from timings of neural spikes. Because the wavelength of the cricket calling song is significantly greater than the width of the cricket body the Interaural Intensity Difference (IID) is also very low. In the absence of ITD or IID information, the cricket uses phase to determine direction. This is possible because the male cricket produces an almost pure tone for its calling song. * School of Electrical and Information Engineering, Institute of Perception, Action and Behaviour. + Figure 1: The cricket auditory system. Four acoustic inputs channel sounds directly or through tracheal tubes onto two tympanal membranes. Sound from contralateral inputs has to pass a (double) central membrane (the medial septum), inducing a phase delay and reduction in gain. The sound transmission from the contralateral tympanum is very weak, making each eardrum effectively a 3 input system. The physics of the cricket auditory system is well understood [2]; the system (see Figure 1) uses a pair of sound receivers with four acoustic inputs, two on the forelegs, which are the external surfaces of the tympana, and two on the body, the prothoracic or acoustic spiracles [3]. The connecting tracheal tubes are such that interference occurs as sounds travel inside the cricket, producing a directional response at the tympana to frequencies near to that of the calling song. The amplitude of vibration of the tympana, and hence the firing rate of the auditory afferent neurons attached to them, vary as a sound source is moved around the cricket and the sounds from the different inputs move in and out of phase. The outputs of the two tympana match when the sound is straight ahead, and the inputs are bilaterally symmetric with respect to the sound source. However, when sound at the calling song frequency is off-centre the phase of signals on the closer side comes better into alignment, and the signal increases on that side, and conversely decreases on the other. It is that crossover of tympanal vibration amplitudes which allows the cricket to track a sound source (see Figure 6 for example). A simplified version of the auditory system using only two acoustic inputs was implemented in hardware [4], and a simple 8-neuron network was all that was required to then direct a robot to carry out phonotaxis towards a species-specific calling song [5]. A simple simulator was also created to model the behaviour of the auditory system of Figure 1 at different frequencies [6]. Data from Michelsen et al. [2] (Figures 5 and 6) were digitised, and used together with average and “typical” values from the paper to choose gains and delays for the simulation. Figure 2 shows the model of the internal auditory system of the cricket from sound arriving at the acoustic inputs through to transmission down auditory receptor fibres. The simulator implements this model up to the summing of the delayed inputs, as well as modelling the external sound transmission. Results from the simulator were used to check the directionality of the system at different frequencies, and to gain a better understanding of its response. It was impractical to check the effect of leg movements or of complex sounds in the simulator due to the necessity of simulating the sound production and transmission. An aVLSI chip was designed to implement the same model, both allowing more complex experiments, such as leg movements to be run, and experiments to be run in the real world. Figure 2: A model of the auditory system of the cricket, used to build the simulator and the aVLSI implementation (shown in boxes). These experiments with the simulator and the circuits are being published in [6] and the reader is referred to those papers for more details. In the present paper we present the details of the circuits used for the aVLSI implementation. 2 Circuits The chip, implementing the aVLSI box in Figure 2, comprises two all-pass delay filters, three gain circuits, a second-order narrow-band band-pass filter, a first-order wide-band band-pass filter, a first-order high-pass filter, as well as supporting circuitry (including reference voltages, currents, etc.). A single aVLSI chip (MOSIS tiny-chip) thus includes half the necessary circuitry to model the complete auditory system of a cricket. The complete model of the auditory system can be obtained by using two appropriately connected chips. Only two all-pass delay filters need to be implemented instead of three as suggested by Figure 2, because it is only the relative delay between the three pathways arriving at the one summing node that counts. The delay circuits were implemented with fully-differential gm-C filters. In order to extend the frequency range of the delay, a first-order all-pass delay circuit was cascaded with a second-order all-pass delay circuit. The resulting addition of the first-order delay and the second-order delay allowed for an approximately flat delay response for a wider bandwidth as the decreased delay around the corner frequency of the first-order filter cancelled with the increased delay of the second-order filter around its resonant frequency. Figure 3 shows the first- and second-order sections of the all-pass delay circuit. Two of these circuits were used and, based on data presented in [2], were designed with delays of 28µs and 62µs, by way of bias current manipulation. The operational transconductance amplifier (OTA) in figure 3 is a standard OTA which includes the common-mode feedback necessary for fully differential designs. The buffers (Figure 3) are simple, cascoded differential pairs. V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ Figure 3: The first-order all-pass delay circuit (left) and the second-order all-pass delay (right). The differential output of the delay circuits is converted into a current which is multiplied by a variable gain implemented as shown in Figure 4. The gain cell includes a differential pair with source degeneration via transistors N4 and N5. The source degeneration improves the linearity of the current. The three gain cells implemented on the aVLSI have default gains of 2, 3 and 0.91 which are set by holding the default input high and appropriately ratioing the bias currents through the value of vbiasp. To correct any on-chip mismatches and/or explore other gain configurations a current splitter cell [7] (p-splitter, figure 4) allows the gain to be programmed by digital means post fabrication. The current splitter takes an input current (Ibias, figure 4) and divides it into branches which recursively halve the current, i.e., the first branch gives ½ Ibias, the second branch ¼ Ibias, the third branch 1/8 Ibias and so on. These currents can be used together with digitally controlled switches as a Digital-to-Analogue converter. By holding default low and setting C5:C0 appropriately, any gain – from 4 to 0.125 – can be set. To save on output pins the program bits (C5:C0) for each of the three gain cells are set via a single 18-bit shift register in bit-serial fashion. Summing the output of the three gain circuits in the current domain simply involves connecting three wires together. Therefore, a natural option for the filters that follow is to use current domain filters. In our case we have chosen to implement log-domain filters using MOS transistors operating in weak inversion. Figure 5 shows the basic building blocks for the filters – the Tau Cell [8] and the multiplier cell – and block diagrams showing how these blocks were connected to create the necessary filtering blocks. The Tau Cell is a log-domain filter which has the firstorder response: I out 1 , = I in sτ + 1 where τ = nC aVT Ia and n = the slope factor, VT = thermal voltage, Ca = capacitance, and Ia = bias current. In figure 5, the input currents to the Tau Cell, Imult and A*Ia, are only used when building a second-order filter. The multiplier cell is simply a translinear loop where: I out1 ∗ I mult = I out 2 ∗ AI a or Imult = AIaIout2/Iout1. The configurations of the Tau Cell to get particular responses are covered in [8] along with the corresponding equations. The high frequency filter of Figure 2 is implemented by the high-pass filter in Figure 5 with a corner frequency of 17kHz. The low frequency filter, however, is divided into two parts since the biological filter’s response (see for example Figure 3A in [9]) separates well into a narrow second-order band-pass filter with a 10kHz resonant frequency and a wide band-pass filter made from a first-order high-pass filter with a 3kHz corner frequency followed by a first-order low-pass filter with a 12kHz corner frequency. These filters are then added together to reproduce the biological filter. The filters’ responses can be adjusted post fabrication via their bias currents. This allows for compensation due to processing and matching errors. Figure 4: The Gain Cell above is used to convert the differential voltage input from the delay cells into a single-ended current output. The gain of each cell is controllable via a programmable current cell (p_splitter). An on-chip bias generator [7] was used to create all the necessary current biases on the chip. All the main blocks (delays, gain cells and filters), however, can have their on-chip bias currents overridden through external pins on the chip. The chip was fabricated using the MOSIS AMI 1.6µm technology and designed using the Cadence Custom IC Design Tools (5.0.33). 3 Methods The chip was tested using sound generated on a computer and played through a soundcard to the chip. Responses from the chip were recorded by an oscilloscope, and uploaded back to the computer on completion. Given that the output from the chip and the gain circuits is a current, an external current-sense circuit built with discrete components was used to enable the output to be probed by the oscilloscope. Figure 5: The circuit diagrams for the log-domain filter building blocks – The Tau Cell and The Multiplier – along with the block diagrams for the three filters used in the aVLSI model. Initial experiments were performed to tune the delays and gains. After that, recordings were taken of the directional frequency responses. Sounds were generated by computer for each chip input to simulate moving the forelegs by delaying the sound by the appropriate amount of time; this was a much simpler solution than using microphones and moving them using motors. 4 Results The aVLSI chip was tested to measure its gains and delays, which were successfully tuned to the appropriate values. The chip was then compared with the simulation to check that it was faithfully modelling the system. A result of this test at 4kHz (approximately the cricket calling-song frequency) is shown in Figure 6. Apart from a drop in amplitude of the signal, the response of the circuit was very similar to that of the simulator. The differences were expected because the aVLSI circuit has to deal with real-world noise, whereas the simulated version has perfect signals. Examples of the gain versus frequency response of the two log-domain band-pass filters are shown in Figure 7. Note that the narrow-band filter peaks at 6kHz, which is significantly above the mating song frequency of the cricket which is around 4.5kHz. This is not a mistake, but is observed in real crickets as well. As stated in the introduction, a range of further testing results with both the circuit and the simulator are being published in [6]. 5 D i s c u s s i on The aVLSI auditory sensor in this research models the hearing of the field cricket Gryllus bimaculatus. It is a more faithful model of the cricket auditory system than was previously built in [4], reproducing all the acoustic inputs, as well as the responses to frequencies of both the co specific calling song and bat echolocation chirps. It also generates outputs corresponding to the two sets of behaviourally relevant auditory receptor fibres. Results showed that it matched the biological data well, though there were some inconsistencies due to an error in the specification that will be addressed in a future iteration of the design. A more complete implementation across all frequencies was impractical because of complexity and size issues as well as serving no clear behavioural purpose. Figure 6: Vibration amplitude of the left (dotted) and right (solid) virtual tympana measured in decibels in response to a 4kHz tone in simulation (left) and on the aVLSI chip (right). The plot shows the amplitude of the tympanal responses as the sound source is rotated around the cricket. Figure 7: Frequency-Gain curves for the narrow-band and wide-band bandpass filters. The long-term aim of this work is to better understand simple sensorimotor control loops in crickets and other insects. The next step is to mount this circuitry on a robot to carry out behavioural experiments, which we will compare with existing and new behavioural data (such as that in [10]). This will allow us to refine our models of the neural circuitry involved. Modelling the sensory afferent neurons in hardware is necessary in order to reduce processor load on our robot, so the next revision will include these either onboard, or on a companion chip as we have done before [11]. We will also move both sides of the auditory system onto a single chip to conserve space on the robot. It is our belief and experience that, as a result of this intelligent pre-processing carried out at the sensor level, the neural circuits necessary to accurately model the behaviour will remain simple. Acknowledgments The authors thank the Institute of Neuromorphic Engineering and the UK Biotechnology and Biological Sciences Research Council for funding the research in this paper. References [1] R. Wehner. Matched filters – neural models of the external world. J Comp Physiol A, 161: 511–531, 1987. [2] A. Michelsen, A. V. Popov, and B. Lewis. Physics of directional hearing in the cricket Gryllus bimaculatus. Journal of Comparative Physiology A, 175:153–164, 1994. [3] A. Michelsen. The tuned cricket. News Physiol. Sci., 13:32–38, 1998. [4] H. H. Lund, B. Webb, and J. Hallam. A robot attracted to the cricket species Gryllus bimaculatus. In P. Husbands and I. Harvey, editors, Proceedings of 4th European Conference on Artificial Life, pages 246–255. MIT Press/Bradford Books, MA., 1997. [5] R Reeve and B. Webb. New neural circuits for robot phonotaxis. Phil. Trans. R. Soc. Lond. A, 361:2245–2266, August 2003. [6] R. Reeve, A. van Schaik, C. Jin, T. Hamilton, B. Torben-Nielsen and B. Webb Directional hearing in a silicon cricket. Biosystems, (in revision), 2005b [7] T. Delbrück and A. van Schaik, Bias Current Generators with Wide Dynamic Range, Analog Integrated Circuits and Signal Processing 42(2), 2005 [8] A. van Schaik and C. Jin, The Tau Cell: A New Method for the Implementation of Arbitrary Differential Equations, IEEE International Symposium on Circuits and Systems (ISCAS) 2003 [9] Kazuo Imaizumi and Gerald S. Pollack. Neural coding of sound frequency by cricket auditory receptors. The Journal of Neuroscience, 19(4):1508– 1516, 1999. [10] Berthold Hedwig and James F.A. Poulet. Complex auditory behaviour emerges from simple reactive steering. Nature, 430:781–785, 2004. [11] R. Reeve, B. Webb, A. Horchler, G. Indiveri, and R. Quinn. New technologies for testing a model of cricket phonotaxis on an outdoor robot platform. Robotics and Autonomous Systems, 51(1):41-54, 2005.
