nips nips2012 nips2012-322 knowledge-graph by maker-knowledge-mining

322 nips-2012-Spiking and saturating dendrites differentially expand single neuron computation capacity


Source: pdf

Author: Romain Cazé, Mark Humphries, Boris S. Gutkin

Abstract: The integration of excitatory inputs in dendrites is non-linear: multiple excitatory inputs can produce a local depolarization departing from the arithmetic sum of each input’s response taken separately. If this depolarization is bigger than the arithmetic sum, the dendrite is spiking; if the depolarization is smaller, the dendrite is saturating. Decomposing a dendritic tree into independent dendritic spiking units greatly extends its computational capacity, as the neuron then maps onto a two layer neural network, enabling it to compute linearly non-separable Boolean functions (lnBFs). How can these lnBFs be implemented by dendritic architectures in practise? And can saturating dendrites equally expand computational capacity? To address these questions we use a binary neuron model and Boolean algebra. First, we confirm that spiking dendrites enable a neuron to compute lnBFs using an architecture based on the disjunctive normal form (DNF). Second, we prove that saturating dendrites as well as spiking dendrites enable a neuron to compute lnBFs using an architecture based on the conjunctive normal form (CNF). Contrary to a DNF-based architecture, in a CNF-based architecture, dendritic unit tunings do not imply the neuron tuning, as has been observed experimentally. Third, we show that one cannot use a DNF-based architecture with saturating dendrites. Consequently, we show that an important family of lnBFs implemented with a CNF-architecture can require an exponential number of saturating dendritic units, whereas the same family implemented with either a DNF-architecture or a CNF-architecture always require a linear number of spiking dendritic units. This minimization could explain why a neuron spends energetic resources to make its dendrites spike. 1

Reference: text


Summary: the most important sentenses genereted by tfidf model

sentIndex sentText sentNum sentScore

1 Spiking and saturating dendrites differentially expand single neuron computation capacity. [sent-1, score-0.634]

2 fr Abstract The integration of excitatory inputs in dendrites is non-linear: multiple excitatory inputs can produce a local depolarization departing from the arithmetic sum of each input’s response taken separately. [sent-9, score-0.315]

3 If this depolarization is bigger than the arithmetic sum, the dendrite is spiking; if the depolarization is smaller, the dendrite is saturating. [sent-10, score-0.187]

4 Decomposing a dendritic tree into independent dendritic spiking units greatly extends its computational capacity, as the neuron then maps onto a two layer neural network, enabling it to compute linearly non-separable Boolean functions (lnBFs). [sent-11, score-1.975]

5 How can these lnBFs be implemented by dendritic architectures in practise? [sent-12, score-0.708]

6 To address these questions we use a binary neuron model and Boolean algebra. [sent-14, score-0.235]

7 First, we confirm that spiking dendrites enable a neuron to compute lnBFs using an architecture based on the disjunctive normal form (DNF). [sent-15, score-0.711]

8 Second, we prove that saturating dendrites as well as spiking dendrites enable a neuron to compute lnBFs using an architecture based on the conjunctive normal form (CNF). [sent-16, score-1.106]

9 Contrary to a DNF-based architecture, in a CNF-based architecture, dendritic unit tunings do not imply the neuron tuning, as has been observed experimentally. [sent-17, score-0.986]

10 Third, we show that one cannot use a DNF-based architecture with saturating dendrites. [sent-18, score-0.335]

11 This minimization could explain why a neuron spends energetic resources to make its dendrites spike. [sent-20, score-0.387]

12 1 Introduction Recent progress in voltage clamp techniques has enabled the recording of local membrane voltage in dendritic branches, and this greatly changed our view of the potential for single neuron computation. [sent-21, score-0.951]

13 Experiments have shown that when the local dendritic membrane potential reaches a given threshold a dendritic spike can be elicited [4, 13]. [sent-22, score-1.331]

14 Based on this type of local dendritic non-linearity, it has been suggested that a CA1 hippocampal pyramidal neuron comprises multiple independent nonlinear spiking units, summating at the soma, and is thus equivalent to a two layer artificial neural network [12]. [sent-23, score-1.193]

15 By contrast, a seminal neuron model, the McCulloch & Pitts unit [10], is restricted to linearly separable Boolean functions. [sent-25, score-0.294]

16 Indeed, spiking dendritic unit may enable the computation of lnBFs using an architecture, suggested in [9], where the dendritic tuning implies the neuron tuning (see also Proposition 1). [sent-27, score-1.886]

17 We resolve this first issue here by showing how one can implement lnBFs with spiking dendritic units, whose tunings do not formally imply the somatic tuning. [sent-29, score-1.081]

18 Moreover, the idea of a neuron implementing a two-layer network is based on spiking dendrites. [sent-30, score-0.493]

19 Dendritic non-linearities have a variety of shapes, and many neuron types may not have the capacity to generate dendritic spikes. [sent-31, score-0.907]

20 For instance, glutamate uncaging on cerebellar stellate cell dendrites and simultaneous somatic voltage recording of these interneurons shows that multiple excitatory inputs on the same dendrite result in a somatic depolarization smaller than the arithmetic sum of the quantal depolarizations [1]. [sent-33, score-0.525]

21 It is unknown whether local dendritic saturation can also enhance the general computational capacity of a single neuron in the same way as local dendritic spiking – but, if so, this would make plausible the implementation of lnBFs in potentially any type of neuron. [sent-35, score-1.851]

22 In the present study we show that saturating dendritic units do also enable the computation of lnBFs (see Proposition 2). [sent-36, score-1.081]

23 One can wonder why some dendrites support metabolically-expensive spiking if dendritic saturation is sufficient to compute all Boolean functions. [sent-37, score-1.028]

24 We show that a family of positive lnBFs may require an exponentially growing number of saturating dendritic units when the number of input variables grow linearly, whereas the same family of Boolean functions requires a linearly growing number of spiking dendritic units. [sent-39, score-2.109]

25 Consequently dendritic spikes may minimize the number of units necessary to implement all Boolean functions. [sent-40, score-0.895]

26 Thus, as the number of independent units – spiking or saturating – in a dendrite remains an open question [5], but potentially small [14], it may turn out that certain Boolean functions are only implementable using spiking dendrites. [sent-41, score-0.973]

27 1 Definitions The binary two stage neuron We introduce here a neuron model analogous to [12]. [sent-43, score-0.526]

28 Our model is a binary two stage neuron, where X is a binary input vector of length n and y is a binary variable modelling the neuron output. [sent-44, score-0.291]

29 First, inputs sum locally within each dendritic unit j given a local weight vector Wj ; then they pass though a local transfer function Fj accounting for the dendritic non-linear behavior. [sent-45, score-1.538]

30 Second, outputs of the d dendritic subunits sum at the soma and passes though the somatic transfer function F0 . [sent-46, score-0.925]

31 F0 is a spiking transfer function whereas Fj are either spiking or saturating transfer functions, these functions are described in the next section and are displayed on Figure 1A. [sent-47, score-1.083]

32 2 Sub-linear and supra-linear transfer functions A transfer function F takes as input a local weighted linear sum x and outputs F (x); this output depends on the type of transfer function: spiking or saturating, and on a single positive parameter Θ the threshold of the transfer function. [sent-50, score-0.971]

33 The two types of transfer functions are defined as follows: Definition 1. [sent-51, score-0.188]

34 Saturating transfer function Fsat (x) = 1 if x ≥ Θ x/Θ otherwise The difference between a spiking and a saturating transfer function is that Fspk (x) = 0 whereas Fsat (x) = x/Θ if x is below Θ. [sent-53, score-0.815]

35 To formally characterize this difference we define here sublinearity and supra-linearity of a transfer function F on a given interval I. [sent-54, score-0.15]

36 f is positive if and only if f (X) ≥ f (Z) ∀(X, Z) ∈ {0, 1}n such that X ≥ Z (meaning that ∀i : xi ≥ zi ) We also recall the notion of implication as it is important to observe that a dendritic input-output function (or tuning) may or not imply the neuron’s input-output function: 3 Definition 6. [sent-77, score-0.747]

37 f implies g ⇐⇒ f (X) = 1 =⇒ g(X) = 1 ∀X ∈ {0, 1}n As will become clear, we can treat each dendritic unit as computing its own Boolean function on its inputs: for a unit’s output to imply the whole neuron’s output then means that if a unit outputs a 1, then the neuron outputs a 1. [sent-79, score-0.995]

38 In order to describe positive Boolean functions, it is useful to decompose them into positive terms and positive clauses: Definition 7. [sent-80, score-0.156]

39 i∈X (j) A positive clause j is a disjunction of variables written as Cj (X) = xi . [sent-83, score-0.167]

40 A complete positive DNF is a disjunction of prime positive terms T : DNF(f ) := xi Tj ∈T i∈X (j) Definition 9. [sent-91, score-0.227]

41 A complete positive CNF is a conjunction of prime positive clauses C: CNF(f ) := xi Cj ∈C i∈X (j) It has been shown that all positive Boolean functions can be expressed as a positive complete DNF ([3] Theorem 1. [sent-92, score-0.5]

42 24); similarly all positive Boolean functions can be expressed as a positive complete CNF. [sent-93, score-0.185]

43 These tuples can also define two positive clauses C1 (X) = x1 ∨ x2 where C1 (X) = 1 as soon as x1 = 1 or x2 = 1, and similarly C2 (X) = x3 ∨ x4 where C2 (X) = 1 as soon as x3 = 1 or x4 = 1. [sent-99, score-0.164]

44 Similarly in the conjunction of clauses C1 ∧ C2 the clauses are prime because C1 (X) = 1 does not imply that C2 (X) = 1 for all X (and vice-versa). [sent-101, score-0.289]

45 T1 ∨ T2 is the complete positive DNF expression of g; alternatively C1 ∧ C2 is the complete positive CNF expression of h. [sent-102, score-0.23]

46 Moreover, we present two construction architectures for building a two stage neuron implementing a positive Boolean function based on its complete DNF or CNF expression. [sent-104, score-0.459]

47 Finally we show that the DNF-based architecture is only possible with spiking dendritic units and not with saturating dendritic units. [sent-105, score-2.004]

48 4 Figure 1: Modeling dendritic spikes, dendritic saturations, and their impact on computation capacity (A) Two types of transfer functions for a unit j with a normalized height to 1 and a variable threshold Θj . [sent-106, score-1.557]

49 1 Computation of positive Boolean functions using non-linear dendritic units Lemma 1. [sent-109, score-0.885]

50 A two stage neuron with non-negative synaptic weights and increasing transfer functions necessarily implements positive Boolean functions Proof. [sent-110, score-0.629]

51 , d} non-negative local weights wi,j ≥ 0, thus for a given dendritic unit j we have: wi,j xi ≥ wi,j zi . [sent-115, score-0.711]

52 We can sum inequalities for all i, and Fj are increasing transfer functions thus: Fj (Wj . [sent-116, score-0.201]

53 We can sum the d inequalities corresponding to every dendritic unit, and F0 is an increasing transfer function thus: f (X) ≥ f (Z). [sent-119, score-0.807]

54 We need to provide the parameter sets of a transfer function implementing a term (resp. [sent-124, score-0.191]

55 a clause) with the constraint that the transfer function is supra-linear (resp. [sent-125, score-0.15]

56 Indeed, a supra-linear transfer function (like the spiking transfer function) with the parameter set wi = 1 if i ∈ X (j) and wi = 0 otherwise and Θ = card(X (j) ) implements the term Tj . [sent-127, score-0.624]

57 A sub-linear transfer function (like the saturating transfer function) with the parameter set wi = 1 if i ∈ X (j) and wi = 0 otherwise and Θ = 1 implements the clause Cj . [sent-128, score-0.713]

58 Putting the two pieces i∈X ( j) together we obtain: F wi xi > i∈X (j) F (wi xi ) i∈X (j) This inequality shows that the tuple of points (wi xi |i ∈ X (j) ) defining a term must have F supralinear; therefore, by Definition 2, F cannot be both strictly sub-linear and implement a term. [sent-139, score-0.16]

59 Using these Lemmas we show the possible and impossible implementation architectures of positive Boolean functions in two-layer neuron models using either spiking or saturating dendritic units. [sent-140, score-1.522]

60 A two stage neuron with non-negative synaptic weights and a sufficient number of dendritic units with spiking transfer functions can implement only and all positive Boolean functions based on their positive complete DNF Proof. [sent-142, score-1.784]

61 A two stage neuron can only compute positive Boolean functions (Lemma 1). [sent-143, score-0.381]

62 All positive Boolean functions can be expressed as a positive complete DNF; because a spiking dendritic unit has a supra-linear transfer function it can implement all possible terms (Lemma 2). [sent-144, score-1.305]

63 Therefore a two stage neuron model without inhibition can implement only and all positive Boolean functions with as many dendritic units as there are terms in the functions’ positive complete DNF. [sent-145, score-1.339]

64 Informally, this simply means that a dendrite is a pattern detector: if a pattern is present in the input then the dendritic unit elicits a dendritic spike. [sent-147, score-1.37]

65 This architecture has been repeatedly invoked by theoreticians [8] and experimentalists ([9] in supplementary material) to suggest that dendritic spikes increase a neuron’s computational capacity. [sent-148, score-0.758]

66 With this architecture, however, the dendritic transfer function, if it is viewed as a Boolean function, formally implies the neuron’s input-output mapping. [sent-149, score-0.794]

67 A two stage neuron with non-negative synaptic weights and a sufficient number of dendritic units with spiking or saturating transfer functions can implement only and all positive Boolean functions based on their positive complete CNF Proof. [sent-152, score-2.049]

68 A two stage neuron can only compute positive Boolean functions (Lemma 1). [sent-153, score-0.381]

69 All positive Boolean functions can be expressed as a positive complete CNF; because a spiking or a saturating dendritic unit has a sub-linear transfer function they both can implement all possible clauses (Lemma 2). [sent-154, score-1.67]

70 Therefore a two stage neuron model without inhibition can implement only and all positive Boolean functions with as many dendritic units as there are clauses in the functions’ positive complete CNF. [sent-155, score-1.439]

71 It shows that saturations can increase the computational power of a neuron as much as dendritic spikes. [sent-158, score-0.93]

72 It also shows that another implementation architecture is possible using spiking dendritic units. [sent-159, score-0.957]

73 Using this architecture, the dendritic units’ transfer functions do not imply the somatic output. [sent-160, score-0.952]

74 This independence of dendritic and somatic response to inputs has been observed in Layer 2/3 neurons [6]. [sent-161, score-0.751]

75 A two stage neuron with non-negative synaptic weights and only dendritic units with saturating transfer functions cannot implement a positive Boolean function based on its complete DNF 6 Proof. [sent-163, score-1.729]

76 The transfer function of a saturating dendritic unit is strictly sub-linear, therefore this unit cannot implement a term (Lemma 3). [sent-164, score-1.224]

77 This result suggests that spiking dendritic units are more flexible than saturating dendritic units; they allow the computation of Boolean functions through either DNF or CNF-based architectures (illustrated in Figure 2), whereas saturating units are restricted to CNF-based architectures. [sent-165, score-2.453]

78 2 Implementation of a family of positive lnBFs using either spiking or saturating dendrites Figure 2: Implementation of two linearly non-separable Boolean functions using CNF-based or DNF-based architectures. [sent-167, score-0.761]

79 Four parameter sets of two-stage neuron models: in circles are synaptic weights and in squares are threshold and the unit type (spk:spiking, sat:saturating). [sent-168, score-0.34]

80 These parameter sets implement (A1/A2) g or (B1/B2) h, two lnBFs depicted in Table 1 using: (A1/B1) a DNFbased architecture and spiking dendritic units only; (A2/B2) a CNF-based architecture and saturating dendritic units only. [sent-169, score-2.281]

81 , xn , zn )) := x1 z1 ∨ x2 z2 ∨ · · · ∨ xn zn The same function g has a unique complete positive CNF expression; let’s call it ψ. [sent-178, score-0.179]

82 Table 2 shows the number of necessary units for g and h depending on the chosen architecture. [sent-197, score-0.151]

83 From Propositions 1 and 2, it is immediately clear that spiking dendritic units always give access to the 7 Table 2: Number of necessary units Boolean function g h # of terms in DNF n 2n # of clauses in CNF 2n n minimal possible two-stage neuron implementation. [sent-198, score-1.511]

84 A neuron with spiking dendritic units can thus implement g with n units using DNF-based and h with n units using CNF-based architectures; but saturating units, restricted to CNF-based architectures, can only implement h with 2n units. [sent-199, score-1.939]

85 4 Discussion The main result of our study is that dendritic saturations can play a computational role that is as important as dendritic spikes: saturating dendritic units enable a neuron to compute lnBFs (as shown in Proposition 2). [sent-200, score-2.655]

86 The same Proposition shows that a neuron can compute lnBFs decomposed according to the CNF using spiking dendritic units; with this architecture, dendritic tuning does not imply the somatic tuning to inputs. [sent-201, score-1.945]

87 Moreover, we demonstrated that an important family of lnBFs formed by g and h can be implemented in a two stage neuron using either spiking or saturating dendritic units. [sent-202, score-1.472]

88 We also showed that lnBFs cannot be implemented in a two stage neuron using a DNF-based architecture with only dendritic saturating units (Proposition 3). [sent-203, score-1.44]

89 These results nicely separate the implications of saturating and spiking dendritic units in single neuron computation. [sent-204, score-1.525]

90 On the one hand, spiking dendritic units are a more flexible basis for computation, as they can be employed in two different implementation architectures (Proposition 1 and 2) where dendritic tunings – the dendritic unit transfer functions – can imply or not the tuning of the whole neuron. [sent-205, score-2.702]

91 The latter may explain why dendrites can have a tuning different from the whole neuron as has been observed in Layer 2/3 pyramidal cells of the visual cortex [6]. [sent-206, score-0.45]

92 On the other hand, saturating dendritic units can enhance single neuron computation through implementing all positive Boolean functions (Proposition 3), while reducing the energetic costs associated with the active ion channels required for dendritic spikes [4, 13]. [sent-207, score-2.119]

93 For an infinite number of dendritic units, saturating and spiking units lead to the same increase in computation capacity; for a finite number of dendritic units our results suggests that spiking dendritic units could have advantages over saturating dendritic units. [sent-208, score-4.019]

94 Namely, the lnBFs defined by g or h can be implemented with a linear number of spiking dendritic units whereas for g a neuronal implementation using only saturations requires an exponential number of saturating dendritic units. [sent-210, score-2.037]

95 Consequently, spiking dendritic units may allow the minimization of dendritic units necessary to implement this family of Boolean functions. [sent-211, score-1.899]

