nips nips2011 nips2011-302 knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Danilo J. Rezende, Daan Wierstra, Wulfram Gerstner
Abstract: We derive a plausible learning rule for feedforward, feedback and lateral connections in a recurrent network of spiking neurons. Operating in the context of a generative model for distributions of spike sequences, the learning mechanism is derived from variational inference principles. The synaptic plasticity rules found are interesting in that they are strongly reminiscent of experimental Spike Time Dependent Plasticity, and in that they differ for excitatory and inhibitory neurons. A simulation confirms the method’s applicability to learning both stationary and temporal spike patterns. 1
Reference: text
sentIndex sentText sentNum sentScore
1 ch Abstract We derive a plausible learning rule for feedforward, feedback and lateral connections in a recurrent network of spiking neurons. [sent-7, score-0.451]
2 Operating in the context of a generative model for distributions of spike sequences, the learning mechanism is derived from variational inference principles. [sent-8, score-0.573]
3 The synaptic plasticity rules found are interesting in that they are strongly reminiscent of experimental Spike Time Dependent Plasticity, and in that they differ for excitatory and inhibitory neurons. [sent-9, score-0.585]
4 A simulation confirms the method’s applicability to learning both stationary and temporal spike patterns. [sent-10, score-0.517]
5 1 Introduction This study considers whether recurrent networks of spiking neurons can be seen as a generative model not only of stationary patterns but also of temporal sequences. [sent-11, score-0.809]
6 More precisely, we derive a model that learns to adapt its spontaneously spike sequences to conform as closely as possible to the empirical distribution of actual spike sequences caused by inputs impinging upon the sensory layer of the network. [sent-12, score-0.763]
7 A generative model is a model of the joint distribution of percepts and hidden causes in the world. [sent-13, score-0.106]
8 Since the world has complex temporal relationships, we need a model that is able to both recognize and predict temporal patterns. [sent-14, score-0.112]
9 However, it remains an open question whether optimization in abstract Bayesian models can be translated into plausible learning rules for synapses in networks of spiking neurons. [sent-20, score-0.327]
10 Our learning rule is derived from a variational optimization process. [sent-23, score-0.121]
11 Typically, optimization in recurrent Bayesian networks involves both forward and backward propagation steps. [sent-24, score-0.252]
12 We propose a plasticity rule that approximates backward steps by the introduction of delayed updates in the synaptic weights and dynamics. [sent-25, score-0.509]
13 The theory is supported by simulations in which we demonstrate that the learning mechanism is able to capture the hidden causes behind the observed spiking patterns. [sent-26, score-0.405]
14 We use the Spike Response Model (SRM) [9, 10], in which spikes are generated stochastically depending on the neuronal membrane potential. [sent-27, score-0.287]
15 It is closely related to the integrate-and-fire model, and has been successfully used to explain neuronal spike trains [11, 12]. [sent-29, score-0.552]
16 The diagonal elements of the synaptic matrix are kept fixed to a negative value Wi,i = ⌘0 with ⌘0 = 1. [sent-37, score-0.139]
17 0, which implements a reset of the membrane potential after each spike and is a simple way to take into account neuronal refractoriness [9, 13]. [sent-38, score-0.639]
18 The spike generation process is stochastic with time-dependent firing intensity ⇢i (t) which depends on the membrane potential ui (t): ⇢i (t) = ⇢0 exp (ui (t)) . [sent-40, score-0.866]
19 (2) An exponential dependence of the firing intensity upon the membrane potential agrees with experimental results [12]. [sent-41, score-0.283]
20 The set of equations (2) and (1) captures the simplified dynamics of a spiking neuron with stochastic spike timing. [sent-42, score-0.709]