Reference: text
sentIndex sentText sentNum sentScore
1 An aVLSI cricket ear model André van Schaik* The University of Sydney NSW 2006, AUSTRALIA andre@ee. [sent-1, score-0.587]
2 au Abstract Female crickets can locate males by phonotaxis to the mating song they produce. [sent-13, score-0.273]
3 The behaviour and underlying physiology has been studied in some depth showing that the cricket auditory system solves this complex problem in a unique manner. [sent-14, score-0.92]
4 We present an analogue very large scale integrated (aVLSI) circuit model of this process and show that results from testing the circuit agree with simulation and what is known from the behaviour and physiology of the cricket auditory system. [sent-15, score-1.08]
5 The aVLSI circuitry is now being extended to use on a robot along with previously modelled neural circuitry to better understand the complete sensorimotor pathway. [sent-16, score-0.301]
6 1 In trod u ction Understanding how insects carry out complex sensorimotor tasks can help in the design of simple sensory and robotic systems. [sent-17, score-0.073]
7 Often insect sensors have evolved into intricate filters matched to extract highly specific data from the environment which solves a particular problem directly with little or no need for further processing [1]. [sent-18, score-0.237]
8 Examples include head stabilisation in the fly, which uses vision amongst other senses to estimate self-rotation and thus to stabilise its head in flight, and phonotaxis in the cricket. [sent-19, score-0.156]
9 Because of the narrowness of the cricket body (only a few millimetres), the Interaural Time Difference (ITD) for sounds arriving at the two sides of the head is very small (10–20µs). [sent-20, score-0.747]
10 Even with the tympanal membranes (eardrums) located, as they are, on the forelegs of the cricket, the ITD only reaches about 40µs, which is too low to detect directly from timings of neural spikes. [sent-21, score-0.149]
11 Because the wavelength of the cricket calling song is significantly greater than the width of the cricket body the Interaural Intensity Difference (IID) is also very low. [sent-22, score-1.357]
12 In the absence of ITD or IID information, the cricket uses phase to determine direction. [sent-23, score-0.552]
13 This is possible because the male cricket produces an almost pure tone for its calling song. [sent-24, score-0.724]
14 Four acoustic inputs channel sounds directly or through tracheal tubes onto two tympanal membranes. [sent-27, score-0.419]
15 Sound from contralateral inputs has to pass a (double) central membrane (the medial septum), inducing a phase delay and reduction in gain. [sent-28, score-0.306]
16 The sound transmission from the contralateral tympanum is very weak, making each eardrum effectively a 3 input system. [sent-29, score-0.198]
17 The physics of the cricket auditory system is well understood [2]; the system (see Figure 1) uses a pair of sound receivers with four acoustic inputs, two on the forelegs, which are the external surfaces of the tympana, and two on the body, the prothoracic or acoustic spiracles [3]. [sent-30, score-1.242]
18 The connecting tracheal tubes are such that interference occurs as sounds travel inside the cricket, producing a directional response at the tympana to frequencies near to that of the calling song. [sent-31, score-0.599]
19 The amplitude of vibration of the tympana, and hence the firing rate of the auditory afferent neurons attached to them, vary as a sound source is moved around the cricket and the sounds from the different inputs move in and out of phase. [sent-32, score-1.271]
20 The outputs of the two tympana match when the sound is straight ahead, and the inputs are bilaterally symmetric with respect to the sound source. [sent-33, score-0.488]
21 However, when sound at the calling song frequency is off-centre the phase of signals on the closer side comes better into alignment, and the signal increases on that side, and conversely decreases on the other. [sent-34, score-0.458]
22 It is that crossover of tympanal vibration amplitudes which allows the cricket to track a sound source (see Figure 6 for example). [sent-35, score-0.883]
23 A simplified version of the auditory system using only two acoustic inputs was implemented in hardware [4], and a simple 8-neuron network was all that was required to then direct a robot to carry out phonotaxis towards a species-specific calling song [5]. [sent-36, score-0.867]
24 A simple simulator was also created to model the behaviour of the auditory system of Figure 1 at different frequencies [6]. [sent-37, score-0.498]
25 [2] (Figures 5 and 6) were digitised, and used together with average and “typical” values from the paper to choose gains and delays for the simulation. [sent-39, score-0.112]
26 Figure 2 shows the model of the internal auditory system of the cricket from sound arriving at the acoustic inputs through to transmission down auditory receptor fibres. [sent-40, score-1.443]
27 The simulator implements this model up to the summing of the delayed inputs, as well as modelling the external sound transmission. [sent-41, score-0.396]
28 Results from the simulator were used to check the directionality of the system at different frequencies, and to gain a better understanding of its response. [sent-42, score-0.291]
29 It was impractical to check the effect of leg movements or of complex sounds in the simulator due to the necessity of simulating the sound production and transmission. [sent-43, score-0.448]
30 An aVLSI chip was designed to implement the same model, both allowing more complex experiments, such as leg movements to be run, and experiments to be run in the real world. [sent-44, score-0.207]
31 Figure 2: A model of the auditory system of the cricket, used to build the simulator and the aVLSI implementation (shown in boxes). [sent-45, score-0.388]
32 These experiments with the simulator and the circuits are being published in [6] and the reader is referred to those papers for more details. [sent-46, score-0.259]
33 In the present paper we present the details of the circuits used for the aVLSI implementation. [sent-47, score-0.14]
34 A single aVLSI chip (MOSIS tiny-chip) thus includes half the necessary circuitry to model the complete auditory system of a cricket. [sent-50, score-0.527]
35 The complete model of the auditory system can be obtained by using two appropriately connected chips. [sent-51, score-0.299]
36 Only two all-pass delay filters need to be implemented instead of three as suggested by Figure 2, because it is only the relative delay between the three pathways arriving at the one summing node that counts. [sent-52, score-0.714]
37 The delay circuits were implemented with fully-differential gm-C filters. [sent-53, score-0.386]
38 In order to extend the frequency range of the delay, a first-order all-pass delay circuit was cascaded with a second-order all-pass delay circuit. [sent-54, score-0.593]
39 Figure 3 shows the first- and second-order sections of the all-pass delay circuit. [sent-56, score-0.209]
40 Two of these circuits were used and, based on data presented in [2], were designed with delays of 28µs and 62µs, by way of bias current manipulation. [sent-57, score-0.3]
41 The operational transconductance amplifier (OTA) in figure 3 is a standard OTA which includes the common-mode feedback necessary for fully differential designs. [sent-58, score-0.057]
42 V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ Figure 3: The first-order all-pass delay circuit (left) and the second-order all-pass delay (right). [sent-60, score-0.515]
43 The differential output of the delay circuits is converted into a current which is multiplied by a variable gain implemented as shown in Figure 4. [sent-61, score-0.586]
44 The gain cell includes a differential pair with source degeneration via transistors N4 and N5. [sent-62, score-0.374]
45 The source degeneration improves the linearity of the current. [sent-63, score-0.078]
46 The three gain cells implemented on the aVLSI have default gains of 2, 3 and 0. [sent-64, score-0.256]
47 91 which are set by holding the default input high and appropriately ratioing the bias currents through the value of vbiasp. [sent-65, score-0.213]
48 To correct any on-chip mismatches and/or explore other gain configurations a current splitter cell [7] (p-splitter, figure 4) allows the gain to be programmed by digital means post fabrication. [sent-66, score-0.425]
49 The current splitter takes an input current (Ibias, figure 4) and divides it into branches which recursively halve the current, i. [sent-67, score-0.114]
50 , the first branch gives ½ Ibias, the second branch ¼ Ibias, the third branch 1/8 Ibias and so on. [sent-69, score-0.117]
51 These currents can be used together with digitally controlled switches as a Digital-to-Analogue converter. [sent-70, score-0.061]
52 By holding default low and setting C5:C0 appropriately, any gain – from 4 to 0. [sent-71, score-0.181]
53 To save on output pins the program bits (C5:C0) for each of the three gain cells are set via a single 18-bit shift register in bit-serial fashion. [sent-73, score-0.177]
54 Summing the output of the three gain circuits in the current domain simply involves connecting three wires together. [sent-74, score-0.283]
55 Therefore, a natural option for the filters that follow is to use current domain filters. [sent-75, score-0.205]
56 In our case we have chosen to implement log-domain filters using MOS transistors operating in weak inversion. [sent-76, score-0.202]
57 Figure 5 shows the basic building blocks for the filters – the Tau Cell [8] and the multiplier cell – and block diagrams showing how these blocks were connected to create the necessary filtering blocks. [sent-77, score-0.443]
58 The Tau Cell is a log-domain filter which has the firstorder response: I out 1 , = I in sτ + 1 where τ = nC aVT Ia and n = the slope factor, VT = thermal voltage, Ca = capacitance, and Ia = bias current. [sent-78, score-0.249]
59 In figure 5, the input currents to the Tau Cell, Imult and A*Ia, are only used when building a second-order filter. [sent-79, score-0.061]
60 The multiplier cell is simply a translinear loop where: I out1 ∗ I mult = I out 2 ∗ AI a or Imult = AIaIout2/Iout1. [sent-80, score-0.141]
61 The configurations of the Tau Cell to get particular responses are covered in [8] along with the corresponding equations. [sent-81, score-0.076]
62 The high frequency filter of Figure 2 is implemented by the high-pass filter in Figure 5 with a corner frequency of 17kHz. [sent-82, score-0.649]
63 These filters are then added together to reproduce the biological filter. [sent-84, score-0.168]
64 The filters’ responses can be adjusted post fabrication via their bias currents. [sent-85, score-0.086]
65 Figure 4: The Gain Cell above is used to convert the differential voltage input from the delay cells into a single-ended current output. [sent-87, score-0.334]
66 The gain of each cell is controllable via a programmable current cell (p_splitter). [sent-88, score-0.341]
67 An on-chip bias generator [7] was used to create all the necessary current biases on the chip. [sent-89, score-0.084]
68 All the main blocks (delays, gain cells and filters), however, can have their on-chip bias currents overridden through external pins on the chip. [sent-90, score-0.382]
69 3 Methods The chip was tested using sound generated on a computer and played through a soundcard to the chip. [sent-95, score-0.328]
70 Responses from the chip were recorded by an oscilloscope, and uploaded back to the computer on completion. [sent-96, score-0.17]
71 Given that the output from the chip and the gain circuits is a current, an external current-sense circuit built with discrete components was used to enable the output to be probed by the oscilloscope. [sent-97, score-0.566]
72 Figure 5: The circuit diagrams for the log-domain filter building blocks – The Tau Cell and The Multiplier – along with the block diagrams for the three filters used in the aVLSI model. [sent-98, score-0.603]
73 Initial experiments were performed to tune the delays and gains. [sent-99, score-0.076]
74 After that, recordings were taken of the directional frequency responses. [sent-100, score-0.136]
75 Sounds were generated by computer for each chip input to simulate moving the forelegs by delaying the sound by the appropriate amount of time; this was a much simpler solution than using microphones and moving them using motors. [sent-101, score-0.397]
76 4 Results The aVLSI chip was tested to measure its gains and delays, which were successfully tuned to the appropriate values. [sent-102, score-0.206]
77 The chip was then compared with the simulation to check that it was faithfully modelling the system. [sent-103, score-0.232]
78 A result of this test at 4kHz (approximately the cricket calling-song frequency) is shown in Figure 6. [sent-104, score-0.552]
79 Apart from a drop in amplitude of the signal, the response of the circuit was very similar to that of the simulator. [sent-105, score-0.18]
80 The differences were expected because the aVLSI circuit has to deal with real-world noise, whereas the simulated version has perfect signals. [sent-106, score-0.097]
81 Examples of the gain versus frequency response of the two log-domain band-pass filters are shown in Figure 7. [sent-107, score-0.393]
82 Note that the narrow-band filter peaks at 6kHz, which is significantly above the mating song frequency of the cricket which is around 4. [sent-108, score-0.987]
83 This is not a mistake, but is observed in real crickets as well. [sent-110, score-0.069]
84 As stated in the introduction, a range of further testing results with both the circuit and the simulator are being published in [6]. [sent-111, score-0.216]
85 5 D i s c u s s i on The aVLSI auditory sensor in this research models the hearing of the field cricket Gryllus bimaculatus. [sent-112, score-0.835]
86 It is a more faithful model of the cricket auditory system than was previously built in [4], reproducing all the acoustic inputs, as well as the responses to frequencies of both the co specific calling song and bat echolocation chirps. [sent-113, score-1.257]
87 It also generates outputs corresponding to the two sets of behaviourally relevant auditory receptor fibres. [sent-114, score-0.264]
88 A more complete implementation across all frequencies was impractical because of complexity and size issues as well as serving no clear behavioural purpose. [sent-116, score-0.104]
89 Figure 6: Vibration amplitude of the left (dotted) and right (solid) virtual tympana measured in decibels in response to a 4kHz tone in simulation (left) and on the aVLSI chip (right). [sent-117, score-0.402]
90 The plot shows the amplitude of the tympanal responses as the sound source is rotated around the cricket. [sent-118, score-0.357]
91 The long-term aim of this work is to better understand simple sensorimotor control loops in crickets and other insects. [sent-120, score-0.111]
92 The next step is to mount this circuitry on a robot to carry out behavioural experiments, which we will compare with existing and new behavioural data (such as that in [10]). [sent-121, score-0.304]
93 This will allow us to refine our models of the neural circuitry involved. [sent-122, score-0.088]