96 Some single neuron solutions to feature binding problems have been proposed in [8], but restricted to DNF-based architectures; our results thus generalize and extend this study by proposing alternative CNF-based solutions. [sent-213, score-0.28]

97 Moreover, we show that this alternative architecture enables the solution of an important family of binding problems with a linear number of spiking dendritic unit. [sent-214, score-1.012]

98 In conclusion, our results have a solid formal basis, moreover, they both explain recent experimental findings and suggest a new way to implement Boolean functions using saturating as well as spiking dendritic units. [sent-219, score-1.233]

99 On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. [sent-245, score-0.733]

100 Compartmentalized dendritic plasticity and input feature storage in neurons. [sent-276, score-0.657]


similar papers computed by tfidf model

tfidf for this paper:

wordName wordTfidf (topN-words)

[('dendritic', 0.644), ('boolean', 0.327), ('saturating', 0.265), ('neuron', 0.235), ('spiking', 0.23), ('lnbfs', 0.216), ('dnf', 0.185), ('units', 0.151), ('transfer', 0.15), ('fsat', 0.144), ('cnf', 0.142), ('dendrites', 0.134), ('fspk', 0.123), ('clauses', 0.1), ('somatic', 0.084), ('architecture', 0.07), ('clause', 0.067), ('implement', 0.056), ('stage', 0.056), ('positive', 0.052), ('saturations', 0.051), ('binding', 0.045), ('pyramidal', 0.045), ('architectures', 0.045), ('spikes', 0.044), ('complete', 0.043), ('dendrite', 0.042), ('depolarization', 0.041), ('unit', 0.04), ('synaptic', 0.039), ('functions', 0.038), ('tuning', 0.036), ('imply', 0.036), ('disjunction', 0.033), ('tj', 0.033), ('prime', 0.032), ('inserm', 0.031), ('tunings', 0.031), ('ulm', 0.031), ('wi', 0.03), ('fj', 0.029), ('implementing', 0.028), ('capacity', 0.028), ('zn', 0.028), ('mcculloch', 0.027), ('proposition', 0.027), ('rue', 0.025), ('excitatory', 0.024), ('wj', 0.024), ('paris', 0.023), ('inputs', 0.023), ('family', 0.023), ('arithmetic', 0.021), ('voltage', 0.021), ('enable', 0.021), ('conjunction', 0.021), ('implements', 0.021), ('calcium', 0.021), ('cerebellar', 0.021), ('disjunctive', 0.021), ('dnfbased', 0.021), ('pitts', 0.021), ('spk', 0.021), ('saturation', 0.02), ('expression', 0.02), ('whereas', 0.02), ('linearly', 0.019), ('implemented', 0.019), ('lemma', 0.019), ('energetic', 0.018), ('subunits', 0.018), ('march', 0.018), ('membrane', 0.018), ('nition', 0.017), ('sublinear', 0.017), ('ens', 0.017), ('interneurons', 0.017), ('implementable', 0.017), ('conjunctive', 0.017), ('strictly', 0.016), ('soma', 0.016), ('xi', 0.015), ('vivo', 0.014), ('nitions', 0.014), ('xn', 0.014), ('sat', 0.014), ('layer', 0.014), ('cj', 0.014), ('neuroscience', 0.013), ('term', 0.013), ('implementation', 0.013), ('plasticity', 0.013), ('sum', 0.013), ('threshold', 0.013), ('type', 0.013), ('thin', 0.013), ('local', 0.012), ('tuples', 0.012), ('inhibition', 0.012), ('card', 0.012)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 1.0 322 nips-2012-Spiking and saturating dendrites differentially expand single neuron computation capacity

Author: Romain Cazé, Mark Humphries, Boris S. Gutkin

Abstract: The integration of excitatory inputs in dendrites is non-linear: multiple excitatory inputs can produce a local depolarization departing from the arithmetic sum of each input’s response taken separately. If this depolarization is bigger than the arithmetic sum, the dendrite is spiking; if the depolarization is smaller, the dendrite is saturating. Decomposing a dendritic tree into independent dendritic spiking units greatly extends its computational capacity, as the neuron then maps onto a two layer neural network, enabling it to compute linearly non-separable Boolean functions (lnBFs). How can these lnBFs be implemented by dendritic architectures in practise? And can saturating dendrites equally expand computational capacity? To address these questions we use a binary neuron model and Boolean algebra. First, we confirm that spiking dendrites enable a neuron to compute lnBFs using an architecture based on the disjunctive normal form (DNF). Second, we prove that saturating dendrites as well as spiking dendrites enable a neuron to compute lnBFs using an architecture based on the conjunctive normal form (CNF). Contrary to a DNF-based architecture, in a CNF-based architecture, dendritic unit tunings do not imply the neuron tuning, as has been observed experimentally. Third, we show that one cannot use a DNF-based architecture with saturating dendrites. Consequently, we show that an important family of lnBFs implemented with a CNF-architecture can require an exponential number of saturating dendritic units, whereas the same family implemented with either a DNF-architecture or a CNF-architecture always require a linear number of spiking dendritic units. This minimization could explain why a neuron spends energetic resources to make its dendrites spike. 1