21 The basic learning mechanism is introduced and derived, followed by a simulation illustrating that our proposed learning rule is able to learn spatio-temporal features in the input spike trains and reproduce them in its spontaneous activity. [sent-44, score-0.621]
22 2 Principled Framework We consider a network consisting of two distinct sets of neurons, observed neurons ( also called visible neurons or V) and latent neurons ( also called hidden or H), as illustrated in Figure 1. [sent-45, score-1.408]
23 The activities of the observed neurons represent the quantity of interest to be modelled, while the latent neurons fulfill a mediating role representing the hidden causes of the observed spike train. [sent-46, score-1.39]
24 Learning in the context of this neuronal network consists of changing the synaptic strengths between neurons. [sent-47, score-0.355]
25 We postulate that the underlying principle behind learning relies on learning distributions of spike trains evoked by either sensory inputs or more complicated sequences of cognitive events. [sent-48, score-0.602]
26 A principled measure of distance between two distributions p and pempirical is the Kullback-Leibler divergence [14] defined as Z pempirical (X) KL(pempirical ||p) = DXpempirical (X) log . [sent-52, score-0.188]
27 (3) p(X) 2 where individual X represent entire spike trains. [sent-53, score-0.361]
28 DX is a measure of integration over spike trains. [sent-54, score-0.361]
29 Our learning mechanism tries to minimize the KL divergence between the distribution defined by our network p(X) and the observed spike timings distribution pempirical that is evoked by an unknown external process. [sent-55, score-0.794]
30 Note that minimizing the KL divergence entails maximizing the likelihood that the observed spike trains XV could have been generated by the model. [sent-56, score-0.53]
31 (5) The gradient of (5) is given by an expectation conditioned on the observed neurons’ history: Z r log p(XV ) = r log DXH p(X) = hr log p(X)ip(XH |XV ) R where hf (X)ip = DXf (x)p(x). [sent-61, score-0.097]
32 This is difficult to evaluate since it conditions an entire latent spike train on an entire observed spike train. [sent-62, score-0.953]
33 In other words, the posterior distribution of spiketimings of the latent neurons depends on both past and future of the observed neurons’ spike train. [sent-63, score-0.994]
34 Note that i (t) is a function of both the network state and synaptic efficacies. [sent-67, score-0.277]
35 It is given by 0 1 X 1@ fi (t) = ui (t) + bi + Wi,j ⇢j (t)A (9) ⌧ j 1 The variance of u due to the external input can be obtained by noting that ui (t+dt) = ui (t) exp( dt/⌧ )+ ˙ R t+dt P ds exp((s t dt)/⌧ )(bi + j Wi,j Xj (t))/⌧ . [sent-69, score-0.93]
36 Thus, in the weak coupling regime t X 2 Z t+dt dt X 2 V ar(u(t + dt)|u(t)) = Wi,j ds exp(2(s t dt)/⌧ )(⇢j (t))/⌧ 2 = 2 Wi,j ⇢j (t) ⌧ j t j 3 The weak coupling approximation amounts to replacing spikes of the latent neurons by intensities plus Gaussian noise. [sent-70, score-0.994]
37 Note that in this approximated model, the latent variables are non longer the latent spike trains, but the membrane potentials. [sent-71, score-0.875]
38 However, we emphasize that in the end the intensities can be substituted by spikes as we will see below. [sent-72, score-0.088]
39 2 Variational Approximation of the Posterior Membrane Potential p(u|XV ) The variational approach in statistics is a method to approximate some complex distribution p by a family of simpler distributions q . [sent-74, score-0.121]
40 Variational methods have been applied to spiking neural networks in many different contexts, such as in connectivity or external source inference [20, 21]. [sent-75, score-0.292]
41 In the following, we try to interpret the neural activity and plasticity together as an approximate form of variational learning. [sent-76, score-0.331]
42 We approximate the posterior p(u|XV ) by the Gaussian process XZ i (t) 2 log q(u) = dt (ui (t) hi (t)) + c ˙ 2 i (10) where the hi (t) are variational parameters representing the drift of the ith membrane potential at time t in the posterior process and c is a normalization constant. [sent-77, score-1.068]
43 Note that the parameters i (t) of the posterior process are taken to be the same as the network dynamics noise in (6). [sent-78, score-0.261]