94 Modelling the sensory afferent neurons in hardware is necessary in order to reduce processor load on our robot, so the next revision will include these either onboard, or on a companion chip as we have done before [11]. [sent-123, score-0.242]
95 We will also move both sides of the auditory system onto a single chip to conserve space on the robot. [sent-124, score-0.439]
96 It is our belief and experience that, as a result of this intelligent pre-processing carried out at the sensor level, the neural circuits necessary to accurately model the behaviour will remain simple. [sent-125, score-0.197]
97 Physics of directional hearing in the cricket Gryllus bimaculatus. [sent-136, score-0.658]
98 A robot attracted to the cricket species Gryllus bimaculatus. [sent-149, score-0.635]
99 Neural coding of sound frequency by cricket auditory receptors. [sent-177, score-1.023]
100 New technologies for testing a model of cricket phonotaxis on an outdoor robot platform. [sent-190, score-0.715]
wordName wordTfidf (topN-words)
[('cricket', 0.552), ('avlsi', 0.238), ('auditory', 0.235), ('delay', 0.209), ('filter', 0.202), ('chip', 0.17), ('filters', 0.168), ('sound', 0.158), ('circuits', 0.14), ('calling', 0.138), ('tau', 0.138), ('simulator', 0.119), ('tympana', 0.115), ('gain', 0.106), ('sounds', 0.102), ('cell', 0.099), ('circuit', 0.097), ('ibias', 0.092), ('schaik', 0.092), ('circuitry', 0.088), ('acoustic', 0.088), ('song', 0.084), ('robot', 0.083), ('phonotaxis', 0.08), ('reeve', 0.08), ('tympanal', 0.08), ('frequency', 0.078), ('delays', 0.076), ('crickets', 0.069), ('forelegs', 0.069), ('gryllus', 0.069), ('currents', 0.061), ('itd', 0.06), ('webb', 0.06), ('directional', 0.058), ('inputs', 0.057), ('differential', 0.057), ('behaviour', 0.057), ('vibration', 0.055), ('arriving', 0.055), ('frequencies', 0.053), ('external', 0.053), ('corner', 0.052), ('behavioural', 0.051), ('jin', 0.048), ('hearing', 0.048), ('bias', 0.047), ('craig', 0.046), ('hamilton', 0.046), ('imult', 0.046), ('michelsen', 0.046), ('ota', 0.046), ('tara', 0.046), ('tracheal', 0.046), ('tubes', 0.046), ('diagrams', 0.046), ('default', 0.046), ('blocks', 0.044), ('multiplier', 0.042), ('sensorimotor', 0.042), ('physiology', 0.042), ('amplitude', 0.042), ('response', 0.041), ('ia', 0.041), ('splitter', 0.04), ('degeneration', 0.04), ('resonant', 0.04), ('contralateral', 0.04), ('interaural', 0.04), ('mating', 0.04), ('pins', 0.04), ('revision', 0.04), ('responses', 0.039), ('branch', 0.039), ('source', 0.038), ('head', 0.038), ('implemented', 0.037), ('ii', 0.037), ('current', 0.037), ('configurations', 0.037), ('leg', 0.037), ('mosis', 0.037), ('summing', 0.036), ('gains', 0.036), ('van', 0.035), ('matched', 0.035), ('system', 0.034), ('transistors', 0.034), ('tone', 0.034), ('specific', 0.034), ('afferent', 0.032), ('check', 0.032), ('cells', 0.031), ('carry', 0.031), ('significantly', 0.031), ('modelling', 0.03), ('appropriately', 0.03), ('edinburgh', 0.029), ('holding', 0.029), ('receptor', 0.029)]
simIndex simValue paperId paperTitle
same-paper 1 1.0000006 25 nips-2005-An aVLSI Cricket Ear Model
Author: Andre V. Schaik, Richard Reeve, Craig Jin, Tara Hamilton
Abstract: Female crickets can locate males by phonotaxis to the mating song they produce. The behaviour and underlying physiology has been studied in some depth showing that the cricket auditory system solves this complex problem in a unique manner. We present an analogue very large scale integrated (aVLSI) circuit model of this process and show that results from testing the circuit agree with simulation and what is known from the behaviour and physiology of the cricket auditory system. The aVLSI circuitry is now being extended to use on a robot along with previously modelled neural circuitry to better understand the complete sensorimotor pathway. 1 In trod u ction Understanding how insects carry out complex sensorimotor tasks can help in the design of simple sensory and robotic systems. Often insect sensors have evolved into intricate filters matched to extract highly specific data from the environment which solves a particular problem directly with little or no need for further processing [1]. Examples include head stabilisation in the fly, which uses vision amongst other senses to estimate self-rotation and thus to stabilise its head in flight, and phonotaxis in the cricket. Because of the narrowness of the cricket body (only a few millimetres), the Interaural Time Difference (ITD) for sounds arriving at the two sides of the head is very small (10–20µs). Even with the tympanal membranes (eardrums) located, as they are, on the forelegs of the cricket, the ITD only reaches about 40µs, which is too low to detect directly from timings of neural spikes. Because the wavelength of the cricket calling song is significantly greater than the width of the cricket body the Interaural Intensity Difference (IID) is also very low. In the absence of ITD or IID information, the cricket uses phase to determine direction. This is possible because the male cricket produces an almost pure tone for its calling song. * School of Electrical and Information Engineering, Institute of Perception, Action and Behaviour. + Figure 1: The cricket auditory system. Four acoustic inputs channel sounds directly or through tracheal tubes onto two tympanal membranes. Sound from contralateral inputs has to pass a (double) central membrane (the medial septum), inducing a phase delay and reduction in gain. The sound transmission from the contralateral tympanum is very weak, making each eardrum effectively a 3 input system. The physics of the cricket auditory system is well understood [2]; the system (see Figure 1) uses a pair of sound receivers with four acoustic inputs, two on the forelegs, which are the external surfaces of the tympana, and two on the body, the prothoracic or acoustic spiracles [3]. The connecting tracheal tubes are such that interference occurs as sounds travel inside the cricket, producing a directional response at the tympana to frequencies near to that of the calling song. The amplitude of vibration of the tympana, and hence the firing rate of the auditory afferent neurons attached to them, vary as a sound source is moved around the cricket and the sounds from the different inputs move in and out of phase. The outputs of the two tympana match when the sound is straight ahead, and the inputs are bilaterally symmetric with respect to the sound source. However, when sound at the calling song frequency is off-centre the phase of signals on the closer side comes better into alignment, and the signal increases on that side, and conversely decreases on the other. It is that crossover of tympanal vibration amplitudes which allows the cricket to track a sound source (see Figure 6 for example). A simplified version of the auditory system using only two acoustic inputs was implemented in hardware [4], and a simple 8-neuron network was all that was required to then direct a robot to carry out phonotaxis towards a species-specific calling song [5]. A simple simulator was also created to model the behaviour of the auditory system of Figure 1 at different frequencies [6]. Data from Michelsen et al. [2] (Figures 5 and 6) were digitised, and used together with average and “typical” values from the paper to choose gains and delays for the simulation. Figure 2 shows the model of the internal auditory system of the cricket from sound arriving at the acoustic inputs through to transmission down auditory receptor fibres. The simulator implements this model up to the summing of the delayed inputs, as well as modelling the external sound transmission. Results from the simulator were used to check the directionality of the system at different frequencies, and to gain a better understanding of its response. It was impractical to check the effect of leg movements or of complex sounds in the simulator due to the necessity of simulating the sound production and transmission. An aVLSI chip was designed to implement the same model, both allowing more complex experiments, such as leg movements to be run, and experiments to be run in the real world. Figure 2: A model of the auditory system of the cricket, used to build the simulator and the aVLSI implementation (shown in boxes). These experiments with the simulator and the circuits are being published in [6] and the reader is referred to those papers for more details. In the present paper we present the details of the circuits used for the aVLSI implementation. 2 Circuits The chip, implementing the aVLSI box in Figure 2, comprises two all-pass delay filters, three gain circuits, a second-order narrow-band band-pass filter, a first-order wide-band band-pass filter, a first-order high-pass filter, as well as supporting circuitry (including reference voltages, currents, etc.). A single aVLSI chip (MOSIS tiny-chip) thus includes half the necessary circuitry to model the complete auditory system of a cricket. The complete model of the auditory system can be obtained by using two appropriately connected chips. Only two all-pass delay filters need to be implemented instead of three as suggested by Figure 2, because it is only the relative delay between the three pathways arriving at the one summing node that counts. The delay circuits were implemented with fully-differential gm-C filters. In order to extend the frequency range of the delay, a first-order all-pass delay circuit was cascaded with a second-order all-pass delay circuit. The resulting addition of the first-order delay and the second-order delay allowed for an approximately flat delay response for a wider bandwidth as the decreased delay around the corner frequency of the first-order filter cancelled with the increased delay of the second-order filter around its resonant frequency. Figure 3 shows the first- and second-order sections of the all-pass delay circuit. Two of these circuits were used and, based on data presented in [2], were designed with delays of 28µs and 62µs, by way of bias current manipulation. The operational transconductance amplifier (OTA) in figure 3 is a standard OTA which includes the common-mode feedback necessary for fully differential designs. The buffers (Figure 3) are simple, cascoded differential pairs. V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ Figure 3: The first-order all-pass delay circuit (left) and the second-order all-pass delay (right). The differential output of the delay circuits is converted into a current which is multiplied by a variable gain implemented as shown in Figure 4. The gain cell includes a differential pair with source degeneration via transistors N4 and N5. The source degeneration improves the linearity of the current. The three gain cells implemented on the aVLSI have default gains of 2, 3 and 0.91 which are set by holding the default input high and appropriately ratioing the bias currents through the value of vbiasp. To correct any on-chip mismatches and/or explore other gain configurations a current splitter cell [7] (p-splitter, figure 4) allows the gain to be programmed by digital means post fabrication. The current splitter takes an input current (Ibias, figure 4) and divides it into branches which recursively halve the current, i.e., the first branch gives ½ Ibias, the second branch ¼ Ibias, the third branch 1/8 Ibias and so on. These currents can be used together with digitally controlled switches as a Digital-to-Analogue converter. By holding default low and setting C5:C0 appropriately, any gain – from 4 to 0.125 – can be set. To save on output pins the program bits (C5:C0) for each of the three gain cells are set via a single 18-bit shift register in bit-serial fashion. Summing the output of the three gain circuits in the current domain simply involves connecting three wires together. Therefore, a natural option for the filters that follow is to use current domain filters. In our case we have chosen to implement log-domain filters using MOS transistors operating in weak inversion. Figure 5 shows the basic building blocks for the filters – the Tau Cell [8] and the multiplier cell – and block diagrams showing how these blocks were connected to create the necessary filtering blocks. The Tau Cell is a log-domain filter which has the firstorder response: I out 1 , = I in sτ + 1 where τ = nC aVT Ia and n = the slope factor, VT = thermal voltage, Ca = capacitance, and Ia = bias current. In figure 5, the input currents to the Tau Cell, Imult and A*Ia, are only used when building a second-order filter. The multiplier cell is simply a translinear loop where: I out1 ∗ I mult = I out 2 ∗ AI a or Imult = AIaIout2/Iout1. The configurations of the Tau Cell to get particular responses are covered in [8] along with the corresponding equations. The high frequency filter of Figure 2 is implemented by the high-pass filter in Figure 5 with a corner frequency of 17kHz. The low frequency filter, however, is divided into two parts since the biological filter’s response (see for example Figure 3A in [9]) separates well into a narrow second-order band-pass filter with a 10kHz resonant frequency and a wide band-pass filter made from a first-order high-pass filter with a 3kHz corner frequency followed by a first-order low-pass filter with a 12kHz corner frequency. These filters are then added together to reproduce the biological filter. The filters’ responses can be adjusted post fabrication via their bias currents. This allows for compensation due to processing and matching errors. Figure 4: The Gain Cell above is used to convert the differential voltage input from the delay cells into a single-ended current output. The gain of each cell is controllable via a programmable current cell (p_splitter). An on-chip bias generator [7] was used to create all the necessary current biases on the chip. All the main blocks (delays, gain cells and filters), however, can have their on-chip bias currents overridden through external pins on the chip. The chip was fabricated using the MOSIS AMI 1.6µm technology and designed using the Cadence Custom IC Design Tools (5.0.33). 3 Methods The chip was tested using sound generated on a computer and played through a soundcard to the chip. Responses from the chip were recorded by an oscilloscope, and uploaded back to the computer on completion. Given that the output from the chip and the gain circuits is a current, an external current-sense circuit built with discrete components was used to enable the output to be probed by the oscilloscope. Figure 5: The circuit diagrams for the log-domain filter building blocks – The Tau Cell and The Multiplier – along with the block diagrams for the three filters used in the aVLSI model. Initial experiments were performed to tune the delays and gains. After that, recordings were taken of the directional frequency responses. Sounds were generated by computer for each chip input to simulate moving the forelegs by delaying the sound by the appropriate amount of time; this was a much simpler solution than using microphones and moving them using motors. 