2 0.189244 190 nips-2012-Learning optimal spike-based representations

Author: Ralph Bourdoukan, David Barrett, Sophie Deneve, Christian K. Machens

Abstract: How can neural networks learn to represent information optimally? We answer this question by deriving spiking dynamics and learning dynamics directly from a measure of network performance. We find that a network of integrate-and-fire neurons undergoing Hebbian plasticity can learn an optimal spike-based representation for a linear decoder. The learning rule acts to minimise the membrane potential magnitude, which can be interpreted as a representation error after learning. In this way, learning reduces the representation error and drives the network into a robust, balanced regime. The network becomes balanced because small representation errors correspond to small membrane potentials, which in turn results from a balance of excitation and inhibition. The representation is robust because neurons become self-correcting, only spiking if the representation error exceeds a threshold. Altogether, these results suggest that several observed features of cortical dynamics, such as excitatory-inhibitory balance, integrate-and-fire dynamics and Hebbian plasticity, are signatures of a robust, optimal spike-based code. A central question in neuroscience is to understand how populations of neurons represent information and how they learn to do so. Usually, learning and information representation are treated as two different functions. From the outset, this separation seems like a good idea, as it reduces the problem into two smaller, more manageable chunks. Our approach, however, is to study these together. This allows us to treat learning and information representation as two sides of a single mechanism, operating at two different timescales. Experimental work has given us several clues about the regime in which real networks operate in the brain. Some of the most prominent observations are: (a) high trial-to-trial variability—a neuron responds differently to repeated, identical inputs [1, 2]; (b) asynchronous firing at the network level—spike trains of different neurons are at most very weakly correlated [3, 4, 5]; (c) tight balance of excitation and inhibition—every excitatory input is met by an inhibitory input of equal or greater size [6, 7, 8] and (4) spike-timing-dependent plasticity (STDP)—the strength of synapses change as a function of presynaptic and postsynaptic spike times [9]. Previously, it has been shown that observations (a)–(c) can be understood as signatures of an optimal, spike-based code [10, 11]. The essential idea is to derive spiking dynamics from the assumption that neurons only fire if their spike improves information representation. Information in a network may ∗ Authors contributed equally 1 originate from several possible sources: external sensory input, external neural network input, or alternatively, it may originate within the network itself as a memory, or as a computation. Whatever the source, this initial assumption leads directly to the conclusion that a network of integrate-and-fire neurons can optimally represent a signal while exhibiting properties (a)–(c). A major problem with this framework is that network connectivity must be completely specified a priori, and requires the tuning of N 2 parameters, where N is the number of neurons in the network. Although this is feasible mathematically, it is unclear how a real network could tune itself into this optimal regime. In this work, we solve this problem using a simple synaptic learning rule. The key insight is that the plasticity rule can be derived from the same basic principle as the spiking rule in the earlier work—namely, that any change should improve information representation. Surprisingly, this can be achieved with a local, Hebbian learning rule, where synaptic plasticity is proportional to the product of presynaptic firing rates with post-synaptic membrane potentials. Spiking and synaptic plasticity then work hand in hand towards the same goal: the spiking of a neuron decreases the representation error on a fast time scale, thereby giving rise to the actual population representation; synaptic plasticity decreases the representation error on a slower time scale, thereby improving or maintaining the population representation. For a large set of initial connectivities and spiking dynamics, neural networks are driven into a balanced regime, where excitation and inhibition cancel each other and where spike trains are asynchronous and irregular. Furthermore, the learning rule that we derive reproduces the main features of STDP (property (d) above). In this way, a network can learn to represent information optimally, with synaptic, neural and network dynamics consistent with those observed experimentally. 1 Derivation of the learning rule for a single neuron We begin by deriving a learning rule for a single neuron with an autapse (a self-connection) (Fig. 1A). Our approach is to derive synaptic dynamics for the autapse and spiking dynamics for the neuron such that the neuron learns to optimally represent a time-varying input signal. We will derive a learning rule for networks of neurons later, after we have developed the fundamental concepts for the single neuron case. Our first step is to derive optimal spiking dynamics for the neuron, so that we have a target for our learning rule. We do this by making two simple assumptions [11]. First, we assume that the neuron can provide an estimate or read-out x(t) of a time-dependent signal x(t) by filtering its spike train ˆ o(t) as follows: ˙ x(t) = −ˆ(t) + Γo(t), ˆ x (1) where Γ is a fixed read-out weight, which we will refer to as the neuron’s “output kernel” and the spike train can be written as o(t) = i δ(t − ti ), where {ti } are the spike times. Next, we assume that the neuron only produces a spike if that spike improves the read-out, where we measure the read-out performance through a simple squared-error loss function: 2 L(t) = x(t) − x(t) . ˆ (2) With these two assumptions, we can now derive optimal spiking dynamics. First, we observe that if the neuron produces an additional spike at time t, the read-out increases by Γ, and the loss function becomes L(t|spike) = (x(t) − (x(t) + Γ))2 . This allows us to restate our spiking rule as follows: ˆ the neuron should only produce a spike if L(t|no spike) > L(t|spike), or (x(t) − x(t))2 > (x(t) − ˆ (x(t) + Γ))2 . Now, squaring both sides of this inequality, defining V (t) ≡ Γ(x(t) − x(t)) and ˆ ˆ defining T ≡ Γ2 /2 we find that the neuron should only spike if: V (t) > T. (3) We interpret V (t) to be the membrane potential of the neuron, and we interpret T as the spike threshold. This interpretation allows us to understand the membrane potential functionally: the voltage is proportional to a prediction error—the difference between the read-out x(t) and the actual ˆ signal x(t). A spike is an error reduction mechanism—the neuron only spikes if the error exceeds the spike threshold. This is a greedy minimisation, in that the neuron fires a spike whenever that action decreases L(t) without considering the future impact of that spike. Importantly, the neuron does not require direct access to the loss function L(t). 2 To determine the membrane potential dynamics, we take the derivative of the voltage, which gives ˙ ˙ us V = Γ(x − x). (Here, and in the following, we will drop the time index for notational brevity.) ˙ ˆ ˙ Now, using Eqn. (1) we obtain V = Γx − Γ(−x + Γo) = −Γ(x − x) + Γ(x + x) − Γ2 o, so that: ˙ ˆ ˆ ˙ ˙ V = −V + Γc − Γ2 o, (4) where c = x + x is the neural input. This corresponds exactly to the dynamics of a leaky integrate˙ and-fire neuron with an inhibitory autapse1 of strength Γ2 , and a feedforward connection strength Γ. The dynamics and connectivity guarantee that a neuron spikes at just the right times to optimise the loss function (Fig. 1B). In addition, it is especially robust to noise of different forms, because of its error-correcting nature. If x is constant in time, the voltage will rise up to the threshold T at which point a spike is fired, adding a delta function to the spike train o at time t, thereby producing a read-out x that is closer to x and causing an instantaneous drop in the voltage through the autapse, ˆ by an amount Γ2 = 2T , effectively resetting the voltage to V = −T . We now have a target for learning—we know the connection strength that a neuron must have at the end of learning if it is to represent information optimally, for a linear read-out. We can use this target to derive synaptic dynamics that can learn an optimal representation from experience. Specifically, we consider an integrate-and-fire neuron with some arbitrary autapse strength ω. The dynamics of this neuron are given by ˙ V = −V + Γc − ωo. (5) This neuron will not produce the correct spike train for representing x through a linear read-out (Eqn. (1)) unless ω = Γ2 . Our goal is to derive a dynamical equation for the synapse ω so that the spike train becomes optimal. We do this by quantifying the loss that we are incurring by using the suboptimal strength, and then deriving a learning rule that minimises this loss with respect to ω. The loss function underlying the spiking dynamics determined by Eqn. (5) can be found by reversing the previous membrane potential analysis. First, we integrate the differential equation for V , assuming that ω changes on time scales much slower than the membrane potential. We obtain the following (formal) solution: V = Γx − ω¯, o (6) ˙ where o is determined by o = −¯ + o. The solution to this latter equation is o = h ∗ o, a convolution ¯ ¯ o ¯ of the spike train with the exponential kernel h(τ ) = θ(τ ) exp(−τ ). As such, it is analogous to the instantaneous firing rate of the neuron. Now, using Eqn. (6), and rewriting the read-out as x = Γ¯, we obtain the loss incurred by the ˆ o sub-optimal neuron, L = (x − x)2 = ˆ 1 V 2 + 2(ω − Γ2 )¯ + (ω − Γ2 )2 o2 . o ¯ Γ2 (7) We observe that the last two terms of Eqn. (7) will vanish whenever ω = Γ2 , i.e., when the optimal reset has been found. We can therefore simplify the problem by defining an alternative loss function, 1 2 V , (8) 2 which has the same minimum as the original loss (V = 0 or x = x, compare Eqn. (2)), but yields a ˆ simpler learning algorithm. We can now calculate how changes to ω affect LV : LV = ∂LV ∂V ∂o ¯ =V = −V o − V ω ¯ . (9) ∂ω ∂ω ∂ω We can ignore the last term in this equation (as we will show below). Finally, using simple gradient descent, we obtain a simple Hebbian-like synaptic plasticity rule: τω = − ˙ ∂LV = V o, ¯ ∂ω (10) where τ is the learning time constant. 1 This contribution of the autapse can also be interpreted as the reset of an integrate-and-fire neuron. Later, when we generalise to networks of neurons, we shall employ this interpretation. 3 This synaptic learning rule is capable of learning the synaptic weight ω that minimises the difference between x and x (Fig. 1B). During learning, the synaptic weight changes in proportion to the postˆ synaptic voltage V and the pre-synaptic firing rate o (Fig. 1C). As such, this is a Hebbian learning ¯ rule. Of course, in this single neuron case, the pre-synaptic neuron and post-synaptic neuron are the same neuron. The synaptic weight gradually approaches its optimal value Γ2 . However, it never completely stabilises, because learning never stops as long as neurons are spiking. Instead, the synapse oscillates closely about the optimal value (Fig. 1D). This is also a “greedy” learning rule, similar to the spiking rule, in that it seeks to minimise the error at each instant in time, without regard for the future impact of those changes. To demonstrate that the second term in Eqn. (5) can be neglected we note that the equations for V , o, and ω define a system ¯ of coupled differential equations that can be solved analytically by integrating between spikes. This results in a simple recurrence relation for changes in ω from the ith to the (i + 1)th spike, ωi+1 = ωi + ωi (ωi − 2T ) . τ (T − Γc − ωi ) (11) This iterative equation has a single stable fixed point at ω = 2T = Γ2 , proving that the neuron’s autaptic weight or reset will approach the optimal solution. 2 Learning in a homogeneous network We now generalise our learning rule derivation to a network of N identical, homogeneously connected neurons. This generalisation is reasonably straightforward because many characteristics of the single neuron case are shared by a network of identical neurons. We will return to the more general case of heterogeneously connected neurons in the next section. We begin by deriving optimal spiking dynamics, as in the single neuron case. This provides a target for learning, which we can then use to derive synaptic dynamics. As before, we want our network to produce spikes that optimally represent a variable x for a linear read-out. We assume that the read-out x is provided by summing and filtering the spike trains of all the neurons in the network: ˆ ˙ x = −ˆ + Γo, ˆ x (12) 2 where the row vector Γ = (Γ, . . . , Γ) contains the read-out weights of the neurons and the column vector o = (o1 , . . . , oN ) their spike trains. Here, we have used identical read-out weights for each neuron, because this indirectly leads to homogeneous connectivity, as we will demonstrate. Next, we assume that a neuron only spikes if that spike reduces a loss-function. This spiking rule is similar to the single neuron spiking rule except that this time there is some ambiguity about which neuron should spike to represent a signal. Indeed, there are many different spike patterns that provide exactly the same estimate x. For example, one neuron could fire regularly at a high rate (exactly like ˆ our previous single neuron example) while all others are silent. To avoid this firing rate ambiguity, we use a modified loss function, that selects amongst all equivalent solutions, those with the smallest neural firing rates. We do this by adding a ‘metabolic cost’ term to our loss function, so that high firing rates are penalised: ¯ L = (x − x)2 + µ o 2 , ˆ (13) where µ is a small positive constant that controls the cost-accuracy trade-off, akin to a regularisation parameter. Each neuron in the optimal network will seek to reduce this loss function by firing a spike. Specifically, the ith neuron will spike whenever L(no spike in i) > L(spike in i). This leads to the following spiking rule for the ith neuron: Vi > Ti (14) where Vi ≡ Γ(x − x) − µoi and Ti ≡ Γ2 /2 + µ/2. We can naturally interpret Vi as the membrane ˆ potential of the ith neuron and Ti as the spiking threshold of that neuron. As before, we can now derive membrane potential dynamics: ˙ V = −V + ΓT c − (ΓT Γ + µI)o, 2 (15) The read-out weights must scale as Γ ∼ 1/N so that firing rates are not unrealistically small in large networks. We can see this by calculating the average firing rate N oi /N ≈ x/(ΓN ) ∼ O(N/N ) ∼ O(1). i=1 ¯ 4 where I is the identity matrix and ΓT Γ + µI is the network connectivity. We can interpret the selfconnection terms {Γ2 +µ} as voltage resets that decrease the voltage of any neuron that spikes. This optimal network is equivalent to a network of identical integrate-and-fire neurons with homogeneous inhibitory connectivity. The network has some interesting dynamical properties. The voltages of all the neurons are largely synchronous, all increasing to the spiking threshold at about the same time3 (Fig. 1F). Nonetheless, neural spiking is asynchronous. The first neuron to spike will reset itself by Γ2 + µ, and it will inhibit all the other neurons in the network by Γ2 . This mechanism prevents neurons from spik- x 3 The first neuron to spike will be random if there is some membrane potential noise. V (A) (B) x x ˆ x 10 1 0.1 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 1 D 0.5 V V 0 ˆ x V ˆ x (C) 1 0 1 2 0 0.625 25 25.625 (D) start of learning 1 V 50 200.625 400 400.625 1 2.4 O 1.78 ω 1.77 25 neuron$ 0 1 2 !me$ 3 4 25 1 5 V 400.625 !me$ (F) 25 1 2.35 1.05 1.049 400 25.625 !me$ (E) neuron$ 100.625 200 end of learning 1.4 1.35 ω 100 !me$ 1 V 1 O 50.625 0 1 2 !me$ 3 4 5 V !me$ !me$ Figure 1: Learning in a single neuron and a homogeneous network. (A) A single neuron represents an input signal x by producing an output x. (B) During learning, the single neuron output x (solid red ˆ ˆ line, top panel) converges towards the input x (blue). Similarly, for a homogeneous network the output x (dashed red line, top panel) converges towards x. Connectivity also converges towards optimal ˆ connectivity in both the single neuron case (solid black line, middle panel) and the homogeneous net2 2 work case (dashed black line, middle panel), as quantified by D = maxi,j ( Ωij − Ωopt / Ωopt ) ij ij at each point in time. Consequently, the membrane potential reset (bottom panel) converges towards the optimal reset (green line, bottom panel). Spikes are indicated by blue vertical marks, and are produced when the membrane potential reaches threshold (bottom panel). Here, we have rescaled time, as indicated, for clarity. (C) Our learning rule dictates that the autapse ω in our single neuron (bottom panel) changes in proportion to the membrane potential (top panel) and the firing rate (middle panel). (D) At the end of learning, the reset ω fluctuates weakly about the optimal value. (E) For a homogeneous network, neurons spike regularly at the start of learning, as shown in this raster plot. Membrane potentials of different neurons are weakly correlated. (F) At the end of learning, spiking is very irregular and membrane potentials become more synchronous. 5 ing synchronously. The population as a whole acts similarly to the single neuron in our previous example. Each neuron fires regularly, even if a different neuron fires in every integration cycle. The design of this optimal network requires the tuning of N (N − 1) synaptic parameters. How can an arbitrary network of integrate-and-fire neurons learn this optimum? As before, we address this question by using the optimal network as a target for learning. We start with an arbitrarily connected network of integrate-and-fire neurons: ˙ V = −V + ΓT c − Ωo, (16) where Ω is a matrix of connectivity weights, which includes the resets of the individual neurons. Assuming that learning occurs on a slow time scale, we can rewrite this equation as V = ΓT x − Ω¯ . o (17) Now, repeating the arguments from the single neuron derivation, we modify the loss function to obtain an online learning rule. Specifically, we set LV = V 2 /2, and calculate the gradient: ∂LV = ∂Ωij Vk k ∂Vk =− ∂Ωij Vk δki oj − ¯ k Vk Ωkl kl ∂ ol ¯ . ∂Ωij (18) We can simplify this equation considerably by observing that the contribution of the second summation is largely averaged out under a wide variety of realistic conditions4 . Therefore, it can be neglected, and we obtain the following local learning rule: ∂LV ˙ = V i oj . ¯ τ Ωij = − ∂Ωij (19) This is a Hebbian plasticity rule, whereby connectivity changes in proportion to the presynaptic firing rate oj and post-synaptic membrane potential Vi . We assume that the neural thresholds are set ¯ to a constant T and that the neural resets are set to their optimal values −T . In the previous section we demonstrated that these resets can be obtained by a Hebbian plasticity rule (Eqn. (10)). This learning rule minimises the difference between the read-out and the signal, by approaching the optimal recurrent connection strengths for the network (Fig. 1B). As in the single neuron case, learning does not stop, so the connection strengths fluctuate close to their optimal value. During learning, network activity becomes progressively more asynchronous as it progresses towards optimal connectivity (Fig. 1E, F). 3 Learning in the general case Now that we have developed the fundamental concepts underlying our learning rule, we can derive a learning rule for the more general case of a network of N arbitrarily connected leaky integrateand-fire neurons. Our goal is to understand how such networks can learn to optimally represent a ˙ J-dimensional signal x = (x1 , . . . , xJ ), using the read-out equation x = −x + Γo. We consider a network with the following membrane potential dynamics: ˙ V = −V + ΓT c − Ωo, (20) where c is a J-dimensional input. We assume that this input is related to the signal according to ˙ c = x + x. This assumption can be relaxed by treating the input as the control for an arbitrary linear dynamical system, in which case the signal represented by the network is the output of such a computation [11]. However, this further generalisation is beyond the scope of this work. As before, we need to identify the optimal recurrent connectivity so that we have a target for learning. Most generally, the optimal recurrent connectivity is Ωopt ≡ ΓT Γ + µI. The output kernels of the individual neurons, Γi , are given by the rows of Γ, and their spiking thresholds by Ti ≡ Γi 2 /2 + 4 From the definition of the membrane potential we can see that Vk ∼ O(1/N ) because Γ ∼ 1/N . Therefore, the size of the first term in Eqn. (18) is k Vk δki oj = Vi oj ∼ O(1/N ). Therefore, the second term can ¯ ¯ be ignored if kl Vk Ωkl ∂ ol /∂Ωij ¯ O(1/N ). This happens if Ωkl O(1/N 2 ) as at the start of learning. It also happens towards the end of learning if the terms {Ωkl ∂ ol /∂Ωij } are weakly correlated with zero mean, ¯ or if the membrane potentials {Vi } are weakly correlated with zero mean. 6 µ/2. With these connections and thresholds, we find that a network of integrate-and-fire neurons ˆ ¯ will produce spike trains in such a way that the loss function L = x − x 2 + µ o 2 is minimised, ˆ where the read-out is given by x = Γ¯ . We can show this by prescribing a greedy5 spike rule: o a spike is fired by neuron i whenever L(no spike in i) > L(spike in i) [11]. The resulting spike generation rule is Vi > Ti , (21) ˆ where Vi ≡ ΓT (x − x) − µ¯i is interpreted as the membrane potential. o i 5 Despite being greedy, this spiking rule can generate firing rates that are practically identical to the optimal solutions: we checked this numerically in a large ensemble of networks with randomly chosen kernels. (A) x1 … x … 1 1 (B) xJJ x 10 L 10 T T 10 4 6 8 1 Viii V D ˆˆ ˆˆ x11 xJJ x x F 0.5 0 0.4 … … 0.2 0 0 2000 4000 !me   (C) x V V 1 x 10 x 3 ˆ x 8 0 x 10 1 2 3 !me   4 5 4 0 1 4 0 1 8 V (F) Ρ(Δt)   E-­‐I  input   0.4 ˆ x 0 3 0 1 x 10 1.3 0.95 x 10 ˆ x 4 V (E) 1 x 0 end of learning 50 neuron neuron 50 !me   2 0 ˆ x 0 0.5 ISI  Δt     1 2 !me   4 5 4 1.5 1.32 3 2 0.1 Ρ(Δt)   x E-­‐I  input   (D) start of learning 0 2 !me   0 0 0.5 ISI  Δt   1 Figure 2: Learning in a heterogeneous network. (A) A network of neurons represents an input ˆ signal x by producing an output x. (B) During learning, the loss L decreases (top panel). The difference between the connection strengths and the optimal strengths also decreases (middle panel), as 2 2 quantified by the mean difference (solid line), given by D = Ω − Ωopt / Ωopt and the maxi2 2 mum difference (dashed line), given by maxi,j ( Ωij − Ωopt / Ωopt ). The mean population firing ij ij rate (solid line, bottom panel) also converges towards the optimal firing rate (dashed line, bottom panel). (C, E) Before learning, a raster plot of population spiking shows that neurons produce bursts ˆ of spikes (upper panel). The network output x (red line, middle panel) fails to represent x (blue line, middle panel). The excitatory input (red, bottom left panel) and inhibitory input (green, bottom left panel) to a randomly selected neuron is not tightly balanced. Furthermore, a histogram of interspike intervals shows that spiking activity is not Poisson, as indicated by the red line that represents a best-fit exponential distribution. (D, F) At the end of learning, spiking activity is irregular and ˆ Poisson-like, excitatory and inhibitory input is tightly balanced and x matches x. 7 How can we learn this optimal connection matrix? As before, we can derive a learning rule by minimising the cost function LV = V 2 /2. This leads to a Hebbian learning rule with the same form as before: ˙ τ Ωij = Vi oj . ¯ (22) Again, we assume that the neural resets are given by −Ti . Furthermore, in order for this learning rule to work, we must assume that the network input explores all possible directions in the J-dimensional input space (since the kernels Γi can point in any of these directions). The learning performance does not critically depend on how the input variable space is sampled as long as the exploration is extensive. In our simulations, we randomly sample the input c from a Gaussian white noise distribution at every time step for the entire duration of the learning. We find that this learning rule decreases the loss function L, thereby approaching optimal network connectivity and producing optimal firing rates for our linear decoder (Fig. 2B). In this example, we have chosen connectivity that is initially much too weak at the start of learning. Consequently, the initial network behaviour is similar to a collection of unconnected single neurons that ignore each other. Spike trains are not Poisson-like, firing rates are excessively large, excitatory and inhibitory ˆ input is unbalanced and the decoded variable x is highly unreliable (Fig. 2C, E). As a result of learning, the network becomes tightly balanced and the spike trains become asynchronous, irregular and Poisson-like with much lower rates (Fig. 2D, F). However, despite this apparent variability, the population representation is extremely precise, only limited by the the metabolic cost and the discrete nature of a spike. This learnt representation is far more precise than a rate code with independent Poisson spike trains [11]. In particular, shuffling the spike trains in response to identical inputs drastically degrades this precision. 4 Conclusions and Discussion In population coding, large trial-to-trial spike train variability is usually interpreted as noise [2]. We show here that a deterministic network of leaky integrate-and-fire neurons with a simple Hebbian plasticity rule can self-organise into a regime where information is represented far more precisely than in noisy rate codes, while appearing to have noisy Poisson-like spiking dynamics. Our learning rule (Eqn. (22)) has the basic properties of STDP. Specifically, a presynaptic spike occurring immediately before a post-synaptic spike will potentiate a synapse, because membrane potentials are positive immediately before a postsynaptic spike. Furthermore, a presynaptic spike occurring immediately after a post-synaptic spike will depress a synapse, because membrane potentials are always negative immediately after a postsynaptic spike. This is similar in spirit to the STDP rule proposed in [12], but different to classical STDP, which depends on post-synaptic spike times [9]. This learning rule can also be understood as a mechanism for generating a tight balance between excitatory and inhibitory input. We can see this by observing that membrane potentials after learning can be interpreted as representation errors (projected onto the read-out kernels). Therefore, learning acts to minimise the magnitude of membrane potentials. Excitatory and inhibitory input must be balanced if membrane potentials are small, so we can equate balance with optimal information representation. Previous work has shown that the balanced regime produces (quasi-)chaotic network dynamics, thereby accounting for much observed cortical spike train variability [13, 14, 4]. Moreover, the STDP rule has been known to produce a balanced regime [16, 17]. Additionally, recent theoretical studies have suggested that the balanced regime plays an integral role in network computation [15, 13]. In this work, we have connected these mechanisms and functions, to conclude that learning this balance is equivalent to the development of an optimal spike-based population code, and that this learning can be achieved using a simple Hebbian learning rule. Acknowledgements We are grateful for generous funding from the Emmy-Noether grant of the Deutsche Forschungsgemeinschaft (CKM) and the Chaire d’excellence of the Agence National de la Recherche (CKM, DB), as well as a James Mcdonnell Foundation Award (SD) and EU grants BACS FP6-IST-027140, BIND MECT-CT-20095-024831, and ERC FP7-PREDSPIKE (SD). 8 References [1] Tolhurst D, Movshon J, and Dean A (1982) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res 23: 775–785. [2] Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10): 3870–3896. [3] Zohary E, Newsome WT (1994) Correlated neuronal discharge rate and its implication for psychophysical performance. Nature 370: 140–143. [4] Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, & Harris, KD (2010) The asynchronous state in cortical circuits. Science 327, 587–590. [5] Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS (2010) Decorrelated neuronal firing in cortical microcircuits. Science 327: 584–587. [6] Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 11, 535–537. [7] Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423, 288–293. [8] Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CCH (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65: 422–435. [9] Caporale N, Dan Y (2008) Spike-timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31: 25–46. [10] Boerlin M, Deneve S (2011) Spike-based population coding and working memory. PLoS Comput Biol 7, e1001080. [11] Boerlin M, Machens CK, Deneve S (2012) Predictive coding of dynamic variables in balanced spiking networks. under review. [12] Clopath C, B¨ sing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of u voltage-based STDP with homeostasis. Nat Neurosci 13(3): 344–352. [13] van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in a model of cortical circuits. Neural Comput 10(6): 1321–1371. [14] Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory neurons. J Comput Neurosci 8, 183–208. [15] Vogels TP, Rajan K, Abbott LF (2005) Neural network dynamics. Annu Rev Neurosci 28: 357–376. [16] Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334(6062):1569– 73. [17] Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timingdependent synaptic plasticity. Nat Neurosci 3(9): 919–926. 9

3 0.1073864 152 nips-2012-Homeostatic plasticity in Bayesian spiking networks as Expectation Maximization with posterior constraints

Author: Stefan Habenschuss, Johannes Bill, Bernhard Nessler

Abstract: Recent spiking network models of Bayesian inference and unsupervised learning frequently assume either inputs to arrive in a special format or employ complex computations in neuronal activation functions and synaptic plasticity rules. Here we show in a rigorous mathematical treatment how homeostatic processes, which have previously received little attention in this context, can overcome common theoretical limitations and facilitate the neural implementation and performance of existing models. In particular, we show that homeostatic plasticity can be understood as the enforcement of a ’balancing’ posterior constraint during probabilistic inference and learning with Expectation Maximization. We link homeostatic dynamics to the theory of variational inference, and show that nontrivial terms, which typically appear during probabilistic inference in a large class of models, drop out. We demonstrate the feasibility of our approach in a spiking WinnerTake-All architecture of Bayesian inference and learning. Finally, we sketch how the mathematical framework can be extended to richer recurrent network architectures. Altogether, our theory provides a novel perspective on the interplay of homeostatic processes and synaptic plasticity in cortical microcircuits, and points to an essential role of homeostasis during inference and learning in spiking networks. 1

4 0.095337898 239 nips-2012-Neuronal Spike Generation Mechanism as an Oversampling, Noise-shaping A-to-D converter