44 We write the mean hui (t)i = ui (t) as ¯ Z t ui (t) = ui (0) + ¯ ¯ dshi (s) (12) 0 u (t) ¯ where the hi plays the role of the ’drift’ or the derivative of ui . [sent-83, score-0.982]
45 (b) From top to bottom: the observed spike train, the firing intensity for the three latent neurons and the posterior inverse variance. [sent-86, score-1.077]
46 The green neuron has a direct connection to the observed neuron, and as such has a much stronger modulation of its firing rate than the other two latent neurons. [sent-87, score-0.369]
47 (c) A network with two pools of 20 neurons, the observed and the latent pools. [sent-88, score-0.436]
48 From top to bottom: observed spike trains, spike trains in the latent pool and mean firing intensities of the latent neurons over different realizations of the network. [sent-90, score-1.617]
49 The rate of the latent pool increases just before the spikes of the observed neurons. [sent-91, score-0.276]
50 Note that the spiking implementation of the model has the same rates as the mathematical rate model. [sent-92, score-0.156]
51 First, in the absence of observations, the best approximating hi (t) is simply given by fi (t), that is the posterior and the prior processes become equal. [sent-94, score-0.42]
52 Second, the first, third and fourth terms in (14) are backward terms, that is, they correspond to corrections in the “belief” about the past states generated by new inputs. [sent-95, score-0.121]
53 This implies that in order to estimate the drift hi (t) of the posterior membrane potential of neuron i at time t, we need to know the observations X(t0 ) at time t0 > t. [sent-96, score-0.663]
54 Third, the fourth term in equation (14) is a contribution to the gradient that comes from the fact that the inverse variance i (t) defined in equation (7) is also a function of the network state. [sent-97, score-0.206]
55 This is an important feature of the model, since it implies that the amount of noise in the dynamics is also being adapted to better explain the observed spike trains. [sent-98, score-0.471]
56 Note that once the posterior drift hi (t) is known, the W can be done purely locally. [sent-101, score-0.325]
57 However, on-line approximations to the backward terms provide a reasonable approximation by taking small backwards filters of up to 50ms. [sent-103, score-0.152]
58 , in equation (14) R R t0 + T we replace integral dt by t0 dt where T is the size of the “backward window” used to approximate the gradient. [sent-107, score-0.376]
59 The simulation shown in Figure 2 provides a conceptual illustration of how the posterior firing intensity ⇢l (t) propagates information backward from observed into latent neurons, a process that is essential for learning temporal patterns. [sent-109, score-0.612]
60 Note that ⇢l is the firing rate of the presynaptic neuron l and as such it is information that is not directly available at the site of the synapse which has only access to spike arrivals (but not the underlying firing rate). [sent-110, score-0.546]
61 However, spike arrivals do provide a reasonable estimate of the rate. [sent-111, score-0.408]
62 Indeed Figure 2c and d show that a simulation of a network of pools of spiking neurons where updates are only based on spike times (rather than rates) gives qualitatively the same information as the rate formula derived above. [sent-112, score-1.107]
63 In equations (20,15) we could therefore replace the pre-synaptic firing intensity ⇢j (t) by temporally filtered spike trains which constitute a good approximation to ⇢j (t). [sent-113, score-0.557]
64 Assuming a spike of the observed neuron at t = 0, we have evaluated h(t) and f (t) and plot the weight change k (t0 )(hk (t0 ) fk (t0 )) that would occur if the latent neuron fires at t0 cf. [sent-117, score-0.917]
65 We show the resulting Spike-time Dependent Plasticity for a simple network of two neurons in Figure 3. [sent-119, score-0.471]
66 In particular, the shape of the STDP curve depends on the type of neuron and is different for connections from excitatory to excitatory than from excitatory to inhibitory or inhibitory to inhibitory neurons (Figure 3). [sent-121, score-0.951]
67 3 Simulations In order to demonstrate the method’s ability to capture both stationary and temporal patterns, we performed simulations on two tasks. [sent-122, score-0.16]