4 Results The aVLSI chip was tested to measure its gains and delays, which were successfully tuned to the appropriate values. The chip was then compared with the simulation to check that it was faithfully modelling the system. A result of this test at 4kHz (approximately the cricket calling-song frequency) is shown in Figure 6. Apart from a drop in amplitude of the signal, the response of the circuit was very similar to that of the simulator. The differences were expected because the aVLSI circuit has to deal with real-world noise, whereas the simulated version has perfect signals. Examples of the gain versus frequency response of the two log-domain band-pass filters are shown in Figure 7. Note that the narrow-band filter peaks at 6kHz, which is significantly above the mating song frequency of the cricket which is around 4.5kHz. This is not a mistake, but is observed in real crickets as well. As stated in the introduction, a range of further testing results with both the circuit and the simulator are being published in [6]. 5 D i s c u s s i on The aVLSI auditory sensor in this research models the hearing of the field cricket Gryllus bimaculatus. It is a more faithful model of the cricket auditory system than was previously built in [4], reproducing all the acoustic inputs, as well as the responses to frequencies of both the co specific calling song and bat echolocation chirps. It also generates outputs corresponding to the two sets of behaviourally relevant auditory receptor fibres. Results showed that it matched the biological data well, though there were some inconsistencies due to an error in the specification that will be addressed in a future iteration of the design. A more complete implementation across all frequencies was impractical because of complexity and size issues as well as serving no clear behavioural purpose. Figure 6: Vibration amplitude of the left (dotted) and right (solid) virtual tympana measured in decibels in response to a 4kHz tone in simulation (left) and on the aVLSI chip (right). The plot shows the amplitude of the tympanal responses as the sound source is rotated around the cricket. Figure 7: Frequency-Gain curves for the narrow-band and wide-band bandpass filters. The long-term aim of this work is to better understand simple sensorimotor control loops in crickets and other insects. The next step is to mount this circuitry on a robot to carry out behavioural experiments, which we will compare with existing and new behavioural data (such as that in [10]). This will allow us to refine our models of the neural circuitry involved. Modelling the sensory afferent neurons in hardware is necessary in order to reduce processor load on our robot, so the next revision will include these either onboard, or on a companion chip as we have done before [11]. We will also move both sides of the auditory system onto a single chip to conserve space on the robot. It is our belief and experience that, as a result of this intelligent pre-processing carried out at the sensor level, the neural circuits necessary to accurately model the behaviour will remain simple. Acknowledgments The authors thank the Institute of Neuromorphic Engineering and the UK Biotechnology and Biological Sciences Research Council for funding the research in this paper. References [1] R. Wehner. Matched filters – neural models of the external world. J Comp Physiol A, 161: 511–531, 1987. [2] A. Michelsen, A. V. Popov, and B. Lewis. Physics of directional hearing in the cricket Gryllus bimaculatus. Journal of Comparative Physiology A, 175:153–164, 1994. [3] A. Michelsen. The tuned cricket. News Physiol. Sci., 13:32–38, 1998. [4] H. H. Lund, B. Webb, and J. Hallam. A robot attracted to the cricket species Gryllus bimaculatus. In P. Husbands and I. Harvey, editors, Proceedings of 4th European Conference on Artificial Life, pages 246–255. MIT Press/Bradford Books, MA., 1997. [5] R Reeve and B. Webb. New neural circuits for robot phonotaxis. Phil. Trans. R. Soc. Lond. A, 361:2245–2266, August 2003. [6] R. Reeve, A. van Schaik, C. Jin, T. Hamilton, B. Torben-Nielsen and B. Webb Directional hearing in a silicon cricket. Biosystems, (in revision), 2005b [7] T. Delbrück and A. van Schaik, Bias Current Generators with Wide Dynamic Range, Analog Integrated Circuits and Signal Processing 42(2), 2005 [8] A. van Schaik and C. Jin, The Tau Cell: A New Method for the Implementation of Arbitrary Differential Equations, IEEE International Symposium on Circuits and Systems (ISCAS) 2003 [9] Kazuo Imaizumi and Gerald S. Pollack. Neural coding of sound frequency by cricket auditory receptors. The Journal of Neuroscience, 19(4):1508– 1516, 1999. [10] Berthold Hedwig and James F.A. Poulet. Complex auditory behaviour emerges from simple reactive steering. Nature, 430:781–785, 2004. [11] R. Reeve, B. Webb, A. Horchler, G. Indiveri, and R. Quinn. New technologies for testing a model of cricket phonotaxis on an outdoor robot platform. Robotics and Autonomous Systems, 51(1):41-54, 2005.
2 0.14825793 28 nips-2005-Analyzing Auditory Neurons by Learning Distance Functions
Author: Inna Weiner, Tomer Hertz, Israel Nelken, Daphna Weinshall
Abstract: We present a novel approach to the characterization of complex sensory neurons. One of the main goals of characterizing sensory neurons is to characterize dimensions in stimulus space to which the neurons are highly sensitive (causing large gradients in the neural responses) or alternatively dimensions in stimulus space to which the neuronal response are invariant (defining iso-response manifolds). We formulate this problem as that of learning a geometry on stimulus space that is compatible with the neural responses: the distance between stimuli should be large when the responses they evoke are very different, and small when the responses they evoke are similar. Here we show how to successfully train such distance functions using rather limited amount of information. The data consisted of the responses of neurons in primary auditory cortex (A1) of anesthetized cats to 32 stimuli derived from natural sounds. For each neuron, a subset of all pairs of stimuli was selected such that the responses of the two stimuli in a pair were either very similar or very dissimilar. The distance function was trained to fit these constraints. The resulting distance functions generalized to predict the distances between the responses of a test stimulus and the trained stimuli. 1
3 0.13951054 1 nips-2005-AER Building Blocks for Multi-Layer Multi-Chip Neuromorphic Vision Systems
Author: R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-Vicente, F. Gomez-Rodriguez, H. Kolle Riis, T. Delbruck, S. C. Liu, S. Zahnd, A. M. Whatley, R. Douglas, P. Hafliger, G. Jimenez-Moreno, A. Civit, T. Serrano-Gotarredona, A. Acosta-Jimenez, B. Linares-Barranco
Abstract: A 5-layer neuromorphic vision processor whose components communicate spike events asychronously using the address-eventrepresentation (AER) is demonstrated. The system includes a retina chip, two convolution chips, a 2D winner-take-all chip, a delay line chip, a learning classifier chip, and a set of PCBs for computer interfacing and address space remappings. The components use a mixture of analog and digital computation and will learn to classify trajectories of a moving object. A complete experimental setup and measurements results are shown.
4 0.12748566 88 nips-2005-Gradient Flow Independent Component Analysis in Micropower VLSI
Author: Abdullah Celik, Milutin Stanacevic, Gert Cauwenberghs
Abstract: We present micropower mixed-signal VLSI hardware for real-time blind separation and localization of acoustic sources. Gradient flow representation of the traveling wave signals acquired over a miniature (1cm diameter) array of four microphones yields linearly mixed instantaneous observations of the time-differentiated sources, separated and localized by independent component analysis (ICA). The gradient flow and ICA processors each measure 3mm × 3mm in 0.5 µm CMOS, and consume 54 µW and 180 µW power, respectively, from a 3 V supply at 16 ks/s sampling rate. Experiments demonstrate perceptually clear (12dB) separation and precise localization of two speech sources presented through speakers positioned at 1.5m from the array on a conference room table. Analysis of the multipath residuals shows that they are spectrally diffuse, and void of the direct path.
5 0.094212361 20 nips-2005-Affine Structure From Sound
Author: Sebastian Thrun
Abstract: We consider the problem of localizing a set of microphones together with a set of external acoustic events (e.g., hand claps), emitted at unknown times and unknown locations. We propose a solution that approximates this problem under a far field approximation defined in the calculus of affine geometry, and that relies on singular value decomposition (SVD) to recover the affine structure of the problem. We then define low-dimensional optimization techniques for embedding the solution into Euclidean geometry, and further techniques for recovering the locations and emission times of the acoustic events. The approach is useful for the calibration of ad-hoc microphone arrays and sensor networks. 1
7 0.089190416 157 nips-2005-Principles of real-time computing with feedback applied to cortical microcircuit models
8 0.0758496 67 nips-2005-Extracting Dynamical Structure Embedded in Neural Activity
9 0.070681155 181 nips-2005-Spiking Inputs to a Winner-take-all Network
10 0.068448529 118 nips-2005-Learning in Silicon: Timing is Everything
11 0.065385498 176 nips-2005-Silicon growth cones map silicon retina
12 0.063453265 109 nips-2005-Learning Cue-Invariant Visual Responses
13 0.062183686 40 nips-2005-CMOL CrossNets: Possible Neuromorphic Nanoelectronic Circuits
14 0.061481729 17 nips-2005-Active Bidirectional Coupling in a Cochlear Chip
15 0.045364149 143 nips-2005-Off-Road Obstacle Avoidance through End-to-End Learning
16 0.044350412 7 nips-2005-A Cortically-Plausible Inverse Problem Solving Method Applied to Recognizing Static and Kinematic 3D Objects
17 0.043135889 73 nips-2005-Fast biped walking with a reflexive controller and real-time policy searching
18 0.041267794 150 nips-2005-Optimizing spatio-temporal filters for improving Brain-Computer Interfacing
19 0.040877912 141 nips-2005-Norepinephrine and Neural Interrupts
20 0.038246654 101 nips-2005-Is Early Vision Optimized for Extracting Higher-order Dependencies?
topicId topicWeight
[(0, 0.109), (1, -0.146), (2, -0.018), (3, 0.062), (4, -0.028), (5, 0.064), (6, -0.098), (7, -0.071), (8, 0.106), (9, 0.042), (10, -0.3), (11, -0.037), (12, -0.103), (13, 0.077), (14, -0.098), (15, -0.056), (16, 0.06), (17, -0.063), (18, 0.005), (19, 0.056), (20, 0.012), (21, 0.079), (22, -0.068), (23, 0.016), (24, -0.055), (25, 0.085), (26, 0.004), (27, -0.007), (28, -0.014), (29, 0.087), (30, -0.054), (31, -0.049), (32, 0.066), (33, 0.011), (34, -0.098), (35, 0.004), (36, 0.071), (37, 0.009), (38, 0.039), (39, 0.082), (40, -0.089), (41, 0.104), (42, 0.102), (43, -0.002), (44, -0.073), (45, -0.063), (46, 0.038), (47, 0.008), (48, 0.043), (49, 0.075)]
simIndex simValue paperId paperTitle
same-paper 1 0.97281086 25 nips-2005-An aVLSI Cricket Ear Model
Author: Andre V. Schaik, Richard Reeve, Craig Jin, Tara Hamilton
Abstract: Female crickets can locate males by phonotaxis to the mating song they produce. The behaviour and underlying physiology has been studied in some depth showing that the cricket auditory system solves this complex problem in a unique manner. We present an analogue very large scale integrated (aVLSI) circuit model of this process and show that results from testing the circuit agree with simulation and what is known from the behaviour and physiology of the cricket auditory system. The aVLSI circuitry is now being extended to use on a robot along with previously modelled neural circuitry to better understand the complete sensorimotor pathway. 1 In trod u ction Understanding how insects carry out complex sensorimotor tasks can help in the design of simple sensory and robotic systems. Often insect sensors have evolved into intricate filters matched to extract highly specific data from the environment which solves a particular problem directly with little or no need for further processing [1]. Examples include head stabilisation in the fly, which uses vision amongst other senses to estimate self-rotation and thus to stabilise its head in flight, and phonotaxis in the cricket. Because of the narrowness of the cricket body (only a few millimetres), the Interaural Time Difference (ITD) for sounds arriving at the two sides of the head is very small (10–20µs). Even with the tympanal membranes (eardrums) located, as they are, on the forelegs of the cricket, the ITD only reaches about 40µs, which is too low to detect directly from timings of neural spikes. Because the wavelength of the cricket calling song is significantly greater than the width of the cricket body the Interaural Intensity Difference (IID) is also very low. In the absence of ITD or IID information, the cricket uses phase to determine direction. This is possible because the male cricket produces an almost pure tone for its calling song. * School of Electrical and Information Engineering, Institute of Perception, Action and Behaviour. + Figure 1: The cricket auditory system. Four acoustic inputs channel sounds directly or through tracheal tubes onto two tympanal membranes. Sound from contralateral inputs has to pass a (double) central membrane (the medial septum), inducing a phase delay and reduction in gain. The sound transmission from the contralateral tympanum is very weak, making each eardrum effectively a 3 input system. The physics of the cricket auditory system is well understood [2]; the system (see Figure 1) uses a pair of sound receivers with four acoustic inputs, two on the forelegs, which are the external surfaces of the tympana, and two on the body, the prothoracic or acoustic spiracles [3]. The connecting tracheal tubes are such that interference occurs as sounds travel inside the cricket, producing a directional response at the tympana to frequencies near to that of the calling song. The amplitude of vibration of the tympana, and hence the firing rate of the auditory afferent neurons attached to them, vary as a sound source is moved around the cricket and the sounds from the different inputs move in and out of phase. The outputs of the two tympana match when the sound is straight ahead, and the inputs are bilaterally symmetric with respect to the sound source. However, when sound at the calling song frequency is off-centre the phase of signals on the closer side comes better into alignment, and the signal increases on that side, and conversely decreases on the other. It is that crossover of tympanal vibration amplitudes which allows the cricket to track a sound source (see Figure 6 for example). A simplified version of the auditory system using only two acoustic inputs was implemented in hardware [4], and a simple 8-neuron network was all that was required to then direct a robot to carry out phonotaxis towards a species-specific calling song [5]. A simple simulator was also created to model the behaviour of the auditory system of Figure 1 at different frequencies [6]. Data from Michelsen et al. [2] (Figures 5 and 6) were digitised, and used together with average and “typical” values from the paper to choose gains and delays for the simulation. Figure 2 shows the model of the internal auditory system of the cricket from sound arriving at the acoustic inputs through to transmission down auditory receptor fibres. The simulator implements this model up to the summing of the delayed inputs, as well as modelling the external sound transmission. Results from the simulator were used to check the directionality of the system at different frequencies, and to gain a better understanding of its response. It was impractical to check the effect of leg movements or of complex sounds in the simulator due to the necessity of simulating the sound production and transmission. An aVLSI chip was designed to implement the same model, both allowing more complex experiments, such as leg movements to be run, and experiments to be run in the real world. Figure 2: A model of the auditory system of the cricket, used to build the simulator and the aVLSI implementation (shown in boxes). These experiments with the simulator and the circuits are being published in [6] and the reader is referred to those papers for more details. In the present paper we present the details of the circuits used for the aVLSI implementation. 