Author: Dmitri B. Chklovskii, Daniel Soudry

Abstract: We test the hypothesis that the neuronal spike generation mechanism is an analog-to-digital (AD) converter encoding rectified low-pass filtered summed synaptic currents into a spike train linearly decodable in postsynaptic neurons. Faithful encoding of an analog waveform by a binary signal requires that the spike generation mechanism has a sampling rate exceeding the Nyquist rate of the analog signal. Such oversampling is consistent with the experimental observation that the precision of the spikegeneration mechanism is an order of magnitude greater than the cut -off frequency of low-pass filtering in dendrites. Additional improvement in the coding accuracy may be achieved by noise-shaping, a technique used in signal processing. If noise-shaping were used in neurons, it would reduce coding error relative to Poisson spike generator for frequencies below Nyquist by introducing correlations into spike times. By using experimental data from three different classes of neurons, we demonstrate that biological neurons utilize noise-shaping. Therefore, the spike-generation mechanism can be viewed as an oversampling and noise-shaping AD converter. The nature of the neural spike code remains a central problem in neuroscience [1-3]. In particular, no consensus exists on whether information is encoded in firing rates [4, 5] or individual spike timing [6, 7]. On the single-neuron level, evidence exists to support both points of view. On the one hand, post-synaptic currents are low-pass-filtered by dendrites with the cut-off frequency of approximately 30Hz [8], Figure 1B, providing ammunition for the firing rate camp: if the signal reaching the soma is slowly varying, why would precise spike timing be necessary? On the other hand, the ability of the spike-generation mechanism to encode harmonics of the injected current up to about 300Hz [9, 10], Figure 1B, points at its exquisite temporal precision [11]. Yet, in view of the slow variation of the somatic current, such precision may seem gratuitous and puzzling. The timescale mismatch between gradual variation of the somatic current and high precision of spike generation has been addressed previously. Existing explanations often rely on the population nature of the neural code [10, 12]. Although this is a distinct possibility, the question remains whether invoking population coding is necessary. Other possible explanations for the timescale mismatch include the possibility that some synaptic currents (for example, GABAergic) may be generated by synapses proximal to the soma and therefore not subject to low-pass filtering or that the high frequency harmonics are so strong in the pre-synaptic spike that despite attenuation, their trace is still present. Although in some cases, these explanations could apply, for the majority of synaptic inputs to typical neurons there is a glaring mismatch. The perceived mismatch between the time scales of somatic currents and the spike-generation mechanism can be resolved naturally if one views spike trains as digitally encoding analog somatic currents [13-15], Figure 1A. Although somatic currents vary slowly, information that could be communicated by their analog amplitude far exceeds that of binary signals, such as all- or-none spikes, of the same sampling rate. Therefore, faithful digital encoding requires sampling rate of the digital signal to be much higher than the cut-off frequency of the analog signal, socalled over-sampling. Although the spike generation mechanism operates in continuous time, the high temporal precision of the spikegeneration mechanism may be viewed as a manifestation of oversampling, which is needed for the digital encoding of the analog signal. Therefore, the extra order of magnitude in temporal precision available to the spike-generation mechanism relative to somatic current, Figure 1B, is necessary to faithfully encode the amplitude of the analog signal, thus potentially reconciling the firing rate and the spike timing points of view [13-15]. Figure 1. Hybrid digital-analog operation of neuronal circuits. A. Post-synaptic currents are low-pass filtered and summed in dendrites (black) to produce a somatic current (blue). This analog signal is converted by the spike generation mechanism into a sequence of all-or-none spikes (green), a digital signal. Spikes propagate along an axon and are chemically transduced across synapses (gray) into post-synatpic currents (black), whose amplitude reflects synaptic weights, thus converting digital signal back to analog. B. Frequency response function for dendrites (blue, adapted from [8]) and for the spike generation mechanism (green, adapted from [9]). Note one order of magnitude gap between the cut off frequencies. C. Amplitude of the summed postsynaptic currents depends strongly on spike timing. If the blue spike arrives just 5ms later, as shown in red, the EPSCs sum to a value already 20% less. Therefore, the extra precision of the digital signal may be used to communicate the amplitude of the analog signal. In signal processing, efficient AD conversion combines the principle of oversampling with that of noise-shaping, which utilizes correlations in the digital signal to allow more accurate encoding of the analog amplitude. This is exemplified by a family of AD converters called modulators [16], of which the basic one is analogous to an integrate-and-fire (IF) neuron [13-15]. The analogy between the basic modulator and the IF neuron led to the suggestion that neurons also use noise-shaping to encode incoming analog current waveform in the digital spike train [13]. However, the hypothesis of noise-shaping AD conversion has never been tested experimentally in biological neurons. In this paper, by analyzing existing experimental datasets, we demonstrate that noise-shaping is present in three different classes of neurons from vertebrates and invertebrates. This lends support to the view that neurons act as oversampling and noise-shaping AD converters and accounts for the mismatch between the slowly varying somatic currents and precise spike timing. Moreover, we show that the degree of noise-shaping in biological neurons exceeds that used by basic  modulators or IF neurons and propose viewing more complicated models in the noise-shaping framework. This paper is organized as follows: We review the principles of oversampling and noise-shaping in Section 2. In Section 3, we present experimental evidence for noise-shaping AD conversion in neurons. In Section 4 we argue that rectification of somatic currents may improve energy efficiency and/or implement de-noising. 2 . Oversampling and noise-shaping in AD converters To understand how oversampling can lead to more accurate encoding of the analog signal amplitude in a digital form, we first consider a Poisson spike encoder, whose rate of spiking is modulated by the signal amplitude, Figure 2A. Such an AD converter samples an analog signal at discrete time points and generates a spike with a probability given by the (normalized) signal amplitude. Because of the binary nature of spike trains, the resulting spike train encodes the signal with a large error even when the sampling is done at Nyquist rate, i.e. the lowest rate for alias-free sampling. To reduce the encoding error a Poisson encoder can sample at frequencies, fs , higher than Nyquist, fN – hence, the term oversampling, Figure 2B. When combined with decoding by lowpass filtering (down to Nyquist) on the receiving end, this leads to a reduction of the error, which can be estimated as follows. The number of samples over a Nyquist half-period (1/2fN) is given by the oversampling ratio: . As the normalized signal amplitude, , stays roughly constant over the Nyquist half-period, it can be encoded by spikes generated with a fixed probability, x. For a Poisson process the variance in the number of spikes is equal to the mean, . Therefore, the mean relative error of the signal decoded by averaging over the Nyquist half-period: , (1) indicating that oversampling reduces transmission error. However, the weak dependence of the error on the oversampling frequency indicates diminishing returns on the investment in oversampling and motivates one to search for other ways to lower the error. Figure 2. Oversampling and noise-shaping in AD conversion. A. Analog somatic current (blue) and its digital code (green). The difference between the green and the blue curves is encoding error. B. Digital output of oversampling Poisson encoder over one Nyquist half-period. C. Error power spectrum of a Nyquist (dark green) and oversampled (light green) Poisson encoder. Although the total error power is the same, the fraction surviving low-pass filtering during decoding (solid green) is smaller in oversampled case. D. Basic  modulator. E. Signal at the output of the integrator. F. Digital output of the  modulator over one Nyquist period. G. Error power spectrum of the  modulator (brown) is shifted to higher frequencies and low-pass filtered during decoding. The remaining error power (solid brown) is smaller than for Poisson encoder. To reduce encoding error beyond the ½ power of the oversampling ratio, the principle of noiseshaping was put forward [17]. To illustrate noise-shaping consider a basic AD converter called  [18], Figure 2D. In the basic  modulator, the previous quantized signal is fed back and subtracted from the incoming signal and then the difference is integrated in time. Rather than quantizing the input signal, as would be done in the Poisson encoder,  modulator quantizes the integral of the difference between the incoming analog signal and the previous quantized signal, Figure 2F. One can see that, in the oversampling regime, the quantization error of the basic  modulator is significantly less than that of the Poisson encoder. As the variance in the number of spikes over the Nyquist period is less than one, the mean relative error of the signal is at most, , which is better than the Poisson encoder. To gain additional insight and understand the origin of the term noise-shaping, we repeat the above analysis in the Fourier domain. First, the Poisson encoder has a flat power spectrum up to the sampling frequency, Figure 2C. Oversampling preserves the total error power but extends the frequency range resulting in the lower error power below Nyquist. Second, a more detailed analysis of the basic  modulator, where the dynamics is linearized by replacing the quantization device with a random noise injection [19], shows that the quantization noise is effectively differentiated. Taking the derivative in time is equivalent to multiplying the power spectrum of the quantization noise by frequency squared. Such reduction of noise power at low frequencies is an example of noise shaping, Figure 2G. Under the additional assumption of the white quantization noise, such analysis yields: , (2) which for R >> 1 is significantly better performance than for the Poisson encoder, Eq.(1). As mentioned previously, the basic  modulator, Figure 2D, in the continuous-time regime is nothing other than an IF neuron [13, 20, 21]. In the IF neuron, quantization is implemented by the spike generation mechanism and the negative feedback corresponds to the after-spike reset. Note that resetting the integrator to zero is strictly equivalent to subtraction only for continuous-time operation. In discrete-time computer simulations, the integrator value may exceed the threshold, and, therefore, subtraction of the threshold value rather than reset must be used. Next, motivated by the -IF analogy, we look for the signs of noise-shaping AD conversion in real neurons. 3 . Experimental evidence of noise-shaping AD conversion in real neurons In order to determine whether noise-shaping AD conversion takes place in biological neurons, we analyzed three experimental datasets, where spike trains were generated by time-varying somatic currents: 1) rat somatosensory cortex L5 pyramidal neurons [9], 2) mouse olfactory mitral cells [22, 23], and 3) fruit fly olfactory receptor neurons [24]. In the first two datasets, the current was injected through an electrode in whole-cell patch clamp mode, while in the third, the recording was extracellular and the intrinsic somatic current could be measured because the glial compartment included only one active neuron. Testing the noise-shaping AD conversion hypothesis is complicated by the fact that encoded and decoded signals are hard to measure accurately. First, as somatic current is rectified by the spikegeneration mechanism, only its super-threshold component can be encoded faithfully making it hard to know exactly what is being encoded. Second, decoding in the dendrites is not accessible in these single-neuron recordings. In view of these difficulties, we start by simply computing the power spectrum of the reconstruction error obtained by subtracting a scaled and shifted, but otherwise unaltered, spike train from the somatic current. The scaling factor was determined by the total weight of the decoding linear filter and the shift was optimized to maximize information capacity, see below. At the frequencies below 20Hz the error contains significantly lower power than the input signal, Figure 3, indicating that the spike generation mechanism may be viewed as an AD converter. Furthermore, the error power spectrum of the biological neuron is below that of the Poisson encoder, thus indicating the presence of noise-shaping. For dataset 3 we also plot the error power spectrum of the IF neuron, the threshold of which is chosen to generate the same number of spikes as the biological neuron. 4 somatic current biological neuron error Poisson encoder error I&F; neuron error 10 1 10 0 Spectral power, a.u. Spectral power, a.u. 10 3 10 -1 10 -2 10 -3 10 2 10 -4 10 0 10 20 30 40 50 60 Frequency [Hz] 70 80 90 0 10 20 30 40 50 60 70 80 90 100 Frequency [Hz] Figure 3. Evidence of noise-shaping. Power spectra of the somatic current (blue), difference between the somatic current and the digital spike train of the biological neuron (black), of the Poisson encoder (green) and of the IF neuron (red). Left: datset 1, right: dataset 3. Although the simple analysis presented above indicates noise-shaping, subtracting the spike train from the input signal, Figure 3, does not accurately quantify the error when decoding involves additional filtering. An example of such additional encoding/decoding is predictive coding, which will be discussed below [25]. To take such decoding filter into account, we computed a decoded waveform by convolving the spike train with the optimal linear filter, which predicts the somatic current from the spike train with the least mean squared error. Our linear decoding analysis lends additional support to the noise-shaping AD conversion hypothesis [13-15]. First, the optimal linear filter shape is similar to unitary post-synaptic currents, Figure 4B, thus supporting the view that dendrites reconstruct the somatic current of the presynaptic neuron by low-pass filtering the spike train in accordance with the noise-shaping principle [13]. Second, we found that linear decoding using an optimal filter accounts for 60-80% of the somatic current variance. Naturally, such prediction works better for neurons in suprathreshold regime, i.e. with high firing rates, an issue to which we return in Section 4. To avoid complications associated with rectification for now we focused on neurons which were in suprathreshold regime by monitoring that the relationship between predicted and actual current is close to linear. 2 10 C D 1 10 somatic current biological neuron error Poisson encoder error Spectral power, a.u. Spectral power, a.u. I&F; neuron error 3 10 0 10 -1 10 -2 10 -3 10 2 10 -4 0 10 20 30 40 50 60 Frequency [Hz] 70 80 90 10 0 10 20 30 40 50 60 70 80 90 100 Frequency [Hz] Figure 4. Linear decoding of experimentally recorded spike trains. A. Waveform of somatic current (blue), resulting spike train (black), and the linearly decoded waveform (red) from dataset 1. B. Top: Optimal linear filter for the trace in A, is representative of other datasets as well. Bottom: Typical EPSPs have a shape similar to the decoding filter (adapted from [26]). C-D. Power spectra of the somatic current (blue), the decdoding error of the biological neuron (black), the Poisson encoder (green), and IF neuron (red) for dataset 1 (C) dataset 3 (D). Next, we analyzed the spectral distribution of the reconstruction error calculated by subtracting the decoded spike train, i.e. convolved with the computed optimal linear filter, from the somatic current. We found that at low frequencies the error power is significantly lower than in the input signal, Figure 4C,D. This observation confirms that signals below the dendritic cut-off frequency of 20-30Hz can be efficiently communicated using spike trains. To quantify the effect of noise-shaping we computed information capacity of different encoders: where S(f) and N(f) are the power spectra of the somatic current and encoding error correspondingly and the sum is computed only over the frequencies for which S(f) > N(f). Because the plots in Figure 4C,D use semi-logrithmic scale, the information capacity can be estimated from the area between a somatic current (blue) power spectrum and an error power spectrum. We find that the biological spike generation mechanism has higher information capacity than the Poisson encoder and IF neurons. Therefore, neurons act as AD converters with stronger noise-shaping than IF neurons. We now return to the predictive nature of the spike generation mechanism. Given the causal nature of the spike generation mechanism it is surprising that the optimal filters for all three datasets carry most of their weight following a spike, Figure 4B. This indicates that the spike generation mechanism is capable of making predictions, which are possible in these experiments because somatic currents are temporally correlated. We note that these observations make delay-free reconstruction of the signal possible, thus allowing fast operation of neural circuits [27]. The predictive nature of the encoder can be captured by a  modulator embedded in a predictive coding feedback loop [28], Figure 5A. We verified by simulation that such a nested architecture generates a similar optimal linear filter with most of its weight in the time following a spike, Figure 5A right. Of course such prediction is only possible for correlated inputs implying that the shape of the optimal linear filter depends on the statistics of the inputs. The role of predictive coding is to reduce the dynamic range of the signal that enters , thus avoiding overloading. A possible biological implementation for such integrating feedback could be Ca2+ 2+ concentration and Ca dependent potassium channels [25, 29]. Figure 5. Enhanced  modulators. A.  modulator combined with predictive coder. In such device, the optimal decoding filter computed for correlated inputs has most of its weight following a spike, similar to experimental measurements, Figure 4B. B. Second-order  modulator possesses stronger noise-shaping properties. Because such circuit contains an internal state variable it generates a non-periodic spike train in response to a constant input. Bottom trace shows a typical result of a simulation. Black – spikes, blue – input current. 4 . Possible reasons for current rectification: energy efficiency and de-noising We have shown that at high firing rates biological neurons encode somatic current into a linearly decodable spike train. However, at low firing rates linear decoding cannot faithfully reproduce the somatic current because of rectification in the spike generation mechanism. If the objective of spike generation is faithful AD conversion, why would such rectification exist? We see two potential reasons: energy efficiency and de-noising. It is widely believed that minimizing metabolic costs is an important consideration in brain design and operation [30, 31]. Moreover, spikes are known to consume a significant fraction of the metabolic budget [30, 32] placing a premium on their total number. Thus, we can postulate that neuronal spike trains find a trade-off between the mean squared error in the decoded spike train relative to the input signal and the total number of spikes, as expressed by the following cost function over a time interval T: , (3) where x is the analog input signal, s is the binary spike sequence composed of zeros and ones, and is the linear filter. To demonstrate how solving Eq.(3) would lead to thresholding, let us consider a simplified version taken over a Nyquist period, during which the input signal stays constant: (4) where and normalized by w. Minimizing such a cost function reduces to choosing the lowest lying parabola for a given , Figure 6A. Therefore, thresholding is a natural outcome of minimizing a cost function combining the decoding error and the energy cost, Eq.(3). In addition to energy efficiency, there may be a computational reason for thresholding somatic current in neurons. To illustrate this point, we note that the cost function in Eq. (3) for continuous variables, st, may be viewed as a non-negative version of the L1-norm regularized linear regression called LASSO [33], which is commonly used for de-noising of sparse and Laplacian signals [34]. Such cost function can be minimized by iteratively applying a gradient descent and a shrinkage steps [35], which is equivalent to thresholding (one-sided in case of non-negative variables), Figure 6B,C. Therefore, neurons may be encoding a de-noised input signal. Figure 6. Possible reasons for rectification in neurons. A. Cost function combining encoding error squared with metabolic expense vs. input signal for different values of the spike number N, Eq.(4). Note that the optimal number of spikes jumps from zero to one as a function of input. B. Estimating most probable “clean” signal value for continuous non-negative Laplacian signal and Gaussian noise, Eq.(3) (while setting w = 1). The parabolas (red) illustrate the quadratic loglikelihood term in (3) for different values of the measurement, s, while the linear function (blue) reflects the linear log-prior term in (3). C. The minimum of the combined cost function in B is at zero if s , and grows linearly with s, if s >. 5 . Di scu ssi on In this paper, we demonstrated that the neuronal spike-generation mechanism can be viewed as an oversampling and noise-shaping AD converter, which encodes a rectified low-pass filtered somatic current as a digital spike train. Rectification by the spike generation mechanism may subserve both energy efficiency and de-noising. As the degree of noise-shaping in biological neurons exceeds that in IF neurons, or basic , we suggest that neurons should be modeled by more advanced  modulators, e.g. Figure 5B. Interestingly,  modulators can be also viewed as coders with error prediction feedback [19]. Many publications studied various aspects of spike generation in neurons yet we believe that the framework [13-15] we adopt is different and discuss its relationship to some of the studies. Our framework is different from previous proposals to cast neurons as predictors [36, 37] because a different quantity is being predicted. The possibility of perfect decoding from a spike train with infinite temporal precision has been proven in [38]. Here, we are concerned with a more practical issue of how reconstruction error scales with the over-sampling ratio. Also, we consider linear decoding which sets our work apart from [39]. Finally, previous experiments addressing noiseshaping [40] studied the power spectrum of the spike train rather than that of the encoding error. Our work is aimed at understanding biological and computational principles of spike-generation and decoding and is not meant as a substitute for the existing phenomenological spike-generation models [41], which allow efficient fitting of parameters and prediction of spike trains [42]. Yet, the theoretical framework [13-15] we adopt may assist in building better models of spike generation for a given somatic current waveform. First, having interpreted spike generation as AD conversion, we can draw on the rich experience in signal processing to attack the problem. Second, this framework suggests a natural metric to compare the performance of different spike generation models in the high firing rate regime: a mean squared error between the injected current waveform and the filtered version of the spike train produced by a model provided the total number of spikes is the same as in the experimental data. The AD conversion framework adds justification to the previously proposed spike distance obtained by subtracting low-pass filtered spike trains [43]. As the framework [13-15] we adopt relies on viewing neuronal computation as an analog-digital hybrid, which requires AD and DA conversion at every step, one may wonder about the reason for such a hybrid scheme. Starting with the early days of computers, the analog mode is known to be advantageous for computation. For example, performing addition of many variables in one step is possible in the analog mode simply by Kirchhoff law, but would require hundreds of logical gates in the digital mode [44]. However, the analog mode is vulnerable to noise build-up over many stages of computation and is inferior in precisely communicating information over long distances under limited energy budget [30, 31]. While early analog computers were displaced by their digital counterparts, evolution combined analog and digital modes into a computational hybrid [44], thus necessitating efficient AD and DA conversion, which was the focus of the present study. We are grateful to L. Abbott, S. Druckmann, D. Golomb, T. Hu, J. Magee, N. Spruston, B. Theilman for helpful discussions and comments on the manuscript, to X.-J. Wang, D. McCormick, K. Nagel, R. Wilson, K. Padmanabhan, N. Urban, S. Tripathy, H. Koendgen, and M. Giugliano for sharing their data. The work of D.S. was partially supported by the Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI). R e f e re n c e s 1. Ferster, D. and N. Spruston, Cracking the neural code. Science, 1995. 270: p. 756-7. 2. Panzeri, S., et al., Sensory neural codes using multiplexed temporal scales. Trends Neurosci, 2010. 33(3): p. 111-20. 3. Stevens, C.F. and A. Zador, Neural coding: The enigma of the brain. Curr Biol, 1995. 5(12): p. 1370-1. 4. Shadlen, M.N. and W.T. Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci, 1998. 18(10): p. 3870-96. 5. Shadlen, M.N. and W.T. Newsome, Noise, neural codes and cortical organization. Curr Opin Neurobiol, 1994. 4(4): p. 569-79. 6. Singer, W. and C.M. Gray, Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci, 1995. 18: p. 555-86. 7. Meister, M., Multineuronal codes in retinal signaling. Proc Natl Acad Sci U S A, 1996. 93(2): p. 609-14. 8. Cook, E.P., et al., Dendrite-to-soma input/output function of continuous timevarying signals in hippocampal CA1 pyramidal neurons. J Neurophysiol, 2007. 98(5): p. 2943-55. 9. Kondgen, H., et al., The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cereb Cortex, 2008. 18(9): p. 2086-97. 10. Tchumatchenko, T., et al., Ultrafast population encoding by cortical neurons. J Neurosci, 2011. 31(34): p. 12171-9. 11. Mainen, Z.F. and T.J. Sejnowski, Reliability of spike timing in neocortical neurons. Science, 1995. 268(5216): p. 1503-6. 12. Mar, D.J., et al., Noise shaping in populations of coupled model neurons. Proc Natl Acad Sci U S A, 1999. 96(18): p. 10450-5. 13. Shin, J., Adaptive noise shaping neural spike encoding and decoding. Neurocomputing, 2001. 38-40: p. 369-381. 14. Shin, J., The noise shaping neural coding hypothesis: a brief history and physiological implications. Neurocomputing, 2002. 44: p. 167-175. 15. Shin, J.H., Adaptation in spiking neurons based on the noise shaping neural coding hypothesis. Neural Networks, 2001. 14(6-7): p. 907-919. 16. Schreier, R. and G.C. Temes, Understanding delta-sigma data converters2005, Piscataway, NJ: IEEE Press, Wiley. xii, 446 p. 17. Candy, J.C., A use of limit cycle oscillations to obtain robust analog-to-digital converters. IEEE Trans. Commun, 1974. COM-22: p. 298-305. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. Inose, H., Y. Yasuda, and J. Murakami, A telemetring system code modulation -  modulation. IRE Trans. Space Elect. Telemetry, 1962. SET-8: p. 204-209. Spang, H.A. and P.M. Schultheiss, Reduction of quantizing noise by use of feedback. IRE TRans. Commun. Sys., 1962: p. 373-380. Hovin, M., et al., Delta-Sigma modulation in single neurons, in IEEE International Symposium on Circuits and Systems2002. Cheung, K.F. and P.Y.H. Tang, Sigma-Delta Modulation Neural Networks. Proc. IEEE Int Conf Neural Networkds, 1993: p. 489-493. Padmanabhan, K. and N. Urban, Intrinsic biophysical diversity decorelates neuronal firing while increasing information content. Nat Neurosci, 2010. 13: p. 1276-82. Urban, N. and S. Tripathy, Neuroscience: Circuits drive cell diversity. Nature, 2012. 488(7411): p. 289-90. Nagel, K.I. and R.I. Wilson, personal communication. Shin, J., C. Koch, and R. Douglas, Adaptive neural coding dependent on the timevarying statistics of the somatic input current. Neural Comp, 1999. 11: p. 1893-913. Magee, J.C. and E.P. Cook, Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci, 2000. 3(9): p. 895-903. Thorpe, S., D. Fize, and C. Marlot, Speed of processing in the human visual system. Nature, 1996. 381(6582): p. 520-2. Tewksbury, S.K. and R.W. Hallock, Oversample, linear predictive and noiseshaping coders of order N>1. IEEE Trans Circuits & Sys, 1978. CAS25: p. 436-47. Wang, X.J., et al., Adaptation and temporal decorrelation by single neurons in the primary visual cortex. J Neurophysiol, 2003. 89(6): p. 3279-93. Attwell, D. and S.B. Laughlin, An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab, 2001. 21(10): p. 1133-45. Laughlin, S.B. and T.J. Sejnowski, Communication in neuronal networks. Science, 2003. 301(5641): p. 1870-4. Lennie, P., The cost of cortical computation. Curr Biol, 2003. 13(6): p. 493-7. Tibshirani, R., Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B-Methodological, 1996. 58(1): p. 267-288. Chen, S.S.B., D.L. Donoho, and M.A. Saunders, Atomic decomposition by basis pursuit. Siam Journal on Scientific Computing, 1998. 20(1): p. 33-61. Elad, M., et al., Wide-angle view at iterated shrinkage algorithms. P SOc Photo-Opt Ins, 2007. 6701: p. 70102. Deneve, S., Bayesian spiking neurons I: inference. Neural Comp, 2008. 20: p. 91. Yu, A.J., Optimal Change-Detection and Spinking Neurons, in NIPS, B. Scholkopf, J. Platt, and T. Hofmann, Editors. 2006. Lazar, A. and L. Toth, Perfect Recovery and Sensitivity Analysis of Time Encoded Bandlimited Signals. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 2004. 51(10). Pfister, J.P., P. Dayan, and M. Lengyel, Synapses with short-term plasticity are optimal estimators of presynaptic membrane potentials. Nat Neurosci, 2010. 13(10): p. 1271-5. Chacron, M.J., et al., Experimental and theoretical demonstration of noise shaping by interspike interval correlations. Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems III, 2005. 5841: p. 150-163. Pillow, J., Likelihood-based approaches to modeling the neural code, in Bayesian Brain: Probabilistic Approaches to Neural Coding, K. Doya, et al., Editors. 2007, MIT Press. Jolivet, R., et al., A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Methods, 2008. 169(2): p. 417-24. van Rossum, M.C., A novel spike distance. Neural Comput, 2001. 13(4): p. 751-63. Sarpeshkar, R., Analog versus digital: extrapolating from electronics to neurobiology. Neural Computation, 1998. 10(7): p. 1601-38.