68 The first one involves the formation of a temporal chain, while the second one involves a stationary pattern generator. [sent-123, score-0.104]
69 Both simulations were done using a discretetime (Euler method) version of the equations (14, 17, 18 and 19) with dt = 1ms. [sent-124, score-0.227]
70 The backward window size was taken to be T = 50ms, and a learning rate of 0. [sent-125, score-0.174]
71 6 Figure 3: Spike-time Dependent Plasticity in a simple network composed of two neurons. [sent-127, score-0.138]
72 Weight change Wi,j (t) (vertical axis) as a function of spike timing of the neuron at the top (the latent neuron), given that the bottom (observed) neuron produces a spike at t = 0 (horizontal axis). [sent-128, score-1.173]
73 Shown are all permutations of excitatory (e) and inhibitory (i) neuron types, with the left and right learning windows next to each network corresponding to the downward and upward synapses, respectively. [sent-129, score-0.436]
74 The first task consisted of learning a periodic chain, in which three pools of observed neurons were successively activated as shown in Figure 4a. [sent-130, score-0.487]
75 After learning, the spontaneously patterns in the observable neurons developed a clear resemblance to the patterns provided during training, although a slightly larger amount of noise was present, as shown in Figure 4b. [sent-132, score-0.518]
76 If the noise level of the model network is reduced, a noise-free “cleared-up concept” of the observed patterns is generated (Figure 4d) which clearly demonstrates that the recurrent network has indeed learned the task. [sent-133, score-0.486]
77 The way learning has configured the network in the sequence task can be understood if we study the connectivity pattern of the latent neurons. [sent-134, score-0.369]
78 The latent neuron are active during the whole sequence (Figure 4c). [sent-135, score-0.313]
79 We have reordered the labels of the neurons so that the structure of the connectivity matrix becomes as visble. [sent-136, score-0.389]
80 There are subsets of latent neurons that are particularly active during each of the three ’subpatterns’ in the sequence task, and other latent neurons that become active while the observable units are quiescent (Figure 4i). [sent-137, score-1.05]
81 The lateral connectivity between the latent neurons has an asymmetry in the forward direction of the chain. [sent-138, score-0.593]
82 Successfull learning of this task requires both the learning of the stationary patterns and the stochastic transitions between them. [sent-140, score-0.103]
83 However, these models have either difficulty dealing with recurrent latent dynamics, or they do not account for non-factorial latent representations. [sent-145, score-0.449]
84 In this work, we have proposed a plausible derivation for synaptic plasticity in a network consisting of spiking neurons, which can both capture time dependencies in observed spike trains and process combinatorial features. [sent-146, score-1.202]
85 Using a generative model comprising both latent and observed neurons, the mechanism utilizes implicit (that is, short-term delayed) backward iterations that arise naturally from variational inference. [sent-147, score-0.564]
86 A plasticity mechanism emerges that closely resembles that of the familiar STDP mechanism found in experimental studies. [sent-148, score-0.332]
87 In our simulations we show that the plasticity rules are capable of learning both a temporal and a stationary pattern generator. [sent-149, score-0.418]
88 Sequence task a–d, i: a 20ms-periodic sequence with a network of 30 observed neurons and 15 latent neurons having 50% of inhibitory neurons (chosen randomly). [sent-153, score-1.458]
89 The connections between the observed neurons have been set to zero in order to illustrate the use of latent-to-latent recurrent connections. [sent-154, score-0.488]
90 (b) Simulations from the network with the first 20ms clamped to the data. [sent-160, score-0.17]
91 (d) Sample simulation of the network with the same parameters but with less noise, in order to better show the underlying dynamics. [sent-162, score-0.19]