2 Circuits The chip, implementing the aVLSI box in Figure 2, comprises two all-pass delay filters, three gain circuits, a second-order narrow-band band-pass filter, a first-order wide-band band-pass filter, a first-order high-pass filter, as well as supporting circuitry (including reference voltages, currents, etc.). A single aVLSI chip (MOSIS tiny-chip) thus includes half the necessary circuitry to model the complete auditory system of a cricket. The complete model of the auditory system can be obtained by using two appropriately connected chips. Only two all-pass delay filters need to be implemented instead of three as suggested by Figure 2, because it is only the relative delay between the three pathways arriving at the one summing node that counts. The delay circuits were implemented with fully-differential gm-C filters. In order to extend the frequency range of the delay, a first-order all-pass delay circuit was cascaded with a second-order all-pass delay circuit. The resulting addition of the first-order delay and the second-order delay allowed for an approximately flat delay response for a wider bandwidth as the decreased delay around the corner frequency of the first-order filter cancelled with the increased delay of the second-order filter around its resonant frequency. Figure 3 shows the first- and second-order sections of the all-pass delay circuit. Two of these circuits were used and, based on data presented in [2], were designed with delays of 28µs and 62µs, by way of bias current manipulation. The operational transconductance amplifier (OTA) in figure 3 is a standard OTA which includes the common-mode feedback necessary for fully differential designs. The buffers (Figure 3) are simple, cascoded differential pairs. V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ Figure 3: The first-order all-pass delay circuit (left) and the second-order all-pass delay (right). The differential output of the delay circuits is converted into a current which is multiplied by a variable gain implemented as shown in Figure 4. The gain cell includes a differential pair with source degeneration via transistors N4 and N5. The source degeneration improves the linearity of the current. The three gain cells implemented on the aVLSI have default gains of 2, 3 and 0.91 which are set by holding the default input high and appropriately ratioing the bias currents through the value of vbiasp. To correct any on-chip mismatches and/or explore other gain configurations a current splitter cell [7] (p-splitter, figure 4) allows the gain to be programmed by digital means post fabrication. The current splitter takes an input current (Ibias, figure 4) and divides it into branches which recursively halve the current, i.e., the first branch gives ½ Ibias, the second branch ¼ Ibias, the third branch 1/8 Ibias and so on. These currents can be used together with digitally controlled switches as a Digital-to-Analogue converter. By holding default low and setting C5:C0 appropriately, any gain – from 4 to 0.125 – can be set. To save on output pins the program bits (C5:C0) for each of the three gain cells are set via a single 18-bit shift register in bit-serial fashion. Summing the output of the three gain circuits in the current domain simply involves connecting three wires together. Therefore, a natural option for the filters that follow is to use current domain filters. In our case we have chosen to implement log-domain filters using MOS transistors operating in weak inversion. Figure 5 shows the basic building blocks for the filters – the Tau Cell [8] and the multiplier cell – and block diagrams showing how these blocks were connected to create the necessary filtering blocks. The Tau Cell is a log-domain filter which has the firstorder response: I out 1 , = I in sτ + 1 where τ = nC aVT Ia and n = the slope factor, VT = thermal voltage, Ca = capacitance, and Ia = bias current. In figure 5, the input currents to the Tau Cell, Imult and A*Ia, are only used when building a second-order filter. The multiplier cell is simply a translinear loop where: I out1 ∗ I mult = I out 2 ∗ AI a or Imult = AIaIout2/Iout1. The configurations of the Tau Cell to get particular responses are covered in [8] along with the corresponding equations. The high frequency filter of Figure 2 is implemented by the high-pass filter in Figure 5 with a corner frequency of 17kHz. The low frequency filter, however, is divided into two parts since the biological filter’s response (see for example Figure 3A in [9]) separates well into a narrow second-order band-pass filter with a 10kHz resonant frequency and a wide band-pass filter made from a first-order high-pass filter with a 3kHz corner frequency followed by a first-order low-pass filter with a 12kHz corner frequency. These filters are then added together to reproduce the biological filter. The filters’ responses can be adjusted post fabrication via their bias currents. This allows for compensation due to processing and matching errors. Figure 4: The Gain Cell above is used to convert the differential voltage input from the delay cells into a single-ended current output. The gain of each cell is controllable via a programmable current cell (p_splitter). An on-chip bias generator [7] was used to create all the necessary current biases on the chip. All the main blocks (delays, gain cells and filters), however, can have their on-chip bias currents overridden through external pins on the chip. The chip was fabricated using the MOSIS AMI 1.6µm technology and designed using the Cadence Custom IC Design Tools (5.0.33). 3 Methods The chip was tested using sound generated on a computer and played through a soundcard to the chip. Responses from the chip were recorded by an oscilloscope, and uploaded back to the computer on completion. Given that the output from the chip and the gain circuits is a current, an external current-sense circuit built with discrete components was used to enable the output to be probed by the oscilloscope. Figure 5: The circuit diagrams for the log-domain filter building blocks – The Tau Cell and The Multiplier – along with the block diagrams for the three filters used in the aVLSI model. Initial experiments were performed to tune the delays and gains. After that, recordings were taken of the directional frequency responses. Sounds were generated by computer for each chip input to simulate moving the forelegs by delaying the sound by the appropriate amount of time; this was a much simpler solution than using microphones and moving them using motors. 4 Results The aVLSI chip was tested to measure its gains and delays, which were successfully tuned to the appropriate values. The chip was then compared with the simulation to check that it was faithfully modelling the system. A result of this test at 4kHz (approximately the cricket calling-song frequency) is shown in Figure 6. Apart from a drop in amplitude of the signal, the response of the circuit was very similar to that of the simulator. The differences were expected because the aVLSI circuit has to deal with real-world noise, whereas the simulated version has perfect signals. Examples of the gain versus frequency response of the two log-domain band-pass filters are shown in Figure 7. Note that the narrow-band filter peaks at 6kHz, which is significantly above the mating song frequency of the cricket which is around 4.5kHz. This is not a mistake, but is observed in real crickets as well. As stated in the introduction, a range of further testing results with both the circuit and the simulator are being published in [6]. 5 D i s c u s s i on The aVLSI auditory sensor in this research models the hearing of the field cricket Gryllus bimaculatus. It is a more faithful model of the cricket auditory system than was previously built in [4], reproducing all the acoustic inputs, as well as the responses to frequencies of both the co specific calling song and bat echolocation chirps. It also generates outputs corresponding to the two sets of behaviourally relevant auditory receptor fibres. Results showed that it matched the biological data well, though there were some inconsistencies due to an error in the specification that will be addressed in a future iteration of the design. A more complete implementation across all frequencies was impractical because of complexity and size issues as well as serving no clear behavioural purpose. Figure 6: Vibration amplitude of the left (dotted) and right (solid) virtual tympana measured in decibels in response to a 4kHz tone in simulation (left) and on the aVLSI chip (right). The plot shows the amplitude of the tympanal responses as the sound source is rotated around the cricket. Figure 7: Frequency-Gain curves for the narrow-band and wide-band bandpass filters. The long-term aim of this work is to better understand simple sensorimotor control loops in crickets and other insects. The next step is to mount this circuitry on a robot to carry out behavioural experiments, which we will compare with existing and new behavioural data (such as that in [10]). This will allow us to refine our models of the neural circuitry involved. Modelling the sensory afferent neurons in hardware is necessary in order to reduce processor load on our robot, so the next revision will include these either onboard, or on a companion chip as we have done before [11]. We will also move both sides of the auditory system onto a single chip to conserve space on the robot. It is our belief and experience that, as a result of this intelligent pre-processing carried out at the sensor level, the neural circuits necessary to accurately model the behaviour will remain simple. Acknowledgments The authors thank the Institute of Neuromorphic Engineering and the UK Biotechnology and Biological Sciences Research Council for funding the research in this paper. References [1] R. Wehner. Matched filters – neural models of the external world. J Comp Physiol A, 161: 511–531, 1987. [2] A. Michelsen, A. V. Popov, and B. Lewis. Physics of directional hearing in the cricket Gryllus bimaculatus. Journal of Comparative Physiology A, 175:153–164, 1994. [3] A. Michelsen. The tuned cricket. News Physiol. Sci., 13:32–38, 1998. [4] H. H. Lund, B. Webb, and J. Hallam. A robot attracted to the cricket species Gryllus bimaculatus. In P. Husbands and I. Harvey, editors, Proceedings of 4th European Conference on Artificial Life, pages 246–255. MIT Press/Bradford Books, MA., 1997. [5] R Reeve and B. Webb. New neural circuits for robot phonotaxis. Phil. Trans. R. Soc. Lond. A, 361:2245–2266, August 2003. [6] R. Reeve, A. van Schaik, C. Jin, T. Hamilton, B. Torben-Nielsen and B. Webb Directional hearing in a silicon cricket. Biosystems, (in revision), 2005b [7] T. Delbrück and A. van Schaik, Bias Current Generators with Wide Dynamic Range, Analog Integrated Circuits and Signal Processing 42(2), 2005 [8] A. van Schaik and C. Jin, The Tau Cell: A New Method for the Implementation of Arbitrary Differential Equations, IEEE International Symposium on Circuits and Systems (ISCAS) 2003 [9] Kazuo Imaizumi and Gerald S. Pollack. Neural coding of sound frequency by cricket auditory receptors. The Journal of Neuroscience, 19(4):1508– 1516, 1999. [10] Berthold Hedwig and James F.A. Poulet. Complex auditory behaviour emerges from simple reactive steering. Nature, 430:781–785, 2004. [11] R. Reeve, B. Webb, A. Horchler, G. Indiveri, and R. Quinn. New technologies for testing a model of cricket phonotaxis on an outdoor robot platform. Robotics and Autonomous Systems, 51(1):41-54, 2005.
2 0.59800553 88 nips-2005-Gradient Flow Independent Component Analysis in Micropower VLSI
Author: Abdullah Celik, Milutin Stanacevic, Gert Cauwenberghs
Abstract: We present micropower mixed-signal VLSI hardware for real-time blind separation and localization of acoustic sources. Gradient flow representation of the traveling wave signals acquired over a miniature (1cm diameter) array of four microphones yields linearly mixed instantaneous observations of the time-differentiated sources, separated and localized by independent component analysis (ICA). The gradient flow and ICA processors each measure 3mm × 3mm in 0.5 µm CMOS, and consume 54 µW and 180 µW power, respectively, from a 3 V supply at 16 ks/s sampling rate. Experiments demonstrate perceptually clear (12dB) separation and precise localization of two speech sources presented through speakers positioned at 1.5m from the array on a conference room table. Analysis of the multipath residuals shows that they are spectrally diffuse, and void of the direct path.
3 0.58430463 1 nips-2005-AER Building Blocks for Multi-Layer Multi-Chip Neuromorphic Vision Systems
Author: R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-Vicente, F. Gomez-Rodriguez, H. Kolle Riis, T. Delbruck, S. C. Liu, S. Zahnd, A. M. Whatley, R. Douglas, P. Hafliger, G. Jimenez-Moreno, A. Civit, T. Serrano-Gotarredona, A. Acosta-Jimenez, B. Linares-Barranco
Abstract: A 5-layer neuromorphic vision processor whose components communicate spike events asychronously using the address-eventrepresentation (AER) is demonstrated. The system includes a retina chip, two convolution chips, a 2D winner-take-all chip, a delay line chip, a learning classifier chip, and a set of PCBs for computer interfacing and address space remappings. The components use a mixture of analog and digital computation and will learn to classify trajectories of a moving object. A complete experimental setup and measurements results are shown.
Author: Yusuke Nakashita, Yoshio Mita, Tadashi Shibata
Abstract: An analog focal-plane processor having a 128¢128 photodiode array has been developed for directional edge filtering. It can perform 4¢4-pixel kernel convolution for entire pixels only with 256 steps of simple analog processing. Newly developed cyclic line access and row-parallel processing scheme in conjunction with the “only-nearest-neighbor interconnects” architecture has enabled a very simple implementation. A proof-of-concept chip was fabricated in a 0.35- m 2-poly 3-metal CMOS technology and the edge filtering at a rate of 200 frames/sec. has been experimentally demonstrated.