5 0.089338601 267 nips-2012-Perceptron Learning of SAT

Author: Alex Flint, Matthew Blaschko

Abstract: Boolean satisfiability (SAT) as a canonical NP-complete decision problem is one of the most important problems in computer science. In practice, real-world SAT sentences are drawn from a distribution that may result in efficient algorithms for their solution. Such SAT instances are likely to have shared characteristics and substructures. This work approaches the exploration of a family of SAT solvers as a learning problem. In particular, we relate polynomial time solvability of a SAT subset to a notion of margin between sentences mapped by a feature function into a Hilbert space. Provided this mapping is based on polynomial time computable statistics of a sentence, we show that the existance of a margin between these data points implies the existance of a polynomial time solver for that SAT subset based on the Davis-Putnam-Logemann-Loveland algorithm. Furthermore, we show that a simple perceptron-style learning rule will find an optimal SAT solver with a bounded number of training updates. We derive a linear time computable set of features and show analytically that margins exist for important polynomial special cases of SAT. Empirical results show an order of magnitude improvement over a state-of-the-art SAT solver on a hardware verification task. 1

6 0.083730437 238 nips-2012-Neurally Plausible Reinforcement Learning of Working Memory Tasks

7 0.079982452 347 nips-2012-Towards a learning-theoretic analysis of spike-timing dependent plasticity

8 0.073997654 195 nips-2012-Learning visual motion in recurrent neural networks

9 0.068893604 224 nips-2012-Multi-scale Hyper-time Hardware Emulation of Human Motor Nervous System Based on Spiking Neurons using FPGA

10 0.068396844 262 nips-2012-Optimal Neural Tuning Curves for Arbitrary Stimulus Distributions: Discrimax, Infomax and Minimum $L p$ Loss

11 0.063427649 77 nips-2012-Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models

12 0.055947907 158 nips-2012-ImageNet Classification with Deep Convolutional Neural Networks

13 0.054885335 24 nips-2012-A mechanistic model of early sensory processing based on subtracting sparse representations

14 0.046292957 112 nips-2012-Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

15 0.045086209 79 nips-2012-Compressive neural representation of sparse, high-dimensional probabilities

16 0.043397769 91 nips-2012-Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images

17 0.042286776 341 nips-2012-The topographic unsupervised learning of natural sounds in the auditory cortex

18 0.041913837 65 nips-2012-Cardinality Restricted Boltzmann Machines

19 0.03834958 354 nips-2012-Truly Nonparametric Online Variational Inference for Hierarchical Dirichlet Processes

20 0.033261571 362 nips-2012-Waveform Driven Plasticity in BiFeO3 Memristive Devices: Model and Implementation


similar papers computed by lsi model

lsi for this paper:

topicId topicWeight

[(0, 0.071), (1, 0.023), (2, -0.078), (3, 0.088), (4, -0.024), (5, 0.19), (6, -0.001), (7, 0.031), (8, -0.036), (9, 0.083), (10, -0.002), (11, -0.0), (12, 0.04), (13, 0.034), (14, 0.007), (15, 0.002), (16, -0.031), (17, -0.002), (18, -0.012), (19, -0.001), (20, -0.032), (21, -0.079), (22, 0.007), (23, 0.036), (24, -0.054), (25, 0.05), (26, 0.031), (27, 0.011), (28, -0.029), (29, 0.017), (30, 0.034), (31, -0.043), (32, 0.01), (33, 0.081), (34, -0.044), (35, 0.04), (36, -0.058), (37, 0.023), (38, -0.063), (39, -0.023), (40, -0.036), (41, -0.009), (42, -0.054), (43, -0.009), (44, 0.005), (45, -0.08), (46, 0.05), (47, 0.021), (48, 0.001), (49, 0.044)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.96100622 322 nips-2012-Spiking and saturating dendrites differentially expand single neuron computation capacity

Author: Romain Cazé, Mark Humphries, Boris S. Gutkin

Abstract: The integration of excitatory inputs in dendrites is non-linear: multiple excitatory inputs can produce a local depolarization departing from the arithmetic sum of each input’s response taken separately. If this depolarization is bigger than the arithmetic sum, the dendrite is spiking; if the depolarization is smaller, the dendrite is saturating. Decomposing a dendritic tree into independent dendritic spiking units greatly extends its computational capacity, as the neuron then maps onto a two layer neural network, enabling it to compute linearly non-separable Boolean functions (lnBFs). How can these lnBFs be implemented by dendritic architectures in practise? And can saturating dendrites equally expand computational capacity? To address these questions we use a binary neuron model and Boolean algebra. First, we confirm that spiking dendrites enable a neuron to compute lnBFs using an architecture based on the disjunctive normal form (DNF). Second, we prove that saturating dendrites as well as spiking dendrites enable a neuron to compute lnBFs using an architecture based on the conjunctive normal form (CNF). Contrary to a DNF-based architecture, in a CNF-based architecture, dendritic unit tunings do not imply the neuron tuning, as has been observed experimentally. Third, we show that one cannot use a DNF-based architecture with saturating dendrites. Consequently, we show that an important family of lnBFs implemented with a CNF-architecture can require an exponential number of saturating dendritic units, whereas the same family implemented with either a DNF-architecture or a CNF-architecture always require a linear number of spiking dendritic units. This minimization could explain why a neuron spends energetic resources to make its dendrites spike. 1

2 0.86525482 362 nips-2012-Waveform Driven Plasticity in BiFeO3 Memristive Devices: Model and Implementation

Author: Christian Mayr, Paul Stärke, Johannes Partzsch, Love Cederstroem, Rene Schüffny, Yao Shuai, Nan Du, Heidemarie Schmidt

Abstract: Memristive devices have recently been proposed as efficient implementations of plastic synapses in neuromorphic systems. The plasticity in these memristive devices, i.e. their resistance change, is defined by the applied waveforms. This behavior resembles biological synapses, whose plasticity is also triggered by mechanisms that are determined by local waveforms. However, learning in memristive devices has so far been approached mostly on a pragmatic technological level. The focus seems to be on finding any waveform that achieves spike-timing-dependent plasticity (STDP), without regard to the biological veracity of said waveforms or to further important forms of plasticity. Bridging this gap, we make use of a plasticity model driven by neuron waveforms that explains a large number of experimental observations and adapt it to the characteristics of the recently introduced BiFeO3 memristive material. Based on this approach, we show STDP for the first time for this material, with learning window replication superior to previous memristor-based STDP implementations. We also demonstrate in measurements that it is possible to overlay short and long term plasticity at a memristive device in the form of the well-known triplet plasticity. To the best of our knowledge, this is the first implementations of triplet plasticity on any physical memristive device. 1

3 0.85145438 190 nips-2012-Learning optimal spike-based representations

Author: Ralph Bourdoukan, David Barrett, Sophie Deneve, Christian K. Machens

Abstract: How can neural networks learn to represent information optimally? We answer this question by deriving spiking dynamics and learning dynamics directly from a measure of network performance. We find that a network of integrate-and-fire neurons undergoing Hebbian plasticity can learn an optimal spike-based representation for a linear decoder. The learning rule acts to minimise the membrane potential magnitude, which can be interpreted as a representation error after learning. In this way, learning reduces the representation error and drives the network into a robust, balanced regime. The network becomes balanced because small representation errors correspond to small membrane potentials, which in turn results from a balance of excitation and inhibition. The representation is robust because neurons become self-correcting, only spiking if the representation error exceeds a threshold. Altogether, these results suggest that several observed features of cortical dynamics, such as excitatory-inhibitory balance, integrate-and-fire dynamics and Hebbian plasticity, are signatures of a robust, optimal spike-based code. A central question in neuroscience is to understand how populations of neurons represent information and how they learn to do so. Usually, learning and information representation are treated as two different functions. From the outset, this separation seems like a good idea, as it reduces the problem into two smaller, more manageable chunks. Our approach, however, is to study these together. This allows us to treat learning and information representation as two sides of a single mechanism, operating at two different timescales. Experimental work has given us several clues about the regime in which real networks operate in the brain. Some of the most prominent observations are: (a) high trial-to-trial variability—a neuron responds differently to repeated, identical inputs [1, 2]; (b) asynchronous firing at the network level—spike trains of different neurons are at most very weakly correlated [3, 4, 5]; (c) tight balance of excitation and inhibition—every excitatory input is met by an inhibitory input of equal or greater size [6, 7, 8] and (4) spike-timing-dependent plasticity (STDP)—the strength of synapses change as a function of presynaptic and postsynaptic spike times [9]. Previously, it has been shown that observations (a)–(c) can be understood as signatures of an optimal, spike-based code [10, 11]. The essential idea is to derive spiking dynamics from the assumption that neurons only fire if their spike improves information representation. Information in a network may ∗ Authors contributed equally 1 originate from several possible sources: external sensory input, external neural network input, or alternatively, it may originate within the network itself as a memory, or as a computation. Whatever the source, this initial assumption leads directly to the conclusion that a network of integrate-and-fire neurons can optimally represent a signal while exhibiting properties (a)–(c). A major problem with this framework is that network connectivity must be completely specified a priori, and requires the tuning of N 2 parameters, where N is the number of neurons in the network. Although this is feasible mathematically, it is unclear how a real network could tune itself into this optimal regime. In this work, we solve this problem using a simple synaptic learning rule. The key insight is that the plasticity rule can be derived from the same basic principle as the spiking rule in the earlier work—namely, that any change should improve information representation. Surprisingly, this can be achieved with a local, Hebbian learning rule, where synaptic plasticity is proportional to the product of presynaptic firing rates with post-synaptic membrane potentials. Spiking and synaptic plasticity then work hand in hand towards the same goal: the spiking of a neuron decreases the representation error on a fast time scale, thereby giving rise to the actual population representation; synaptic plasticity decreases the representation error on a slower time scale, thereby improving or maintaining the population representation. For a large set of initial connectivities and spiking dynamics, neural networks are driven into a balanced regime, where excitation and inhibition cancel each other and where spike trains are asynchronous and irregular. Furthermore, the learning rule that we derive reproduces the main features of STDP (property (d) above). In this way, a network can learn to represent information optimally, with synaptic, neural and network dynamics consistent with those observed experimentally. 1 Derivation of the learning rule for a single neuron We begin by deriving a learning rule for a single neuron with an autapse (a self-connection) (Fig. 1A). Our approach is to derive synaptic dynamics for the autapse and spiking dynamics for the neuron such that the neuron learns to optimally represent a time-varying input signal. We will derive a learning rule for networks of neurons later, after we have developed the fundamental concepts for the single neuron case. Our first step is to derive optimal spiking dynamics for the neuron, so that we have a target for our learning rule. We do this by making two simple assumptions [11]. First, we assume that the neuron can provide an estimate or read-out x(t) of a time-dependent signal x(t) by filtering its spike train ˆ o(t) as follows: ˙ x(t) = −ˆ(t) + Γo(t), ˆ x (1) where Γ is a fixed read-out weight, which we will refer to as the neuron’s “output kernel” and the spike train can be written as o(t) = i δ(t − ti ), where {ti } are the spike times. Next, we assume that the neuron only produces a spike if that spike improves the read-out, where we measure the read-out performance through a simple squared-error loss function: 2 L(t) = x(t) − x(t) . ˆ (2) With these two assumptions, we can now derive optimal spiking dynamics. First, we observe that if the neuron produces an additional spike at time t, the read-out increases by Γ, and the loss function becomes L(t|spike) = (x(t) − (x(t) + Γ))2 . This allows us to restate our spiking rule as follows: ˆ the neuron should only produce a spike if L(t|no spike) > L(t|spike), or (x(t) − x(t))2 > (x(t) − ˆ (x(t) + Γ))2 . Now, squaring both sides of this inequality, defining V (t) ≡ Γ(x(t) − x(t)) and ˆ ˆ defining T ≡ Γ2 /2 we find that the neuron should only spike if: V (t) > T. (3) We interpret V (t) to be the membrane potential of the neuron, and we interpret T as the spike threshold. This interpretation allows us to understand the membrane potential functionally: the voltage is proportional to a prediction error—the difference between the read-out x(t) and the actual ˆ signal x(t). A spike is an error reduction mechanism—the neuron only spikes if the error exceeds the spike threshold. This is a greedy minimisation, in that the neuron fires a spike whenever that action decreases L(t) without considering the future impact of that spike. Importantly, the neuron does not require direct access to the loss function L(t). 2 To determine the membrane potential dynamics, we take the derivative of the voltage, which gives ˙ ˙ us V = Γ(x − x). (Here, and in the following, we will drop the time index for notational brevity.) ˙ ˆ ˙ Now, using Eqn. (1) we obtain V = Γx − Γ(−x + Γo) = −Γ(x − x) + Γ(x + x) − Γ2 o, so that: ˙ ˆ ˆ ˙ ˙ V = −V + Γc − Γ2 o, (4) where c = x + x is the neural input. This corresponds exactly to the dynamics of a leaky integrate˙ and-fire neuron with an inhibitory autapse1 of strength Γ2 , and a feedforward connection strength Γ. The dynamics and connectivity guarantee that a neuron spikes at just the right times to optimise the loss function (Fig. 1B). In addition, it is especially robust to noise of different forms, because of its error-correcting nature. If x is constant in time, the voltage will rise up to the threshold T at which point a spike is fired, adding a delta function to the spike train o at time t, thereby producing a read-out x that is closer to x and causing an instantaneous drop in the voltage through the autapse, ˆ by an amount Γ2 = 2T , effectively resetting the voltage to V = −T . We now have a target for learning—we know the connection strength that a neuron must have at the end of learning if it is to represent information optimally, for a linear read-out. We can use this target to derive synaptic dynamics that can learn an optimal representation from experience. Specifically, we consider an integrate-and-fire neuron with some arbitrary autapse strength ω. The dynamics of this neuron are given by ˙ V = −V + Γc − ωo. (5) This neuron will not produce the correct spike train for representing x through a linear read-out (Eqn. (1)) unless ω = Γ2 . Our goal is to derive a dynamical equation for the synapse ω so that the spike train becomes optimal. We do this by quantifying the loss that we are incurring by using the suboptimal strength, and then deriving a learning rule that minimises this loss with respect to ω. The loss function underlying the spiking dynamics determined by Eqn. (5) can be found by reversing the previous membrane potential analysis. First, we integrate the differential equation for V , assuming that ω changes on time scales much slower than the membrane potential. We obtain the following (formal) solution: V = Γx − ω¯, o (6) ˙ where o is determined by o = −¯ + o. The solution to this latter equation is o = h ∗ o, a convolution ¯ ¯ o ¯ of the spike train with the exponential kernel h(τ ) = θ(τ ) exp(−τ ). As such, it is analogous to the instantaneous firing rate of the neuron. Now, using Eqn. (6), and rewriting the read-out as x = Γ¯, we obtain the loss incurred by the ˆ o sub-optimal neuron, L = (x − x)2 = ˆ 1 V 2 + 2(ω − Γ2 )¯ + (ω − Γ2 )2 o2 . o ¯ Γ2 (7) We observe that the last two terms of Eqn. (7) will vanish whenever ω = Γ2 , i.e., when the optimal reset has been found. We can therefore simplify the problem by defining an alternative loss function, 1 2 V , (8) 2 which has the same minimum as the original loss (V = 0 or x = x, compare Eqn. (2)), but yields a ˆ simpler learning algorithm. We can now calculate how changes to ω affect LV : LV = ∂LV ∂V ∂o ¯ =V = −V o − V ω ¯ . (9) ∂ω ∂ω ∂ω We can ignore the last term in this equation (as we will show below). Finally, using simple gradient descent, we obtain a simple Hebbian-like synaptic plasticity rule: τω = − ˙ ∂LV = V o, ¯ ∂ω (10) where τ is the learning time constant. 1 This contribution of the autapse can also be interpreted as the reset of an integrate-and-fire neuron. Later, when we generalise to networks of neurons, we shall employ this interpretation. 3 This synaptic learning rule is capable of learning the synaptic weight ω that minimises the difference between x and x (Fig. 1B). During learning, the synaptic weight changes in proportion to the postˆ synaptic voltage V and the pre-synaptic firing rate o (Fig. 1C). As such, this is a Hebbian learning ¯ rule. Of course, in this single neuron case, the pre-synaptic neuron and post-synaptic neuron are the same neuron. The synaptic weight gradually approaches its optimal value Γ2 . However, it never completely stabilises, because learning never stops as long as neurons are spiking. Instead, the synapse oscillates closely about the optimal value (Fig. 1D). This is also a “greedy” learning rule, similar to the spiking rule, in that it seeks to minimise the error at each instant in time, without regard for the future impact of those changes. To demonstrate that the second term in Eqn. (5) can be neglected we note that the equations for V , o, and ω define a system ¯ of coupled differential equations that can be solved analytically by integrating between spikes. This results in a simple recurrence relation for changes in ω from the ith to the (i + 1)th spike, ωi+1 = ωi + ωi (ωi − 2T ) . τ (T − Γc − ωi ) (11) This iterative equation has a single stable fixed point at ω = 2T = Γ2 , proving that the neuron’s autaptic weight or reset will approach the optimal solution. 2 Learning in a homogeneous network We now generalise our learning rule derivation to a network of N identical, homogeneously connected neurons. This generalisation is reasonably straightforward because many characteristics of the single neuron case are shared by a network of identical neurons. We will return to the more general case of heterogeneously connected neurons in the next section. We begin by deriving optimal spiking dynamics, as in the single neuron case. This provides a target for learning, which we can then use to derive synaptic dynamics. As before, we want our network to produce spikes that optimally represent a variable x for a linear read-out. We assume that the read-out x is provided by summing and filtering the spike trains of all the neurons in the network: ˆ ˙ x = −ˆ + Γo, ˆ x (12) 2 where the row vector Γ = (Γ, . . . , Γ) contains the read-out weights of the neurons and the column vector o = (o1 , . . . , oN ) their spike trains. Here, we have used identical read-out weights for each neuron, because this indirectly leads to homogeneous connectivity, as we will demonstrate. Next, we assume that a neuron only spikes if that spike reduces a loss-function. This spiking rule is similar to the single neuron spiking rule except that this time there is some ambiguity about which neuron should spike to represent a signal. Indeed, there are many different spike patterns that provide exactly the same estimate x. For example, one neuron could fire regularly at a high rate (exactly like ˆ our previous single neuron example) while all others are silent. To avoid this firing rate ambiguity, we use a modified loss function, that selects amongst all equivalent solutions, those with the smallest neural firing rates. We do this by adding a ‘metabolic cost’ term to our loss function, so that high firing rates are penalised: ¯ L = (x − x)2 + µ o 2 , ˆ (13) where µ is a small positive constant that controls the cost-accuracy trade-off, akin to a regularisation parameter. Each neuron in the optimal network will seek to reduce this loss function by firing a spike. Specifically, the ith neuron will spike whenever L(no spike in i) > L(spike in i). This leads to the following spiking rule for the ith neuron: Vi > Ti (14) where Vi ≡ Γ(x − x) − µoi and Ti ≡ Γ2 /2 + µ/2. We can naturally interpret Vi as the membrane ˆ potential of the ith neuron and Ti as the spiking threshold of that neuron. As before, we can now derive membrane potential dynamics: ˙ V = −V + ΓT c − (ΓT Γ + µI)o, 2 (15) The read-out weights must scale as Γ ∼ 1/N so that firing rates are not unrealistically small in large networks. We can see this by calculating the average firing rate N oi /N ≈ x/(ΓN ) ∼ O(N/N ) ∼ O(1). i=1 ¯ 4 where I is the identity matrix and ΓT Γ + µI is the network connectivity. We can interpret the selfconnection terms {Γ2 +µ} as voltage resets that decrease the voltage of any neuron that spikes. This optimal network is equivalent to a network of identical integrate-and-fire neurons with homogeneous inhibitory connectivity. The network has some interesting dynamical properties. The voltages of all the neurons are largely synchronous, all increasing to the spiking threshold at about the same time3 (Fig. 1F). Nonetheless, neural spiking is asynchronous. The first neuron to spike will reset itself by Γ2 + µ, and it will inhibit all the other neurons in the network by Γ2 . This mechanism prevents neurons from spik- x 3 The first neuron to spike will be random if there is some membrane potential noise. V (A) (B) x x ˆ x 10 1 0.1 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 1 D 0.5 V V 0 ˆ x V ˆ x (C) 1 0 1 2 0 0.625 25 25.625 (D) start of learning 1 V 50 200.625 400 400.625 1 2.4 O 1.78 ω 1.77 25 neuron$ 0 1 2 !me$ 3 4 25 1 5 V 400.625 !me$ (F) 25 1 2.35 1.05 1.049 400 25.625 !me$ (E) neuron$ 100.625 200 end of learning 1.4 1.35 ω 100 !me$ 1 V 1 O 50.625 0 1 2 !me$ 3 4 5 V !me$ !me$ Figure 1: Learning in a single neuron and a homogeneous network. (A) A single neuron represents an input signal x by producing an output x. (B) During learning, the single neuron output x (solid red ˆ ˆ line, top panel) converges towards the input x (blue). Similarly, for a homogeneous network the output x (dashed red line, top panel) converges towards x. Connectivity also converges towards optimal ˆ connectivity in both the single neuron case (solid black line, middle panel) and the homogeneous net2 2 work case (dashed black line, middle panel), as quantified by D = maxi,j ( Ωij − Ωopt / Ωopt ) ij ij at each point in time. Consequently, the membrane potential reset (bottom panel) converges towards the optimal reset (green line, bottom panel). Spikes are indicated by blue vertical marks, and are produced when the membrane potential reaches threshold (bottom panel). Here, we have rescaled time, as indicated, for clarity. (C) Our learning rule dictates that the autapse ω in our single neuron (bottom panel) changes in proportion to the membrane potential (top panel) and the firing rate (middle panel). (D) At the end of learning, the reset ω fluctuates weakly about the optimal value. (E) For a homogeneous network, neurons spike regularly at the start of learning, as shown in this raster plot. Membrane potentials of different neurons are weakly correlated. (F) At the end of learning, spiking is very irregular and membrane potentials become more synchronous. 5 ing synchronously. The population as a whole acts similarly to the single neuron in our previous example. Each neuron fires regularly, even if a different neuron fires in every integration cycle. The design of this optimal network requires the tuning of N (N − 1) synaptic parameters. How can an arbitrary network of integrate-and-fire neurons learn this optimum? As before, we address this question by using the optimal network as a target for learning. We start with an arbitrarily connected network of integrate-and-fire neurons: ˙ V = −V + ΓT c − Ωo, (16) where Ω is a matrix of connectivity weights, which includes the resets of the individual neurons. Assuming that learning occurs on a slow time scale, we can rewrite this equation as V = ΓT x − Ω¯ . o (17) Now, repeating the arguments from the single neuron derivation, we modify the loss function to obtain an online learning rule. Specifically, we set LV = V 2 /2, and calculate the gradient: ∂LV = ∂Ωij Vk k ∂Vk =− ∂Ωij Vk δki oj − ¯ k Vk Ωkl kl ∂ ol ¯ . ∂Ωij (18) We can simplify this equation considerably by observing that the contribution of the second summation is largely averaged out under a wide variety of realistic conditions4 . Therefore, it can be neglected, and we obtain the following local learning rule: ∂LV ˙ = V i oj . ¯ τ Ωij = − ∂Ωij (19) This is a Hebbian plasticity rule, whereby connectivity changes in proportion to the presynaptic firing rate oj and post-synaptic membrane potential Vi . We assume that the neural thresholds are set ¯ to a constant T and that the neural resets are set to their optimal values −T . In the previous section we demonstrated that these resets can be obtained by a Hebbian plasticity rule (Eqn. (10)). This learning rule minimises the difference between the read-out and the signal, by approaching the optimal recurrent connection strengths for the network (Fig. 1B). As in the single neuron case, learning does not stop, so the connection strengths fluctuate close to their optimal value. During learning, network activity becomes progressively more asynchronous as it progresses towards optimal connectivity (Fig. 1E, F). 3 Learning in the general case Now that we have developed the fundamental concepts underlying our learning rule, we can derive a learning rule for the more general case of a network of N arbitrarily connected leaky integrateand-fire neurons. Our goal is to understand how such networks can learn to optimally represent a ˙ J-dimensional signal x = (x1 , . . . , xJ ), using the read-out equation x = −x + Γo. We consider a network with the following membrane potential dynamics: ˙ V = −V + ΓT c − Ωo, (20) where c is a J-dimensional input. We assume that this input is related to the signal according to ˙ c = x + x. This assumption can be relaxed by treating the input as the control for an arbitrary linear dynamical system, in which case the signal represented by the network is the output of such a computation [11]. However, this further generalisation is beyond the scope of this work. As before, we need to identify the optimal recurrent connectivity so that we have a target for learning. Most generally, the optimal recurrent connectivity is Ωopt ≡ ΓT Γ + µI. The output kernels of the individual neurons, Γi , are given by the rows of Γ, and their spiking thresholds by Ti ≡ Γi 2 /2 + 4 From the definition of the membrane potential we can see that Vk ∼ O(1/N ) because Γ ∼ 1/N . Therefore, the size of the first term in Eqn. (18) is k Vk δki oj = Vi oj ∼ O(1/N ). Therefore, the second term can ¯ ¯ be ignored if kl Vk Ωkl ∂ ol /∂Ωij ¯ O(1/N ). This happens if Ωkl O(1/N 2 ) as at the start of learning. It also happens towards the end of learning if the terms {Ωkl ∂ ol /∂Ωij } are weakly correlated with zero mean, ¯ or if the membrane potentials {Vi } are weakly correlated with zero mean. 6 µ/2. With these connections and thresholds, we find that a network of integrate-and-fire neurons ˆ ¯ will produce spike trains in such a way that the loss function L = x − x 2 + µ o 2 is minimised, ˆ where the read-out is given by x = Γ¯ . We can show this by prescribing a greedy5 spike rule: o a spike is fired by neuron i whenever L(no spike in i) > L(spike in i) [11]. The resulting spike generation rule is Vi > Ti , (21) ˆ where Vi ≡ ΓT (x − x) − µ¯i is interpreted as the membrane potential. o i 5 Despite being greedy, this spiking rule can generate firing rates that are practically identical to the optimal solutions: we checked this numerically in a large ensemble of networks with randomly chosen kernels. (A) x1 … x … 1 1 (B) xJJ x 10 L 10 T T 10 4 6 8 1 Viii V D ˆˆ ˆˆ x11 xJJ x x F 0.5 0 0.4 … … 0.2 0 0 2000 4000 !me   (C) x V V 1 x 10 x 3 ˆ x 8 0 x 10 1 2 3 !me   4 5 4 0 1 4 0 1 8 V (F) Ρ(Δt)   E-­‐I  input   0.4 ˆ x 0 3 0 1 x 10 1.3 0.95 x 10 ˆ x 4 V (E) 1 x 0 end of learning 50 neuron neuron 50 !me   2 0 ˆ x 0 0.5 ISI  Δt     1 2 !me   4 5 4 1.5 1.32 3 2 0.1 Ρ(Δt)   x E-­‐I  input   (D) start of learning 0 2 !me   0 0 0.5 ISI  Δt   1 Figure 2: Learning in a heterogeneous network. (A) A network of neurons represents an input ˆ signal x by producing an output x. (B) During learning, the loss L decreases (top panel). The difference between the connection strengths and the optimal strengths also decreases (middle panel), as 2 2 quantified by the mean difference (solid line), given by D = Ω − Ωopt / Ωopt and the maxi2 2 mum difference (dashed line), given by maxi,j ( Ωij − Ωopt / Ωopt ). The mean population firing ij ij rate (solid line, bottom panel) also converges towards the optimal firing rate (dashed line, bottom panel). (C, E) Before learning, a raster plot of population spiking shows that neurons produce bursts ˆ of spikes (upper panel). The network output x (red line, middle panel) fails to represent x (blue line, middle panel). The excitatory input (red, bottom left panel) and inhibitory input (green, bottom left panel) to a randomly selected neuron is not tightly balanced. Furthermore, a histogram of interspike intervals shows that spiking activity is not Poisson, as indicated by the red line that represents a best-fit exponential distribution. (D, F) At the end of learning, spiking activity is irregular and ˆ Poisson-like, excitatory and inhibitory input is tightly balanced and x matches x. 7 How can we learn this optimal connection matrix? As before, we can derive a learning rule by minimising the cost function LV = V 2 /2. This leads to a Hebbian learning rule with the same form as before: ˙ τ Ωij = Vi oj . ¯ (22) Again, we assume that the neural resets are given by −Ti . Furthermore, in order for this learning rule to work, we must assume that the network input explores all possible directions in the J-dimensional input space (since the kernels Γi can point in any of these directions). The learning performance does not critically depend on how the input variable space is sampled as long as the exploration is extensive. In our simulations, we randomly sample the input c from a Gaussian white noise distribution at every time step for the entire duration of the learning. We find that this learning rule decreases the loss function L, thereby approaching optimal network connectivity and producing optimal firing rates for our linear decoder (Fig. 2B). In this example, we have chosen connectivity that is initially much too weak at the start of learning. Consequently, the initial network behaviour is similar to a collection of unconnected single neurons that ignore each other. Spike trains are not Poisson-like, firing rates are excessively large, excitatory and inhibitory ˆ input is unbalanced and the decoded variable x is highly unreliable (Fig. 2C, E). As a result of learning, the network becomes tightly balanced and the spike trains become asynchronous, irregular and Poisson-like with much lower rates (Fig. 2D, F). However, despite this apparent variability, the population representation is extremely precise, only limited by the the metabolic cost and the discrete nature of a spike. This learnt representation is far more precise than a rate code with independent Poisson spike trains [11]. In particular, shuffling the spike trains in response to identical inputs drastically degrades this precision. 4 Conclusions and Discussion In population coding, large trial-to-trial spike train variability is usually interpreted as noise [2]. We show here that a deterministic network of leaky integrate-and-fire neurons with a simple Hebbian plasticity rule can self-organise into a regime where information is represented far more precisely than in noisy rate codes, while appearing to have noisy Poisson-like spiking dynamics. Our learning rule (Eqn. (22)) has the basic properties of STDP. Specifically, a presynaptic spike occurring immediately before a post-synaptic spike will potentiate a synapse, because membrane potentials are positive immediately before a postsynaptic spike. Furthermore, a presynaptic spike occurring immediately after a post-synaptic spike will depress a synapse, because membrane potentials are always negative immediately after a postsynaptic spike. This is similar in spirit to the STDP rule proposed in [12], but different to classical STDP, which depends on post-synaptic spike times [9]. This learning rule can also be understood as a mechanism for generating a tight balance between excitatory and inhibitory input. We can see this by observing that membrane potentials after learning can be interpreted as representation errors (projected onto the read-out kernels). Therefore, learning acts to minimise the magnitude of membrane potentials. Excitatory and inhibitory input must be balanced if membrane potentials are small, so we can equate balance with optimal information representation. Previous work has shown that the balanced regime produces (quasi-)chaotic network dynamics, thereby accounting for much observed cortical spike train variability [13, 14, 4]. Moreover, the STDP rule has been known to produce a balanced regime [16, 17]. Additionally, recent theoretical studies have suggested that the balanced regime plays an integral role in network computation [15, 13]. In this work, we have connected these mechanisms and functions, to conclude that learning this balance is equivalent to the development of an optimal spike-based population code, and that this learning can be achieved using a simple Hebbian learning rule. Acknowledgements We are grateful for generous funding from the Emmy-Noether grant of the Deutsche Forschungsgemeinschaft (CKM) and the Chaire d’excellence of the Agence National de la Recherche (CKM, DB), as well as a James Mcdonnell Foundation Award (SD) and EU grants BACS FP6-IST-027140, BIND MECT-CT-20095-024831, and ERC FP7-PREDSPIKE (SD). 8 References [1] Tolhurst D, Movshon J, and Dean A (1982) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res 23: 775–785. [2] Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10): 3870–3896. [3] Zohary E, Newsome WT (1994) Correlated neuronal discharge rate and its implication for psychophysical performance. Nature 370: 140–143. [4] Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, & Harris, KD (2010) The asynchronous state in cortical circuits. Science 327, 587–590. [5] Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS (2010) Decorrelated neuronal firing in cortical microcircuits. Science 327: 584–587. [6] Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 11, 535–537. [7] Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423, 288–293. [8] Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CCH (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65: 422–435. [9] Caporale N, Dan Y (2008) Spike-timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31: 25–46. [10] Boerlin M, Deneve S (2011) Spike-based population coding and working memory. PLoS Comput Biol 7, e1001080. [11] Boerlin M, Machens CK, Deneve S (2012) Predictive coding of dynamic variables in balanced spiking networks. under review. [12] Clopath C, B¨ sing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of u voltage-based STDP with homeostasis. Nat Neurosci 13(3): 344–352. [13] van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in a model of cortical circuits. Neural Comput 10(6): 1321–1371. [14] Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory neurons. J Comput Neurosci 8, 183–208. [15] Vogels TP, Rajan K, Abbott LF (2005) Neural network dynamics. Annu Rev Neurosci 28: 357–376. [16] Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334(6062):1569– 73. [17] Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timingdependent synaptic plasticity. Nat Neurosci 3(9): 919–926. 9