5 0.55396909 40 nips-2005-CMOL CrossNets: Possible Neuromorphic Nanoelectronic Circuits
Author: Jung Hoon Lee, Xiaolong Ma, Konstantin K. Likharev
Abstract: Hybrid “CMOL” integrated circuits, combining CMOS subsystem with nanowire crossbars and simple two-terminal nanodevices, promise to extend the exponential Moore-Law development of microelectronics into the sub-10-nm range. We are developing neuromorphic network (“CrossNet”) architectures for this future technology, in which neural cell bodies are implemented in CMOS, nanowires are used as axons and dendrites, while nanodevices (bistable latching switches) are used as elementary synapses. We have shown how CrossNets may be trained to perform pattern recovery and classification despite the limitations imposed by the CMOL hardware. Preliminary estimates have shown that CMOL CrossNets may be extremely dense (~10 7 cells per cm2) and operate approximately a million times faster than biological neural networks, at manageable power consumption. In Conclusion, we discuss in brief possible short-term and long-term applications of the emerging technology. 1 Introduction: CMOL Circuits Recent results [1, 2] indicate that the current VLSI paradigm based on CMOS technology can be hardly extended beyond the 10-nm frontier: in this range the sensitivity of parameters (most importantly, the gate voltage threshold) of silicon field-effect transistors to inevitable fabrication spreads grows exponentially. This sensitivity will probably send the fabrication facilities costs skyrocketing, and may lead to the end of Moore’s Law some time during the next decade. There is a growing consensus that the impending Moore’s Law crisis may be preempted by a radical paradigm shift from the purely CMOS technology to hybrid CMOS/nanodevice circuits, e.g., those of “CMOL” variety (Fig. 1). Such circuits (see, e.g., Ref. 3 for their recent review) would combine a level of advanced CMOS devices fabricated by the lithographic patterning, and two-layer nanowire crossbar formed, e.g., by nanoimprint, with nanowires connected by simple, similar, two-terminal nanodevices at each crosspoint. For such devices, molecular single-electron latching switches [4] are presently the leading candidates, in particular because they may be fabricated using the self-assembled monolayer (SAM) technique which already gave reproducible results for simpler molecular devices [5]. (a) nanodevices nanowiring and nanodevices interface pins upper wiring level of CMOS stack (b) βFCMOS Fnano α Fig. 1. CMOL circuit: (a) schematic side view, and (b) top-view zoom-in on several adjacent interface pins. (For clarity, only two adjacent nanodevices are shown.) In order to overcome the CMOS/nanodevice interface problems pertinent to earlier proposals of hybrid circuits [6], in CMOL the interface is provided by pins that are distributed all over the circuit area, on the top of the CMOS stack. This allows to use advanced techniques of nanowire patterning (like nanoimprint) which do not have nanoscale accuracy of layer alignment [3]. The vital feature of this interface is the tilt, by angle α = arcsin(Fnano/βFCMOS), of the nanowire crossbar relative to the square arrays of interface pins (Fig. 1b). Here Fnano is the nanowiring half-pitch, FCMOS is the half-pitch of the CMOS subsystem, and β is a dimensionless factor larger than 1 that depends on the CMOS cell complexity. Figure 1b shows that this tilt allows the CMOS subsystem to address each nanodevice even if Fnano << βFCMOS. By now, it has been shown that CMOL circuits can combine high performance with high defect tolerance (which is necessary for any circuit using nanodevices) for several digital applications. In particular, CMOL circuits with defect rates below a few percent would enable terabit-scale memories [7], while the performance of FPGA-like CMOL circuits may be several hundred times above that of overcome purely CMOL FPGA (implemented with the same FCMOS), at acceptable power dissipation and defect tolerance above 20% [8]. In addition, the very structure of CMOL circuits makes them uniquely suitable for the implementation of more complex, mixed-signal information processing systems, including ultradense and ultrafast neuromorphic networks. The objective of this paper is to describe in brief the current status of our work on the development of so-called Distributed Crossbar Networks (“CrossNets”) that could provide high performance despite the limitations imposed by CMOL hardware. A more detailed description of our earlier results may be found in Ref. 9. 2 Synapses The central device of CrossNet is a two-terminal latching switch [3, 4] (Fig. 2a) which is a combination of two single-electron devices, a transistor and a trap [3]. The device may be naturally implemented as a single organic molecule (Fig. 2b). Qualitatively, the device operates as follows: if voltage V = Vj – Vk applied between the external electrodes (in CMOL, nanowires) is low, the trap island has no net electric charge, and the single-electron transistor is closed. If voltage V approaches certain threshold value V+ > 0, an additional electron is inserted into the trap island, and its field lifts the Coulomb blockade of the single-electron transistor, thus connecting the nanowires. The switch state may be reset (e.g., wires disconnected) by applying a lower voltage V < V- < V+. Due to the random character of single-electron tunneling [2], the quantitative description of the switch is by necessity probabilistic: actually, V determines only the rates Γ↑↓ of device switching between its ON and OFF states. The rates, in turn, determine the dynamics of probability p to have the transistor opened (i.e. wires connected): dp/dt = Γ↑(1 - p) - Γ↓p. (1) The theory of single-electron tunneling [2] shows that, in a good approximation, the rates may be presented as Γ↑↓ = Γ0 exp{±e(V - S)/kBT} , (2) (a) single-electron trap tunnel junction Vj Vk single-electron transistor (b) O clipping group O N C R diimide acceptor groups O O C N R R O OPE wires O N R R N O O R O N R R = hexyl N O O R R O N C R R R Fig. 2. (a) Schematics and (b) possible molecular implementation of the two-terminal single-electron latching switch where Γ0 and S are constants depending on physical parameters of the latching switches. Note that despite the random character of switching, the strong nonlinearity of Eq. (2) allows to limit the degree of the device “fuzziness”. 3 CrossNets Figure 3a shows the generic structure of a CrossNet. CMOS-implemented somatic cells (within the Fire Rate model, just nonlinear differential amplifiers, see Fig. 3b,c) apply their output voltages to “axonic” nanowires. If the latching switch, working as an elementary synapse, on the crosspoint of an axonic wire with the perpendicular “dendritic” wire is open, some current flows into the latter wire, charging it. Since such currents are injected into each dendritic wire through several (many) open synapses, their addition provides a natural passive analog summation of signals from the corresponding somas, typical for all neural networks. Examining Fig. 3a, please note the open-circuit terminations of axonic and dendritic lines at the borders of the somatic cells; due to these terminations the somas do not communicate directly (but only via synapses). The network shown on Fig. 3 is evidently feedforward; recurrent networks are achieved in the evident way by doubling the number of synapses and nanowires per somatic cell (Fig. 3c). Moreover, using dual-rail (bipolar) representation of the signal, and hence doubling the number of nanowires and elementary synapses once again, one gets a CrossNet with somas coupled by compact 4-switch groups [9]. Using Eqs. (1) and (2), it is straightforward to show that that the average synaptic weight wjk of the group obeys the “quasi-Hebbian” rule: d w jk = −4Γ0 sinh (γ S ) sinh (γ V j ) sinh (γ Vk ) . dt (3) (a) - +soma j (b) RL + -- jk+ RL (c) jk- RL + -- -+soma k RL Fig. 3. (a) Generic structure of the simplest, (feedforward, non-Hebbian) CrossNet. Red lines show “axonic”, and blue lines “dendritic” nanowires. Gray squares are interfaces between nanowires and CMOS-based somas (b, c). Signs show the dendrite input polarities. Green circles denote molecular latching switches forming elementary synapses. Bold red and blue points are open-circuit terminations of the nanowires, that do not allow somas to interact in bypass of synapses In the simplest cases (e.g., quasi-Hopfield networks with finite connectivity), the tri-level synaptic weights of the generic CrossNets are quite satisfactory, leading to just a very modest (~30%) network capacity loss. However, some applications (in particular, pattern classification) may require a larger number of weight quantization levels L (e.g., L ≈ 30 for a 1% fidelity [9]). This may be achieved by using compact square arrays (e.g., 4×4) of latching switches (Fig. 4). Various species of CrossNets [9] differ also by the way the somatic cells are distributed around the synaptic field. Figure 5 shows feedforward versions of two CrossNet types most explored so far: the so-called FlossBar and InBar. The former network is more natural for the implementation of multilayered perceptrons (MLP), while the latter system is preferable for recurrent network implementations and also allows a simpler CMOS design of somatic cells. The most important advantage of CrossNets over the hardware neural networks suggested earlier is that these networks allow to achieve enormous density combined with large cell connectivity M >> 1 in quasi-2D electronic circuits. 4 CrossNet training CrossNet training faces several hardware-imposed challenges: (i) The synaptic weight contribution provided by the elementary latching switch is binary, so that for most applications the multi-switch synapses (Fig. 4) are necessary. (ii) The only way to adjust any particular synaptic weight is to turn ON or OFF the corresponding latching switch(es). This is only possible to do by applying certain voltage V = Vj – Vk between the two corresponding nanowires. At this procedure, other nanodevices attached to the same wires should not be disturbed. (iii) As stated above, synapse state switching is a statistical progress, so that the degree of its “fuzziness” should be carefully controlled. (a) Vj (b) V w – A/2 i=1 i=1 2 2 … … n n Vj V w+ A/2 i' = 1 RL 2 … i' = 1 n RS ±(V t –A/2) 2 … RS n ±(V t +A/2) Fig. 4. Composite synapse for providing L = 2n2+1 discrete levels of the weight in (a) operation and (b) weight adjustment modes. The dark-gray rectangles are resistive metallic strips at soma/nanowire interfaces (a) (b) Fig. 5. Two main CrossNet species: (a) FlossBar and (b) InBar, in the generic (feedforward, non-Hebbian, ternary-weight) case for the connectivity parameter M = 9. Only the nanowires and nanodevices coupling one cell (indicated with red dashed lines) to M post-synaptic cells (blue dashed lines) are shown; actually all the cells are similarly coupled We have shown that these challenges may be met using (at least) the following training methods [9]: (i) Synaptic weight import. This procedure is started with training of a homomorphic “precursor” artificial neural network with continuous synaptic weighs wjk, implemented in software, using one of established methods (e.g., error backpropagation). Then the synaptic weights wjk are transferred to the CrossNet, with some “clipping” (rounding) due to the binary nature of elementary synaptic weights. To accomplish the transfer, pairs of somatic cells are sequentially selected via CMOS-level wiring. Using the flexibility of CMOS circuitry, these cells are reconfigured to apply external voltages ±VW to the axonic and dendritic nanowires leading to a particular synapse, while all other nanowires are grounded. The voltage level V W is selected so that it does not switch the synapses attached to only one of the selected nanowires, while voltage 2VW applied to the synapse at the crosspoint of the selected wires is sufficient for its reliable switching. (In the composite synapses with quasi-continuous weights (Fig. 4), only a part of the corresponding switches is turned ON or OFF.) (ii) Error backpropagation. The synaptic weight import procedure is straightforward when wjk may be simply calculated, e.g., for the Hopfield-type networks. However, for very large CrossNets used, e.g., as pattern classifiers the precursor network training may take an impracticably long time. In this case the direct training of a CrossNet may become necessary. We have developed two methods of such training, both based on “Hebbian” synapses consisting of 4 elementary synapses (latching switches) whose average weight dynamics obeys Eq. (3). This quasi-Hebbian rule may be used to implement the backpropagation algorithm either using a periodic time-multiplexing [9] or in a continuous fashion, using the simultaneous propagation of signals and errors along the same dual-rail channels. As a result, presently we may state that CrossNets may be taught to perform virtually all major functions demonstrated earlier with the usual neural networks, including the corrupted pattern restoration in the recurrent quasi-Hopfield mode and pattern classification in the feedforward MLP mode [11]. 5 C r o s s N e t p e r f o r m an c e e s t i m a t e s The significance of this result may be only appreciated in the context of unparalleled physical parameters of CMOL CrossNets. The only fundamental limitation on the half-pitch Fnano (Fig. 1) comes from quantum-mechanical tunneling between nanowires. If the wires are separated by vacuum, the corresponding specific leakage conductance becomes uncomfortably large (~10-12 Ω-1m-1) only at Fnano = 1.5 nm; however, since realistic insulation materials (SiO2, etc.) provide somewhat lower tunnel barriers, let us use a more conservative value Fnano= 3 nm. Note that this value corresponds to 1012 elementary synapses per cm2, so that for 4M = 104 and n = 4 the areal density of neural cells is close to 2×107 cm-2. Both numbers are higher than those for the human cerebral cortex, despite the fact that the quasi-2D CMOL circuits have to compete with quasi-3D cerebral cortex. With the typical specific capacitance of 3×10-10 F/m = 0.3 aF/nm, this gives nanowire capacitance C0 ≈ 1 aF per working elementary synapse, because the corresponding segment has length 4Fnano. The CrossNet operation speed is determined mostly by the time constant τ0 of dendrite nanowire capacitance recharging through resistances of open nanodevices. Since both the relevant conductance and capacitance increase similarly with M and n, τ0 ≈ R0C0. The possibilities of reduction of R0, and hence τ0, are limited mostly by acceptable power dissipation per unit area, that is close to Vs2/(2Fnano)2R0. For room-temperature operation, the voltage scale V0 ≈ Vt should be of the order of at least 30 kBT/e ≈ 1 V to avoid thermally-induced errors [9]. With our number for Fnano, and a relatively high but acceptable power consumption of 100 W/cm2, we get R0 ≈ 1010Ω (which is a very realistic value for single-molecule single-electron devices like one shown in Fig. 3). With this number, τ0 is as small as ~10 ns. This means that the CrossNet speed may be approximately six orders of magnitude (!) higher than that of the biological neural networks. Even scaling R0 up by a factor of 100 to bring power consumption to a more comfortable level of 1 W/cm2, would still leave us at least a four-orders-of-magnitude speed advantage. 