4 0.80891836 152 nips-2012-Homeostatic plasticity in Bayesian spiking networks as Expectation Maximization with posterior constraints

Author: Stefan Habenschuss, Johannes Bill, Bernhard Nessler

Abstract: Recent spiking network models of Bayesian inference and unsupervised learning frequently assume either inputs to arrive in a special format or employ complex computations in neuronal activation functions and synaptic plasticity rules. Here we show in a rigorous mathematical treatment how homeostatic processes, which have previously received little attention in this context, can overcome common theoretical limitations and facilitate the neural implementation and performance of existing models. In particular, we show that homeostatic plasticity can be understood as the enforcement of a ’balancing’ posterior constraint during probabilistic inference and learning with Expectation Maximization. We link homeostatic dynamics to the theory of variational inference, and show that nontrivial terms, which typically appear during probabilistic inference in a large class of models, drop out. We demonstrate the feasibility of our approach in a spiking WinnerTake-All architecture of Bayesian inference and learning. Finally, we sketch how the mathematical framework can be extended to richer recurrent network architectures. Altogether, our theory provides a novel perspective on the interplay of homeostatic processes and synaptic plasticity in cortical microcircuits, and points to an essential role of homeostasis during inference and learning in spiking networks. 1

5 0.79218423 347 nips-2012-Towards a learning-theoretic analysis of spike-timing dependent plasticity

Author: David Balduzzi, Michel Besserve

Abstract: This paper suggests a learning-theoretic perspective on how synaptic plasticity benefits global brain functioning. We introduce a model, the selectron, that (i) arises as the fast time constant limit of leaky integrate-and-fire neurons equipped with spiking timing dependent plasticity (STDP) and (ii) is amenable to theoretical analysis. We show that the selectron encodes reward estimates into spikes and that an error bound on spikes is controlled by a spiking margin and the sum of synaptic weights. Moreover, the efficacy of spikes (their usefulness to other reward maximizing selectrons) also depends on total synaptic strength. Finally, based on our analysis, we propose a regularized version of STDP, and show the regularization improves the robustness of neuronal learning when faced with multiple stimuli. 1

6 0.75659382 239 nips-2012-Neuronal Spike Generation Mechanism as an Oversampling, Noise-shaping A-to-D converter

7 0.68791711 224 nips-2012-Multi-scale Hyper-time Hardware Emulation of Human Motor Nervous System Based on Spiking Neurons using FPGA

8 0.57056195 238 nips-2012-Neurally Plausible Reinforcement Learning of Working Memory Tasks

9 0.47860694 39 nips-2012-Analog readout for optical reservoir computers

10 0.45158422 112 nips-2012-Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

11 0.43678632 77 nips-2012-Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models

12 0.4163537 24 nips-2012-A mechanistic model of early sensory processing based on subtracting sparse representations

13 0.39990076 195 nips-2012-Learning visual motion in recurrent neural networks

14 0.3507348 73 nips-2012-Coding efficiency and detectability of rate fluctuations with non-Poisson neuronal firing

15 0.33737454 91 nips-2012-Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images

16 0.33146909 158 nips-2012-ImageNet Classification with Deep Convolutional Neural Networks

17 0.31294218 150 nips-2012-Hierarchical spike coding of sound

18 0.30996981 267 nips-2012-Perceptron Learning of SAT

19 0.30720645 79 nips-2012-Compressive neural representation of sparse, high-dimensional probabilities

20 0.29330558 113 nips-2012-Efficient and direct estimation of a neural subunit model for sensory coding


similar papers computed by lda model

lda for this paper:

topicId topicWeight

[(0, 0.026), (17, 0.015), (21, 0.034), (34, 0.365), (38, 0.064), (42, 0.012), (54, 0.012), (55, 0.031), (61, 0.049), (74, 0.026), (76, 0.084), (77, 0.032), (80, 0.051), (92, 0.058), (94, 0.012), (98, 0.024)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.72381032 322 nips-2012-Spiking and saturating dendrites differentially expand single neuron computation capacity

Author: Romain Cazé, Mark Humphries, Boris S. Gutkin

Abstract: The integration of excitatory inputs in dendrites is non-linear: multiple excitatory inputs can produce a local depolarization departing from the arithmetic sum of each input’s response taken separately. If this depolarization is bigger than the arithmetic sum, the dendrite is spiking; if the depolarization is smaller, the dendrite is saturating. Decomposing a dendritic tree into independent dendritic spiking units greatly extends its computational capacity, as the neuron then maps onto a two layer neural network, enabling it to compute linearly non-separable Boolean functions (lnBFs). How can these lnBFs be implemented by dendritic architectures in practise? And can saturating dendrites equally expand computational capacity? To address these questions we use a binary neuron model and Boolean algebra. First, we confirm that spiking dendrites enable a neuron to compute lnBFs using an architecture based on the disjunctive normal form (DNF). Second, we prove that saturating dendrites as well as spiking dendrites enable a neuron to compute lnBFs using an architecture based on the conjunctive normal form (CNF). Contrary to a DNF-based architecture, in a CNF-based architecture, dendritic unit tunings do not imply the neuron tuning, as has been observed experimentally. Third, we show that one cannot use a DNF-based architecture with saturating dendrites. Consequently, we show that an important family of lnBFs implemented with a CNF-architecture can require an exponential number of saturating dendritic units, whereas the same family implemented with either a DNF-architecture or a CNF-architecture always require a linear number of spiking dendritic units. This minimization could explain why a neuron spends energetic resources to make its dendrites spike. 1

2 0.38731709 285 nips-2012-Query Complexity of Derivative-Free Optimization

Author: Ben Recht, Kevin G. Jamieson, Robert Nowak

Abstract: This paper provides lower bounds on the convergence rate of Derivative Free Optimization (DFO) with noisy function evaluations, exposing a fundamental and unavoidable gap between the performance of algorithms with access to gradients and those with access to only function evaluations. However, there are situations in which DFO is unavoidable, and for such situations we propose a new DFO algorithm that is proved to be near optimal for the class of strongly convex objective functions. A distinctive feature of the algorithm is that it uses only Boolean-valued function comparisons, rather than function evaluations. This makes the algorithm useful in an even wider range of applications, such as optimization based on paired comparisons from human subjects, for example. We also show that regardless of whether DFO is based on noisy function evaluations or Boolean-valued function comparisons, the convergence rate is the same. 1

3 0.38446525 203 nips-2012-Locating Changes in Highly Dependent Data with Unknown Number of Change Points

Author: Azadeh Khaleghi, Daniil Ryabko

Abstract: The problem of multiple change point estimation is considered for sequences with unknown number of change points. A consistency framework is suggested that is suitable for highly dependent time-series, and an asymptotically consistent algorithm is proposed. In order for the consistency to be established the only assumption required is that the data is generated by stationary ergodic time-series distributions. No modeling, independence or parametric assumptions are made; the data are allowed to be dependent and the dependence can be of arbitrary form. The theoretical results are complemented with experimental evaluations. 1

4 0.36416206 2 nips-2012-3D Social Saliency from Head-mounted Cameras

Author: Hyun S. Park, Eakta Jain, Yaser Sheikh

Abstract: A gaze concurrence is a point in 3D where the gaze directions of two or more people intersect. It is a strong indicator of social saliency because the attention of the participating group is focused on that point. In scenes occupied by large groups of people, multiple concurrences may occur and transition over time. In this paper, we present a method to construct a 3D social saliency ďŹ eld and locate multiple gaze concurrences that occur in a social scene from videos taken by head-mounted cameras. We model the gaze as a cone-shaped distribution emanating from the center of the eyes, capturing the variation of eye-in-head motion. We calibrate the parameters of this distribution by exploiting the ďŹ xed relationship between the primary gaze ray and the head-mounted camera pose. The resulting gaze model enables us to build a social saliency ďŹ eld in 3D. We estimate the number and 3D locations of the gaze concurrences via provably convergent modeseeking in the social saliency ďŹ eld. Our algorithm is applied to reconstruct multiple gaze concurrences in several real world scenes and evaluated quantitatively against motion-captured ground truth. 1