6 D i s c u s s i on: P o s s i bl e a p p l i c at i o n s These estimates make us believe that that CMOL CrossNet chips may revolutionize the neuromorphic network applications. Let us start with the example of relatively small (1-cm2-scale) chips used for recognition of a face in a crowd [11]. The most difficult feature of such recognition is the search for face location, i.e. optimal placement of a face on the image relative to the panel providing input for the processing network. The enormous density and speed of CMOL hardware gives a possibility to time-and-space multiplex this task (Fig. 6). In this approach, the full image (say, formed by CMOS photodetectors on the same chip) is divided into P rectangular panels of h×w pixels, corresponding to the expected size and approximate shape of a single face. A CMOS-implemented communication channel passes input data from each panel to the corresponding CMOL neural network, providing its shift in time, say using the TV scanning pattern (red line in Fig. 6). The standard methods of image classification require the network to have just a few hidden layers, so that the time interval Δt necessary for each mapping position may be so short that the total pattern recognition time T = hwΔt may be acceptable even for online face recognition. w h image network input Fig. 6. Scan mapping of the input image on CMOL CrossNet inputs. Red lines show the possible time sequence of image pixels sent to a certain input of the network processing image from the upper-left panel of the pattern Indeed, let us consider a 4-Megapixel image partitioned into 4K 32×32-pixel panels (h = w = 32). This panel will require an MLP net with several (say, four) layers with 1K cells each in order to compare the panel image with ~10 3 stored faces. With the feasible 4-nm nanowire half-pitch, and 65-level synapses (sufficient for better than 99% fidelity [9]), each interlayer crossbar would require chip area about (4K×64 nm)2 = 64×64 μm2, fitting 4×4K of them on a ~0.6 cm2 chip. (The CMOS somatic-layer and communication-system overheads are negligible.) With the acceptable power consumption of the order of 10 W/cm2, the input-to-output signal propagation in such a network will take only about 50 ns, so that Δt may be of the order of 100 ns and the total time T = hwΔt of processing one frame of the order of 100 microseconds, much shorter than the typical TV frame time of ~10 milliseconds. The remaining two-orders-of-magnitude time gap may be used, for example, for double-checking the results via stopping the scan mapping (Fig. 6) at the most promising position. (For this, a simple feedback from the recognition output to the mapping communication system is necessary.) It is instructive to compare the estimated CMOL chip speed with that of the implementation of a similar parallel network ensemble on a CMOS signal processor (say, also combined on the same chip with an array of CMOS photodetectors). Even assuming an extremely high performance of 30 billion additions/multiplications per second, we would need ~4×4K×1K×(4K)2/(30×109) ≈ 104 seconds ~ 3 hours per frame, evidently incompatible with the online image stream processing. Let us finish with a brief (and much more speculative) discussion of possible long-term prospects of CMOL CrossNets. Eventually, large-scale (~30×30 cm2) CMOL circuits may become available. According to the estimates given in the previous section, the integration scale of such a system (in terms of both neural cells and synapses) will be comparable with that of the human cerebral cortex. Equipped with a set of broadband sensor/actuator interfaces, such (necessarily, hierarchical) system may be capable, after a period of initial supervised training, of further self-training in the process of interaction with environment, with the speed several orders of magnitude higher than that of its biological prototypes. Needless to say, the successful development of such self-developing systems would have a major impact not only on all information technologies, but also on the society as a whole. Acknowledgments This work has been supported in part by the AFOSR, MARCO (via FENA Center), and NSF. Valuable contributions made by Simon Fölling, Özgür Türel and Ibrahim Muckra, as well as useful discussions with P. Adams, J. Barhen, D. Hammerstrom, V. Protopopescu, T. Sejnowski, and D. Strukov are gratefully acknowledged. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Frank, D. J. et al. (2001) Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3): 259-288. Likharev, K. K. (2003) Electronics below 10 nm, in J. Greer et al. (eds.), Nano and Giga Challenges in Microelectronics, pp. 27-68. Amsterdam: Elsevier. Likharev, K. K. and Strukov, D. B. (2005) CMOL: Devices, circuits, and architectures, in G. Cuniberti et al. (eds.), Introducing Molecular Electronics, Ch. 16. Springer, Berlin. Fölling, S., Türel, Ö. & Likharev, K. K. (2001) Single-electron latching switches as nanoscale synapses, in Proc. of the 2001 Int. Joint Conf. on Neural Networks, pp. 216-221. Mount Royal, NJ: Int. Neural Network Society. Wang, W. et al. (2003) Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68(3): 035416 1-8. Stan M. et al. (2003) Molecular electronics: From devices and interconnect to circuits and architecture, Proc. IEEE 91(11): 1940-1957. Strukov, D. B. & Likharev, K. K. (2005) Prospects for terabit-scale nanoelectronic memories. Nanotechnology 16(1): 137-148. Strukov, D. B. & Likharev, K. K. (2005) CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6): 888-900. Türel, Ö. et al. (2004) Neuromorphic architectures for nanoelectronic circuits”, Int. J. of Circuit Theory and Appl. 32(5): 277-302. See, e.g., Hertz J. et al. (1991) Introduction to the Theory of Neural Computation. Cambridge, MA: Perseus. Lee, J. H. & Likharev, K. K. (2005) CrossNets as pattern classifiers. Lecture Notes in Computer Sciences 3575: 434-441.
6 0.53997213 176 nips-2005-Silicon growth cones map silicon retina
7 0.47651178 28 nips-2005-Analyzing Auditory Neurons by Learning Distance Functions
8 0.43056524 20 nips-2005-Affine Structure From Sound
9 0.41428888 17 nips-2005-Active Bidirectional Coupling in a Cochlear Chip
10 0.37183201 109 nips-2005-Learning Cue-Invariant Visual Responses
11 0.36009949 157 nips-2005-Principles of real-time computing with feedback applied to cortical microcircuit models
12 0.33477196 73 nips-2005-Fast biped walking with a reflexive controller and real-time policy searching
13 0.25448984 183 nips-2005-Stimulus Evoked Independent Factor Analysis of MEG Data with Large Background Activity
14 0.24304877 134 nips-2005-Neural mechanisms of contrast dependent receptive field size in V1
15 0.2300581 94 nips-2005-Identifying Distributed Object Representations in Human Extrastriate Visual Cortex
16 0.22974208 118 nips-2005-Learning in Silicon: Timing is Everything
17 0.2256691 128 nips-2005-Modeling Memory Transfer and Saving in Cerebellar Motor Learning
18 0.22535512 51 nips-2005-Correcting sample selection bias in maximum entropy density estimation
19 0.22491968 203 nips-2005-Visual Encoding with Jittering Eyes
20 0.21452251 143 nips-2005-Off-Road Obstacle Avoidance through End-to-End Learning
topicId topicWeight
[(3, 0.02), (6, 0.012), (10, 0.038), (26, 0.016), (27, 0.038), (31, 0.022), (34, 0.059), (39, 0.014), (41, 0.012), (47, 0.43), (55, 0.015), (57, 0.03), (60, 0.016), (69, 0.072), (73, 0.02), (88, 0.062), (91, 0.036)]
simIndex simValue paperId paperTitle
same-paper 1 0.85402602 25 nips-2005-An aVLSI Cricket Ear Model
Author: Andre V. Schaik, Richard Reeve, Craig Jin, Tara Hamilton
Abstract: Female crickets can locate males by phonotaxis to the mating song they produce. The behaviour and underlying physiology has been studied in some depth showing that the cricket auditory system solves this complex problem in a unique manner. We present an analogue very large scale integrated (aVLSI) circuit model of this process and show that results from testing the circuit agree with simulation and what is known from the behaviour and physiology of the cricket auditory system. The aVLSI circuitry is now being extended to use on a robot along with previously modelled neural circuitry to better understand the complete sensorimotor pathway. 1 In trod u ction Understanding how insects carry out complex sensorimotor tasks can help in the design of simple sensory and robotic systems. Often insect sensors have evolved into intricate filters matched to extract highly specific data from the environment which solves a particular problem directly with little or no need for further processing [1]. Examples include head stabilisation in the fly, which uses vision amongst other senses to estimate self-rotation and thus to stabilise its head in flight, and phonotaxis in the cricket. Because of the narrowness of the cricket body (only a few millimetres), the Interaural Time Difference (ITD) for sounds arriving at the two sides of the head is very small (10–20µs). Even with the tympanal membranes (eardrums) located, as they are, on the forelegs of the cricket, the ITD only reaches about 40µs, which is too low to detect directly from timings of neural spikes. Because the wavelength of the cricket calling song is significantly greater than the width of the cricket body the Interaural Intensity Difference (IID) is also very low. In the absence of ITD or IID information, the cricket uses phase to determine direction. This is possible because the male cricket produces an almost pure tone for its calling song. * School of Electrical and Information Engineering, Institute of Perception, Action and Behaviour. + Figure 1: The cricket auditory system. Four acoustic inputs channel sounds directly or through tracheal tubes onto two tympanal membranes. Sound from contralateral inputs has to pass a (double) central membrane (the medial septum), inducing a phase delay and reduction in gain. The sound transmission from the contralateral tympanum is very weak, making each eardrum effectively a 3 input system. The physics of the cricket auditory system is well understood [2]; the system (see Figure 1) uses a pair of sound receivers with four acoustic inputs, two on the forelegs, which are the external surfaces of the tympana, and two on the body, the prothoracic or acoustic spiracles [3]. The connecting tracheal tubes are such that interference occurs as sounds travel inside the cricket, producing a directional response at the tympana to frequencies near to that of the calling song. The amplitude of vibration of the tympana, and hence the firing rate of the auditory afferent neurons attached to them, vary as a sound source is moved around the cricket and the sounds from the different inputs move in and out of phase. The outputs of the two tympana match when the sound is straight ahead, and the inputs are bilaterally symmetric with respect to the sound source. However, when sound at the calling song frequency is off-centre the phase of signals on the closer side comes better into alignment, and the signal increases on that side, and conversely decreases on the other. It is that crossover of tympanal vibration amplitudes which allows the cricket to track a sound source (see Figure 6 for example). A simplified version of the auditory system using only two acoustic inputs was implemented in hardware [4], and a simple 8-neuron network was all that was required to then direct a robot to carry out phonotaxis towards a species-specific calling song [5]. A simple simulator was also created to model the behaviour of the auditory system of Figure 1 at different frequencies [6]. Data from Michelsen et al. [2] (Figures 5 and 6) were digitised, and used together with average and “typical” values from the paper to choose gains and delays for the simulation. Figure 2 shows the model of the internal auditory system of the cricket from sound arriving at the acoustic inputs through to transmission down auditory receptor fibres. The simulator implements this model up to the summing of the delayed inputs, as well as modelling the external sound transmission. Results from the simulator were used to check the directionality of the system at different frequencies, and to gain a better understanding of its response. It was impractical to check the effect of leg movements or of complex sounds in the simulator due to the necessity of simulating the sound production and transmission. An aVLSI chip was designed to implement the same model, both allowing more complex experiments, such as leg movements to be run, and experiments to be run in the real world. Figure 2: A model of the auditory system of the cricket, used to build the simulator and the aVLSI implementation (shown in boxes). These experiments with the simulator and the circuits are being published in [6] and the reader is referred to those papers for more details. In the present paper we present the details of the circuits used for the aVLSI implementation. 