5 0.36103231 190 nips-2012-Learning optimal spike-based representations

Author: Ralph Bourdoukan, David Barrett, Sophie Deneve, Christian K. Machens

Abstract: How can neural networks learn to represent information optimally? We answer this question by deriving spiking dynamics and learning dynamics directly from a measure of network performance. We find that a network of integrate-and-fire neurons undergoing Hebbian plasticity can learn an optimal spike-based representation for a linear decoder. The learning rule acts to minimise the membrane potential magnitude, which can be interpreted as a representation error after learning. In this way, learning reduces the representation error and drives the network into a robust, balanced regime. The network becomes balanced because small representation errors correspond to small membrane potentials, which in turn results from a balance of excitation and inhibition. The representation is robust because neurons become self-correcting, only spiking if the representation error exceeds a threshold. Altogether, these results suggest that several observed features of cortical dynamics, such as excitatory-inhibitory balance, integrate-and-fire dynamics and Hebbian plasticity, are signatures of a robust, optimal spike-based code. A central question in neuroscience is to understand how populations of neurons represent information and how they learn to do so. Usually, learning and information representation are treated as two different functions. From the outset, this separation seems like a good idea, as it reduces the problem into two smaller, more manageable chunks. Our approach, however, is to study these together. This allows us to treat learning and information representation as two sides of a single mechanism, operating at two different timescales. Experimental work has given us several clues about the regime in which real networks operate in the brain. Some of the most prominent observations are: (a) high trial-to-trial variability—a neuron responds differently to repeated, identical inputs [1, 2]; (b) asynchronous firing at the network level—spike trains of different neurons are at most very weakly correlated [3, 4, 5]; (c) tight balance of excitation and inhibition—every excitatory input is met by an inhibitory input of equal or greater size [6, 7, 8] and (4) spike-timing-dependent plasticity (STDP)—the strength of synapses change as a function of presynaptic and postsynaptic spike times [9]. Previously, it has been shown that observations (a)–(c) can be understood as signatures of an optimal, spike-based code [10, 11]. The essential idea is to derive spiking dynamics from the assumption that neurons only fire if their spike improves information representation. Information in a network may ∗ Authors contributed equally 1 originate from several possible sources: external sensory input, external neural network input, or alternatively, it may originate within the network itself as a memory, or as a computation. Whatever the source, this initial assumption leads directly to the conclusion that a network of integrate-and-fire neurons can optimally represent a signal while exhibiting properties (a)–(c). A major problem with this framework is that network connectivity must be completely specified a priori, and requires the tuning of N 2 parameters, where N is the number of neurons in the network. Although this is feasible mathematically, it is unclear how a real network could tune itself into this optimal regime. In this work, we solve this problem using a simple synaptic learning rule. The key insight is that the plasticity rule can be derived from the same basic principle as the spiking rule in the earlier work—namely, that any change should improve information representation. Surprisingly, this can be achieved with a local, Hebbian learning rule, where synaptic plasticity is proportional to the product of presynaptic firing rates with post-synaptic membrane potentials. Spiking and synaptic plasticity then work hand in hand towards the same goal: the spiking of a neuron decreases the representation error on a fast time scale, thereby giving rise to the actual population representation; synaptic plasticity decreases the representation error on a slower time scale, thereby improving or maintaining the population representation. For a large set of initial connectivities and spiking dynamics, neural networks are driven into a balanced regime, where excitation and inhibition cancel each other and where spike trains are asynchronous and irregular. Furthermore, the learning rule that we derive reproduces the main features of STDP (property (d) above). In this way, a network can learn to represent information optimally, with synaptic, neural and network dynamics consistent with those observed experimentally. 1 Derivation of the learning rule for a single neuron We begin by deriving a learning rule for a single neuron with an autapse (a self-connection) (Fig. 1A). Our approach is to derive synaptic dynamics for the autapse and spiking dynamics for the neuron such that the neuron learns to optimally represent a time-varying input signal. We will derive a learning rule for networks of neurons later, after we have developed the fundamental concepts for the single neuron case. Our first step is to derive optimal spiking dynamics for the neuron, so that we have a target for our learning rule. We do this by making two simple assumptions [11]. First, we assume that the neuron can provide an estimate or read-out x(t) of a time-dependent signal x(t) by filtering its spike train ˆ o(t) as follows: ˙ x(t) = −ˆ(t) + Γo(t), ˆ x (1) where Γ is a fixed read-out weight, which we will refer to as the neuron’s “output kernel” and the spike train can be written as o(t) = i δ(t − ti ), where {ti } are the spike times. Next, we assume that the neuron only produces a spike if that spike improves the read-out, where we measure the read-out performance through a simple squared-error loss function: 2 L(t) = x(t) − x(t) . ˆ (2) With these two assumptions, we can now derive optimal spiking dynamics. First, we observe that if the neuron produces an additional spike at time t, the read-out increases by Γ, and the loss function becomes L(t|spike) = (x(t) − (x(t) + Γ))2 . This allows us to restate our spiking rule as follows: ˆ the neuron should only produce a spike if L(t|no spike) > L(t|spike), or (x(t) − x(t))2 > (x(t) − ˆ (x(t) + Γ))2 . Now, squaring both sides of this inequality, defining V (t) ≡ Γ(x(t) − x(t)) and ˆ ˆ defining T ≡ Γ2 /2 we find that the neuron should only spike if: V (t) > T. (3) We interpret V (t) to be the membrane potential of the neuron, and we interpret T as the spike threshold. This interpretation allows us to understand the membrane potential functionally: the voltage is proportional to a prediction error—the difference between the read-out x(t) and the actual ˆ signal x(t). A spike is an error reduction mechanism—the neuron only spikes if the error exceeds the spike threshold. This is a greedy minimisation, in that the neuron fires a spike whenever that action decreases L(t) without considering the future impact of that spike. Importantly, the neuron does not require direct access to the loss function L(t). 2 To determine the membrane potential dynamics, we take the derivative of the voltage, which gives ˙ ˙ us V = Γ(x − x). (Here, and in the following, we will drop the time index for notational brevity.) ˙ ˆ ˙ Now, using Eqn. (1) we obtain V = Γx − Γ(−x + Γo) = −Γ(x − x) + Γ(x + x) − Γ2 o, so that: ˙ ˆ ˆ ˙ ˙ V = −V + Γc − Γ2 o, (4) where c = x + x is the neural input. This corresponds exactly to the dynamics of a leaky integrate˙ and-fire neuron with an inhibitory autapse1 of strength Γ2 , and a feedforward connection strength Γ. The dynamics and connectivity guarantee that a neuron spikes at just the right times to optimise the loss function (Fig. 1B). In addition, it is especially robust to noise of different forms, because of its error-correcting nature. If x is constant in time, the voltage will rise up to the threshold T at which point a spike is fired, adding a delta function to the spike train o at time t, thereby producing a read-out x that is closer to x and causing an instantaneous drop in the voltage through the autapse, ˆ by an amount Γ2 = 2T , effectively resetting the voltage to V = −T . We now have a target for learning—we know the connection strength that a neuron must have at the end of learning if it is to represent information optimally, for a linear read-out. We can use this target to derive synaptic dynamics that can learn an optimal representation from experience. Specifically, we consider an integrate-and-fire neuron with some arbitrary autapse strength ω. The dynamics of this neuron are given by ˙ V = −V + Γc − ωo. (5) This neuron will not produce the correct spike train for representing x through a linear read-out (Eqn. (1)) unless ω = Γ2 . Our goal is to derive a dynamical equation for the synapse ω so that the spike train becomes optimal. We do this by quantifying the loss that we are incurring by using the suboptimal strength, and then deriving a learning rule that minimises this loss with respect to ω. The loss function underlying the spiking dynamics determined by Eqn. (5) can be found by reversing the previous membrane potential analysis. First, we integrate the differential equation for V , assuming that ω changes on time scales much slower than the membrane potential. We obtain the following (formal) solution: V = Γx − ω¯, o (6) ˙ where o is determined by o = −¯ + o. The solution to this latter equation is o = h ∗ o, a convolution ¯ ¯ o ¯ of the spike train with the exponential kernel h(τ ) = θ(τ ) exp(−τ ). As such, it is analogous to the instantaneous firing rate of the neuron. Now, using Eqn. (6), and rewriting the read-out as x = Γ¯, we obtain the loss incurred by the ˆ o sub-optimal neuron, L = (x − x)2 = ˆ 1 V 2 + 2(ω − Γ2 )¯ + (ω − Γ2 )2 o2 . o ¯ Γ2 (7) We observe that the last two terms of Eqn. (7) will vanish whenever ω = Γ2 , i.e., when the optimal reset has been found. We can therefore simplify the problem by defining an alternative loss function, 1 2 V , (8) 2 which has the same minimum as the original loss (V = 0 or x = x, compare Eqn. (2)), but yields a ˆ simpler learning algorithm. We can now calculate how changes to ω affect LV : LV = ∂LV ∂V ∂o ¯ =V = −V o − V ω ¯ . (9) ∂ω ∂ω ∂ω We can ignore the last term in this equation (as we will show below). Finally, using simple gradient descent, we obtain a simple Hebbian-like synaptic plasticity rule: τω = − ˙ ∂LV = V o, ¯ ∂ω (10) where τ is the learning time constant. 1 This contribution of the autapse can also be interpreted as the reset of an integrate-and-fire neuron. Later, when we generalise to networks of neurons, we shall employ this interpretation. 3 This synaptic learning rule is capable of learning the synaptic weight ω that minimises the difference between x and x (Fig. 1B). During learning, the synaptic weight changes in proportion to the postˆ synaptic voltage V and the pre-synaptic firing rate o (Fig. 1C). As such, this is a Hebbian learning ¯ rule. Of course, in this single neuron case, the pre-synaptic neuron and post-synaptic neuron are the same neuron. The synaptic weight gradually approaches its optimal value Γ2 . However, it never completely stabilises, because learning never stops as long as neurons are spiking. Instead, the synapse oscillates closely about the optimal value (Fig. 1D). This is also a “greedy” learning rule, similar to the spiking rule, in that it seeks to minimise the error at each instant in time, without regard for the future impact of those changes. To demonstrate that the second term in Eqn. (5) can be neglected we note that the equations for V , o, and ω define a system ¯ of coupled differential equations that can be solved analytically by integrating between spikes. This results in a simple recurrence relation for changes in ω from the ith to the (i + 1)th spike, ωi+1 = ωi + ωi (ωi − 2T ) . τ (T − Γc − ωi ) (11) This iterative equation has a single stable fixed point at ω = 2T = Γ2 , proving that the neuron’s autaptic weight or reset will approach the optimal solution. 2 Learning in a homogeneous network We now generalise our learning rule derivation to a network of N identical, homogeneously connected neurons. This generalisation is reasonably straightforward because many characteristics of the single neuron case are shared by a network of identical neurons. We will return to the more general case of heterogeneously connected neurons in the next section. We begin by deriving optimal spiking dynamics, as in the single neuron case. This provides a target for learning, which we can then use to derive synaptic dynamics. As before, we want our network to produce spikes that optimally represent a variable x for a linear read-out. We assume that the read-out x is provided by summing and filtering the spike trains of all the neurons in the network: ˆ ˙ x = −ˆ + Γo, ˆ x (12) 2 where the row vector Γ = (Γ, . . . , Γ) contains the read-out weights of the neurons and the column vector o = (o1 , . . . , oN ) their spike trains. Here, we have used identical read-out weights for each neuron, because this indirectly leads to homogeneous connectivity, as we will demonstrate. Next, we assume that a neuron only spikes if that spike reduces a loss-function. This spiking rule is similar to the single neuron spiking rule except that this time there is some ambiguity about which neuron should spike to represent a signal. Indeed, there are many different spike patterns that provide exactly the same estimate x. For example, one neuron could fire regularly at a high rate (exactly like ˆ our previous single neuron example) while all others are silent. To avoid this firing rate ambiguity, we use a modified loss function, that selects amongst all equivalent solutions, those with the smallest neural firing rates. We do this by adding a ‘metabolic cost’ term to our loss function, so that high firing rates are penalised: ¯ L = (x − x)2 + µ o 2 , ˆ (13) where µ is a small positive constant that controls the cost-accuracy trade-off, akin to a regularisation parameter. Each neuron in the optimal network will seek to reduce this loss function by firing a spike. Specifically, the ith neuron will spike whenever L(no spike in i) > L(spike in i). This leads to the following spiking rule for the ith neuron: Vi > Ti (14) where Vi ≡ Γ(x − x) − µoi and Ti ≡ Γ2 /2 + µ/2. We can naturally interpret Vi as the membrane ˆ potential of the ith neuron and Ti as the spiking threshold of that neuron. As before, we can now derive membrane potential dynamics: ˙ V = −V + ΓT c − (ΓT Γ + µI)o, 2 (15) The read-out weights must scale as Γ ∼ 1/N so that firing rates are not unrealistically small in large networks. We can see this by calculating the average firing rate N oi /N ≈ x/(ΓN ) ∼ O(N/N ) ∼ O(1). i=1 ¯ 4 where I is the identity matrix and ΓT Γ + µI is the network connectivity. We can interpret the selfconnection terms {Γ2 +µ} as voltage resets that decrease the voltage of any neuron that spikes. This optimal network is equivalent to a network of identical integrate-and-fire neurons with homogeneous inhibitory connectivity. The network has some interesting dynamical properties. The voltages of all the neurons are largely synchronous, all increasing to the spiking threshold at about the same time3 (Fig. 1F). Nonetheless, neural spiking is asynchronous. The first neuron to spike will reset itself by Γ2 + µ, and it will inhibit all the other neurons in the network by Γ2 . This mechanism prevents neurons from spik- x 3 The first neuron to spike will be random if there is some membrane potential noise. V (A) (B) x x ˆ x 10 1 0.1 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 1 D 0.5 V V 0 ˆ x V ˆ x (C) 1 0 1 2 0 0.625 25 25.625 (D) start of learning 1 V 50 200.625 400 400.625 1 2.4 O 1.78 ω 1.77 25 neuron$ 0 1 2 !me$ 3 4 25 1 5 V 400.625 !me$ (F) 25 1 2.35 1.05 1.049 400 25.625 !me$ (E) neuron$ 100.625 200 end of learning 1.4 1.35 ω 100 !me$ 1 V 1 O 50.625 0 1 2 !me$ 3 4 5 V !me$ !me$ Figure 1: Learning in a single neuron and a homogeneous network. (A) A single neuron represents an input signal x by producing an output x. (B) During learning, the single neuron output x (solid red ˆ ˆ line, top panel) converges towards the input x (blue). Similarly, for a homogeneous network the output x (dashed red line, top panel) converges towards x. Connectivity also converges towards optimal ˆ connectivity in both the single neuron case (solid black line, middle panel) and the homogeneous net2 2 work case (dashed black line, middle panel), as quantified by D = maxi,j ( Ωij − Ωopt / Ωopt ) ij ij at each point in time. Consequently, the membrane potential reset (bottom panel) converges towards the optimal reset (green line, bottom panel). Spikes are indicated by blue vertical marks, and are produced when the membrane potential reaches threshold (bottom panel). Here, we have rescaled time, as indicated, for clarity. (C) Our learning rule dictates that the autapse ω in our single neuron (bottom panel) changes in proportion to the membrane potential (top panel) and the firing rate (middle panel). (D) At the end of learning, the reset ω fluctuates weakly about the optimal value. (E) For a homogeneous network, neurons spike regularly at the start of learning, as shown in this raster plot. Membrane potentials of different neurons are weakly correlated. (F) At the end of learning, spiking is very irregular and membrane potentials become more synchronous. 5 ing synchronously. The population as a whole acts similarly to the single neuron in our previous example. Each neuron fires regularly, even if a different neuron fires in every integration cycle. The design of this optimal network requires the tuning of N (N − 1) synaptic parameters. How can an arbitrary network of integrate-and-fire neurons learn this optimum? As before, we address this question by using the optimal network as a target for learning. We start with an arbitrarily connected network of integrate-and-fire neurons: ˙ V = −V + ΓT c − Ωo, (16) where Ω is a matrix of connectivity weights, which includes the resets of the individual neurons. Assuming that learning occurs on a slow time scale, we can rewrite this equation as V = ΓT x − Ω¯ . o (17) Now, repeating the arguments from the single neuron derivation, we modify the loss function to obtain an online learning rule. Specifically, we set LV = V 2 /2, and calculate the gradient: ∂LV = ∂Ωij Vk k ∂Vk =− ∂Ωij Vk δki oj − ¯ k Vk Ωkl kl ∂ ol ¯ . ∂Ωij (18) We can simplify this equation considerably by observing that the contribution of the second summation is largely averaged out under a wide variety of realistic conditions4 . Therefore, it can be neglected, and we obtain the following local learning rule: ∂LV ˙ = V i oj . ¯ τ Ωij = − ∂Ωij (19) This is a Hebbian plasticity rule, whereby connectivity changes in proportion to the presynaptic firing rate oj and post-synaptic membrane potential Vi . We assume that the neural thresholds are set ¯ to a constant T and that the neural resets are set to their optimal values −T . In the previous section we demonstrated that these resets can be obtained by a Hebbian plasticity rule (Eqn. (10)). This learning rule minimises the difference between the read-out and the signal, by approaching the optimal recurrent connection strengths for the network (Fig. 1B). As in the single neuron case, learning does not stop, so the connection strengths fluctuate close to their optimal value. During learning, network activity becomes progressively more asynchronous as it progresses towards optimal connectivity (Fig. 1E, F). 3 Learning in the general case Now that we have developed the fundamental concepts underlying our learning rule, we can derive a learning rule for the more general case of a network of N arbitrarily connected leaky integrateand-fire neurons. Our goal is to understand how such networks can learn to optimally represent a ˙ J-dimensional signal x = (x1 , . . . , xJ ), using the read-out equation x = −x + Γo. We consider a network with the following membrane potential dynamics: ˙ V = −V + ΓT c − Ωo, (20) where c is a J-dimensional input. We assume that this input is related to the signal according to ˙ c = x + x. This assumption can be relaxed by treating the input as the control for an arbitrary linear dynamical system, in which case the signal represented by the network is the output of such a computation [11]. However, this further generalisation is beyond the scope of this work. As before, we need to identify the optimal recurrent connectivity so that we have a target for learning. Most generally, the optimal recurrent connectivity is Ωopt ≡ ΓT Γ + µI. The output kernels of the individual neurons, Γi , are given by the rows of Γ, and their spiking thresholds by Ti ≡ Γi 2 /2 + 4 From the definition of the membrane potential we can see that Vk ∼ O(1/N ) because Γ ∼ 1/N . Therefore, the size of the first term in Eqn. (18) is k Vk δki oj = Vi oj ∼ O(1/N ). Therefore, the second term can ¯ ¯ be ignored if kl Vk Ωkl ∂ ol /∂Ωij ¯ O(1/N ). This happens if Ωkl O(1/N 2 ) as at the start of learning. It also happens towards the end of learning if the terms {Ωkl ∂ ol /∂Ωij } are weakly correlated with zero mean, ¯ or if the membrane potentials {Vi } are weakly correlated with zero mean. 6 µ/2. With these connections and thresholds, we find that a network of integrate-and-fire neurons ˆ ¯ will produce spike trains in such a way that the loss function L = x − x 2 + µ o 2 is minimised, ˆ where the read-out is given by x = Γ¯ . We can show this by prescribing a greedy5 spike rule: o a spike is fired by neuron i whenever L(no spike in i) > L(spike in i) [11]. The resulting spike generation rule is Vi > Ti , (21) ˆ where Vi ≡ ΓT (x − x) − µ¯i is interpreted as the membrane potential. o i 5 Despite being greedy, this spiking rule can generate firing rates that are practically identical to the optimal solutions: we checked this numerically in a large ensemble of networks with randomly chosen kernels. (A) x1 … x … 1 1 (B) xJJ x 10 L 10 T T 10 4 6 8 1 Viii V D ˆˆ ˆˆ x11 xJJ x x F 0.5 0 0.4 … … 0.2 0 0 2000 4000 !me   (C) x V V 1 x 10 x 3 ˆ x 8 0 x 10 1 2 3 !me   4 5 4 0 1 4 0 1 8 V (F) Ρ(Δt)   E-­‐I  input   0.4 ˆ x 0 3 0 1 x 10 1.3 0.95 x 10 ˆ x 4 V (E) 1 x 0 end of learning 50 neuron neuron 50 !me   2 0 ˆ x 0 0.5 ISI  Δt     1 2 !me   4 5 4 1.5 1.32 3 2 0.1 Ρ(Δt)   x E-­‐I  input   (D) start of learning 0 2 !me   0 0 0.5 ISI  Δt   1 Figure 2: Learning in a heterogeneous network. (A) A network of neurons represents an input ˆ signal x by producing an output x. (B) During learning, the loss L decreases (top panel). The difference between the connection strengths and the optimal strengths also decreases (middle panel), as 2 2 quantified by the mean difference (solid line), given by D = Ω − Ωopt / Ωopt and the maxi2 2 mum difference (dashed line), given by maxi,j ( Ωij − Ωopt / Ωopt ). The mean population firing ij ij rate (solid line, bottom panel) also converges towards the optimal firing rate (dashed line, bottom panel). (C, E) Before learning, a raster plot of population spiking shows that neurons produce bursts ˆ of spikes (upper panel). The network output x (red line, middle panel) fails to represent x (blue line, middle panel). The excitatory input (red, bottom left panel) and inhibitory input (green, bottom left panel) to a randomly selected neuron is not tightly balanced. Furthermore, a histogram of interspike intervals shows that spiking activity is not Poisson, as indicated by the red line that represents a best-fit exponential distribution. (D, F) At the end of learning, spiking activity is irregular and ˆ Poisson-like, excitatory and inhibitory input is tightly balanced and x matches x. 7 How can we learn this optimal connection matrix? As before, we can derive a learning rule by minimising the cost function LV = V 2 /2. This leads to a Hebbian learning rule with the same form as before: ˙ τ Ωij = Vi oj . ¯ (22) Again, we assume that the neural resets are given by −Ti . Furthermore, in order for this learning rule to work, we must assume that the network input explores all possible directions in the J-dimensional input space (since the kernels Γi can point in any of these directions). The learning performance does not critically depend on how the input variable space is sampled as long as the exploration is extensive. In our simulations, we randomly sample the input c from a Gaussian white noise distribution at every time step for the entire duration of the learning. We find that this learning rule decreases the loss function L, thereby approaching optimal network connectivity and producing optimal firing rates for our linear decoder (Fig. 2B). In this example, we have chosen connectivity that is initially much too weak at the start of learning. Consequently, the initial network behaviour is similar to a collection of unconnected single neurons that ignore each other. Spike trains are not Poisson-like, firing rates are excessively large, excitatory and inhibitory ˆ input is unbalanced and the decoded variable x is highly unreliable (Fig. 2C, E). As a result of learning, the network becomes tightly balanced and the spike trains become asynchronous, irregular and Poisson-like with much lower rates (Fig. 2D, F). However, despite this apparent variability, the population representation is extremely precise, only limited by the the metabolic cost and the discrete nature of a spike. This learnt representation is far more precise than a rate code with independent Poisson spike trains [11]. In particular, shuffling the spike trains in response to identical inputs drastically degrades this precision. 4 Conclusions and Discussion In population coding, large trial-to-trial spike train variability is usually interpreted as noise [2]. We show here that a deterministic network of leaky integrate-and-fire neurons with a simple Hebbian plasticity rule can self-organise into a regime where information is represented far more precisely than in noisy rate codes, while appearing to have noisy Poisson-like spiking dynamics. Our learning rule (Eqn. (22)) has the basic properties of STDP. Specifically, a presynaptic spike occurring immediately before a post-synaptic spike will potentiate a synapse, because membrane potentials are positive immediately before a postsynaptic spike. Furthermore, a presynaptic spike occurring immediately after a post-synaptic spike will depress a synapse, because membrane potentials are always negative immediately after a postsynaptic spike. This is similar in spirit to the STDP rule proposed in [12], but different to classical STDP, which depends on post-synaptic spike times [9]. This learning rule can also be understood as a mechanism for generating a tight balance between excitatory and inhibitory input. We can see this by observing that membrane potentials after learning can be interpreted as representation errors (projected onto the read-out kernels). Therefore, learning acts to minimise the magnitude of membrane potentials. Excitatory and inhibitory input must be balanced if membrane potentials are small, so we can equate balance with optimal information representation. Previous work has shown that the balanced regime produces (quasi-)chaotic network dynamics, thereby accounting for much observed cortical spike train variability [13, 14, 4]. Moreover, the STDP rule has been known to produce a balanced regime [16, 17]. Additionally, recent theoretical studies have suggested that the balanced regime plays an integral role in network computation [15, 13]. In this work, we have connected these mechanisms and functions, to conclude that learning this balance is equivalent to the development of an optimal spike-based population code, and that this learning can be achieved using a simple Hebbian learning rule. Acknowledgements We are grateful for generous funding from the Emmy-Noether grant of the Deutsche Forschungsgemeinschaft (CKM) and the Chaire d’excellence of the Agence National de la Recherche (CKM, DB), as well as a James Mcdonnell Foundation Award (SD) and EU grants BACS FP6-IST-027140, BIND MECT-CT-20095-024831, and ERC FP7-PREDSPIKE (SD). 8 References [1] Tolhurst D, Movshon J, and Dean A (1982) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res 23: 775–785. [2] Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10): 3870–3896. [3] Zohary E, Newsome WT (1994) Correlated neuronal discharge rate and its implication for psychophysical performance. Nature 370: 140–143. [4] Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, & Harris, KD (2010) The asynchronous state in cortical circuits. Science 327, 587–590. [5] Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS (2010) Decorrelated neuronal firing in cortical microcircuits. Science 327: 584–587. [6] Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 11, 535–537. [7] Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423, 288–293. [8] Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CCH (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65: 422–435. [9] Caporale N, Dan Y (2008) Spike-timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31: 25–46. [10] Boerlin M, Deneve S (2011) Spike-based population coding and working memory. PLoS Comput Biol 7, e1001080. [11] Boerlin M, Machens CK, Deneve S (2012) Predictive coding of dynamic variables in balanced spiking networks. under review. [12] Clopath C, B¨ sing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of u voltage-based STDP with homeostasis. Nat Neurosci 13(3): 344–352. [13] van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in a model of cortical circuits. Neural Comput 10(6): 1321–1371. [14] Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory neurons. J Comput Neurosci 8, 183–208. [15] Vogels TP, Rajan K, Abbott LF (2005) Neural network dynamics. Annu Rev Neurosci 28: 357–376. [16] Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334(6062):1569– 73. [17] Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timingdependent synaptic plasticity. Nat Neurosci 3(9): 919–926. 9

6 0.36024976 22 nips-2012-A latent factor model for highly multi-relational data

7 0.35153767 77 nips-2012-Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models

8 0.34728536 65 nips-2012-Cardinality Restricted Boltzmann Machines

9 0.34330723 277 nips-2012-Probabilistic Low-Rank Subspace Clustering

10 0.34177288 167 nips-2012-Kernel Hyperalignment

11 0.34149191 184 nips-2012-Learning Probability Measures with respect to Optimal Transport Metrics

12 0.3400192 229 nips-2012-Multimodal Learning with Deep Boltzmann Machines

13 0.33970538 356 nips-2012-Unsupervised Structure Discovery for Semantic Analysis of Audio

14 0.33800572 197 nips-2012-Learning with Recursive Perceptual Representations

15 0.33785498 90 nips-2012-Deep Learning of Invariant Features via Simulated Fixations in Video

16 0.3356396 349 nips-2012-Training sparse natural image models with a fast Gibbs sampler of an extended state space

17 0.33425298 333 nips-2012-Synchronization can Control Regularization in Neural Systems via Correlated Noise Processes

18 0.33407116 113 nips-2012-Efficient and direct estimation of a neural subunit model for sensory coding

19 0.33371258 79 nips-2012-Compressive neural representation of sparse, high-dimensional probabilities

20 0.33359048 14 nips-2012-A P300 BCI for the Masses: Prior Information Enables Instant Unsupervised Spelling