2 Circuits The chip, implementing the aVLSI box in Figure 2, comprises two all-pass delay filters, three gain circuits, a second-order narrow-band band-pass filter, a first-order wide-band band-pass filter, a first-order high-pass filter, as well as supporting circuitry (including reference voltages, currents, etc.). A single aVLSI chip (MOSIS tiny-chip) thus includes half the necessary circuitry to model the complete auditory system of a cricket. The complete model of the auditory system can be obtained by using two appropriately connected chips. Only two all-pass delay filters need to be implemented instead of three as suggested by Figure 2, because it is only the relative delay between the three pathways arriving at the one summing node that counts. The delay circuits were implemented with fully-differential gm-C filters. In order to extend the frequency range of the delay, a first-order all-pass delay circuit was cascaded with a second-order all-pass delay circuit. The resulting addition of the first-order delay and the second-order delay allowed for an approximately flat delay response for a wider bandwidth as the decreased delay around the corner frequency of the first-order filter cancelled with the increased delay of the second-order filter around its resonant frequency. Figure 3 shows the first- and second-order sections of the all-pass delay circuit. Two of these circuits were used and, based on data presented in [2], were designed with delays of 28µs and 62µs, by way of bias current manipulation. The operational transconductance amplifier (OTA) in figure 3 is a standard OTA which includes the common-mode feedback necessary for fully differential designs. The buffers (Figure 3) are simple, cascoded differential pairs. V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ V+ V- II+ Figure 3: The first-order all-pass delay circuit (left) and the second-order all-pass delay (right). The differential output of the delay circuits is converted into a current which is multiplied by a variable gain implemented as shown in Figure 4. The gain cell includes a differential pair with source degeneration via transistors N4 and N5. The source degeneration improves the linearity of the current. The three gain cells implemented on the aVLSI have default gains of 2, 3 and 0.91 which are set by holding the default input high and appropriately ratioing the bias currents through the value of vbiasp. To correct any on-chip mismatches and/or explore other gain configurations a current splitter cell [7] (p-splitter, figure 4) allows the gain to be programmed by digital means post fabrication. The current splitter takes an input current (Ibias, figure 4) and divides it into branches which recursively halve the current, i.e., the first branch gives ½ Ibias, the second branch ¼ Ibias, the third branch 1/8 Ibias and so on. These currents can be used together with digitally controlled switches as a Digital-to-Analogue converter. By holding default low and setting C5:C0 appropriately, any gain – from 4 to 0.125 – can be set. To save on output pins the program bits (C5:C0) for each of the three gain cells are set via a single 18-bit shift register in bit-serial fashion. Summing the output of the three gain circuits in the current domain simply involves connecting three wires together. Therefore, a natural option for the filters that follow is to use current domain filters. In our case we have chosen to implement log-domain filters using MOS transistors operating in weak inversion. Figure 5 shows the basic building blocks for the filters – the Tau Cell [8] and the multiplier cell – and block diagrams showing how these blocks were connected to create the necessary filtering blocks. The Tau Cell is a log-domain filter which has the firstorder response: I out 1 , = I in sτ + 1 where τ = nC aVT Ia and n = the slope factor, VT = thermal voltage, Ca = capacitance, and Ia = bias current. In figure 5, the input currents to the Tau Cell, Imult and A*Ia, are only used when building a second-order filter. The multiplier cell is simply a translinear loop where: I out1 ∗ I mult = I out 2 ∗ AI a or Imult = AIaIout2/Iout1. The configurations of the Tau Cell to get particular responses are covered in [8] along with the corresponding equations. The high frequency filter of Figure 2 is implemented by the high-pass filter in Figure 5 with a corner frequency of 17kHz. The low frequency filter, however, is divided into two parts since the biological filter’s response (see for example Figure 3A in [9]) separates well into a narrow second-order band-pass filter with a 10kHz resonant frequency and a wide band-pass filter made from a first-order high-pass filter with a 3kHz corner frequency followed by a first-order low-pass filter with a 12kHz corner frequency. These filters are then added together to reproduce the biological filter. The filters’ responses can be adjusted post fabrication via their bias currents. This allows for compensation due to processing and matching errors. Figure 4: The Gain Cell above is used to convert the differential voltage input from the delay cells into a single-ended current output. The gain of each cell is controllable via a programmable current cell (p_splitter). An on-chip bias generator [7] was used to create all the necessary current biases on the chip. All the main blocks (delays, gain cells and filters), however, can have their on-chip bias currents overridden through external pins on the chip. The chip was fabricated using the MOSIS AMI 1.6µm technology and designed using the Cadence Custom IC Design Tools (5.0.33). 3 Methods The chip was tested using sound generated on a computer and played through a soundcard to the chip. Responses from the chip were recorded by an oscilloscope, and uploaded back to the computer on completion. Given that the output from the chip and the gain circuits is a current, an external current-sense circuit built with discrete components was used to enable the output to be probed by the oscilloscope. Figure 5: The circuit diagrams for the log-domain filter building blocks – The Tau Cell and The Multiplier – along with the block diagrams for the three filters used in the aVLSI model. Initial experiments were performed to tune the delays and gains. After that, recordings were taken of the directional frequency responses. Sounds were generated by computer for each chip input to simulate moving the forelegs by delaying the sound by the appropriate amount of time; this was a much simpler solution than using microphones and moving them using motors. 4 Results The aVLSI chip was tested to measure its gains and delays, which were successfully tuned to the appropriate values. The chip was then compared with the simulation to check that it was faithfully modelling the system. A result of this test at 4kHz (approximately the cricket calling-song frequency) is shown in Figure 6. Apart from a drop in amplitude of the signal, the response of the circuit was very similar to that of the simulator. The differences were expected because the aVLSI circuit has to deal with real-world noise, whereas the simulated version has perfect signals. Examples of the gain versus frequency response of the two log-domain band-pass filters are shown in Figure 7. Note that the narrow-band filter peaks at 6kHz, which is significantly above the mating song frequency of the cricket which is around 4.5kHz. This is not a mistake, but is observed in real crickets as well. As stated in the introduction, a range of further testing results with both the circuit and the simulator are being published in [6]. 5 D i s c u s s i on The aVLSI auditory sensor in this research models the hearing of the field cricket Gryllus bimaculatus. It is a more faithful model of the cricket auditory system than was previously built in [4], reproducing all the acoustic inputs, as well as the responses to frequencies of both the co specific calling song and bat echolocation chirps. It also generates outputs corresponding to the two sets of behaviourally relevant auditory receptor fibres. Results showed that it matched the biological data well, though there were some inconsistencies due to an error in the specification that will be addressed in a future iteration of the design. A more complete implementation across all frequencies was impractical because of complexity and size issues as well as serving no clear behavioural purpose. Figure 6: Vibration amplitude of the left (dotted) and right (solid) virtual tympana measured in decibels in response to a 4kHz tone in simulation (left) and on the aVLSI chip (right). The plot shows the amplitude of the tympanal responses as the sound source is rotated around the cricket. Figure 7: Frequency-Gain curves for the narrow-band and wide-band bandpass filters. The long-term aim of this work is to better understand simple sensorimotor control loops in crickets and other insects. The next step is to mount this circuitry on a robot to carry out behavioural experiments, which we will compare with existing and new behavioural data (such as that in [10]). This will allow us to refine our models of the neural circuitry involved. Modelling the sensory afferent neurons in hardware is necessary in order to reduce processor load on our robot, so the next revision will include these either onboard, or on a companion chip as we have done before [11]. We will also move both sides of the auditory system onto a single chip to conserve space on the robot. It is our belief and experience that, as a result of this intelligent pre-processing carried out at the sensor level, the neural circuits necessary to accurately model the behaviour will remain simple. Acknowledgments The authors thank the Institute of Neuromorphic Engineering and the UK Biotechnology and Biological Sciences Research Council for funding the research in this paper. References [1] R. Wehner. Matched filters – neural models of the external world. J Comp Physiol A, 161: 511–531, 1987. [2] A. Michelsen, A. V. Popov, and B. Lewis. Physics of directional hearing in the cricket Gryllus bimaculatus. Journal of Comparative Physiology A, 175:153–164, 1994. [3] A. Michelsen. The tuned cricket. News Physiol. Sci., 13:32–38, 1998. [4] H. H. Lund, B. Webb, and J. Hallam. A robot attracted to the cricket species Gryllus bimaculatus. In P. Husbands and I. Harvey, editors, Proceedings of 4th European Conference on Artificial Life, pages 246–255. MIT Press/Bradford Books, MA., 1997. [5] R Reeve and B. Webb. New neural circuits for robot phonotaxis. Phil. Trans. R. Soc. Lond. A, 361:2245–2266, August 2003. [6] R. Reeve, A. van Schaik, C. Jin, T. Hamilton, B. Torben-Nielsen and B. Webb Directional hearing in a silicon cricket. Biosystems, (in revision), 2005b [7] T. Delbrück and A. van Schaik, Bias Current Generators with Wide Dynamic Range, Analog Integrated Circuits and Signal Processing 42(2), 2005 [8] A. van Schaik and C. Jin, The Tau Cell: A New Method for the Implementation of Arbitrary Differential Equations, IEEE International Symposium on Circuits and Systems (ISCAS) 2003 [9] Kazuo Imaizumi and Gerald S. Pollack. Neural coding of sound frequency by cricket auditory receptors. The Journal of Neuroscience, 19(4):1508– 1516, 1999. [10] Berthold Hedwig and James F.A. Poulet. Complex auditory behaviour emerges from simple reactive steering. Nature, 430:781–785, 2004. [11] R. Reeve, B. Webb, A. Horchler, G. Indiveri, and R. Quinn. New technologies for testing a model of cricket phonotaxis on an outdoor robot platform. Robotics and Autonomous Systems, 51(1):41-54, 2005.
2 0.53437406 98 nips-2005-Infinite latent feature models and the Indian buffet process
Author: Zoubin Ghahramani, Thomas L. Griffiths
Abstract: We define a probability distribution over equivalence classes of binary matrices with a finite number of rows and an unbounded number of columns. This distribution is suitable for use as a prior in probabilistic models that represent objects using a potentially infinite array of features. We identify a simple generative process that results in the same distribution over equivalence classes, which we call the Indian buffet process. We illustrate the use of this distribution as a prior in an infinite latent feature model, deriving a Markov chain Monte Carlo algorithm for inference in this model and applying the algorithm to an image dataset. 1
3 0.53214061 54 nips-2005-Data-Driven Online to Batch Conversions
Author: Ofer Dekel, Yoram Singer
Abstract: Online learning algorithms are typically fast, memory efficient, and simple to implement. However, many common learning problems fit more naturally in the batch learning setting. The power of online learning algorithms can be exploited in batch settings by using online-to-batch conversions techniques which build a new batch algorithm from an existing online algorithm. We first give a unified overview of three existing online-to-batch conversion techniques which do not use training data in the conversion process. We then build upon these data-independent conversions to derive and analyze data-driven conversions. Our conversions find hypotheses with a small risk by explicitly minimizing datadependent generalization bounds. We experimentally demonstrate the usefulness of our approach and in particular show that the data-driven conversions consistently outperform the data-independent conversions.
4 0.31214434 100 nips-2005-Interpolating between types and tokens by estimating power-law generators
Author: Sharon Goldwater, Mark Johnson, Thomas L. Griffiths
Abstract: Standard statistical models of language fail to capture one of the most striking properties of natural languages: the power-law distribution in the frequencies of word tokens. We present a framework for developing statistical models that generically produce power-laws, augmenting standard generative models with an adaptor that produces the appropriate pattern of token frequencies. We show that taking a particular stochastic process – the Pitman-Yor process – as an adaptor justifies the appearance of type frequencies in formal analyses of natural language, and improves the performance of a model for unsupervised learning of morphology.
5 0.29982734 88 nips-2005-Gradient Flow Independent Component Analysis in Micropower VLSI
Author: Abdullah Celik, Milutin Stanacevic, Gert Cauwenberghs
Abstract: We present micropower mixed-signal VLSI hardware for real-time blind separation and localization of acoustic sources. Gradient flow representation of the traveling wave signals acquired over a miniature (1cm diameter) array of four microphones yields linearly mixed instantaneous observations of the time-differentiated sources, separated and localized by independent component analysis (ICA). The gradient flow and ICA processors each measure 3mm × 3mm in 0.5 µm CMOS, and consume 54 µW and 180 µW power, respectively, from a 3 V supply at 16 ks/s sampling rate. Experiments demonstrate perceptually clear (12dB) separation and precise localization of two speech sources presented through speakers positioned at 1.5m from the array on a conference room table. Analysis of the multipath residuals shows that they are spectrally diffuse, and void of the direct path.
6 0.2789332 67 nips-2005-Extracting Dynamical Structure Embedded in Neural Activity
7 0.27868238 200 nips-2005-Variable KD-Tree Algorithms for Spatial Pattern Search and Discovery
8 0.2770218 181 nips-2005-Spiking Inputs to a Winner-take-all Network
9 0.2761384 72 nips-2005-Fast Online Policy Gradient Learning with SMD Gain Vector Adaptation
10 0.27394164 99 nips-2005-Integrate-and-Fire models with adaptation are good enough
11 0.27142254 109 nips-2005-Learning Cue-Invariant Visual Responses
12 0.27024737 132 nips-2005-Nearest Neighbor Based Feature Selection for Regression and its Application to Neural Activity
13 0.27008405 157 nips-2005-Principles of real-time computing with feedback applied to cortical microcircuit models
14 0.27003139 32 nips-2005-Augmented Rescorla-Wagner and Maximum Likelihood Estimation
15 0.26995504 45 nips-2005-Conditional Visual Tracking in Kernel Space
16 0.26980576 169 nips-2005-Saliency Based on Information Maximization
17 0.26943171 144 nips-2005-Off-policy Learning with Options and Recognizers
18 0.26934755 28 nips-2005-Analyzing Auditory Neurons by Learning Distance Functions
19 0.26913741 136 nips-2005-Noise and the two-thirds power Law
20 0.26849219 30 nips-2005-Assessing Approximations for Gaussian Process Classification