92 (e) A sample input pattern (f) One realization from the network with first the 20ms clamped to the data. [sent-166, score-0.17]
93 (h) Sample simulation of the network with the same parameters but with less noise. [sent-168, score-0.19]
94 (i) The learned synaptic matrix for the first task; the latent neurons have been re-ordered in order show the role of the latent-to-latent synapses in the dynamics as well as the role of the latent-to-observed synapses which represent the pattern features. [sent-170, score-0.825]
95 Predicting spike timing of u neocortical pyramidal neurons by simple threshold models. [sent-221, score-0.694]
96 Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. [sent-228, score-0.246]
97 Mean-field approximations for coupled populations of generalized linear model spiking neurons with Markov refractoriness. [sent-237, score-0.489]
98 Bayesian inference of functional connectivity and network structure from spikes. [sent-261, score-0.194]
99 Graded bidirectional synaptic plasticity is composed of switch-like unitary events. [sent-270, score-0.349]
100 STDP enables spiking neurons to detect hidden causes of their inputs. [sent-279, score-0.565]
wordName wordTfidf (topN-words)
[('spike', 0.361), ('neurons', 0.333), ('plasticity', 0.21), ('ui', 0.192), ('hk', 0.186), ('hi', 0.182), ('xv', 0.177), ('latent', 0.175), ('dt', 0.171), ('fi', 0.169), ('membrane', 0.164), ('spiking', 0.156), ('synaptic', 0.139), ('neuron', 0.138), ('network', 0.138), ('backward', 0.121), ('variational', 0.121), ('ring', 0.116), ('stdp', 0.114), ('trains', 0.113), ('lausanne', 0.107), ('recurrent', 0.099), ('pempirical', 0.094), ('inhibitory', 0.09), ('intensity', 0.083), ('xh', 0.081), ('kl', 0.08), ('bi', 0.08), ('neuronal', 0.078), ('drift', 0.074), ('excitatory', 0.07), ('posterior', 0.069), ('pools', 0.067), ('synapses', 0.062), ('konrad', 0.062), ('mechanism', 0.061), ('ds', 0.057), ('epfl', 0.057), ('rale', 0.057), ('bayesian', 0.057), ('cognitive', 0.056), ('observed', 0.056), ('temporal', 0.056), ('connectivity', 0.056), ('simulations', 0.056), ('patterns', 0.055), ('dynamics', 0.054), ('january', 0.054), ('window', 0.053), ('simulation', 0.052), ('polytechnique', 0.051), ('fk', 0.049), ('external', 0.048), ('stationary', 0.048), ('rules', 0.048), ('arrivals', 0.047), ('dxh', 0.047), ('rding', 0.047), ('taro', 0.047), ('switzerland', 0.046), ('spikes', 0.045), ('intensities', 0.043), ('hf', 0.041), ('spontaneously', 0.041), ('wulfram', 0.041), ('mind', 0.041), ('coupling', 0.04), ('hidden', 0.04), ('ecole', 0.04), ('delayed', 0.039), ('srm', 0.038), ('toyoizumi', 0.038), ('potential', 0.036), ('causes', 0.036), ('evoked', 0.036), ('gerstner', 0.036), ('liam', 0.036), ('sensorimotor', 0.036), ('postulate', 0.036), ('dependent', 0.035), ('equation', 0.034), ('spontaneous', 0.034), ('xz', 0.034), ('tf', 0.034), ('observable', 0.034), ('daniel', 0.034), ('sciences', 0.032), ('networks', 0.032), ('hui', 0.032), ('clamped', 0.032), ('amounts', 0.032), ('brain', 0.031), ('backwards', 0.031), ('periodic', 0.031), ('generative', 0.03), ('exp', 0.03), ('weak', 0.029), ('lateral', 0.029), ('plausible', 0.029), ('reminiscent', 0.028)]
simIndex simValue paperId paperTitle
same-paper 1 1.0000002 302 nips-2011-Variational Learning for Recurrent Spiking Networks
Author: Danilo J. Rezende, Daan Wierstra, Wulfram Gerstner
Abstract: We derive a plausible learning rule for feedforward, feedback and lateral connections in a recurrent network of spiking neurons. Operating in the context of a generative model for distributions of spike sequences, the learning mechanism is derived from variational inference principles. The synaptic plasticity rules found are interesting in that they are strongly reminiscent of experimental Spike Time Dependent Plasticity, and in that they differ for excitatory and inhibitory neurons. A simulation confirms the method’s applicability to learning both stationary and temporal spike patterns. 1
2 0.37883991 249 nips-2011-Sequence learning with hidden units in spiking neural networks
Author: Johanni Brea, Walter Senn, Jean-pascal Pfister
Abstract: We consider a statistical framework in which recurrent networks of spiking neurons learn to generate spatio-temporal spike patterns. Given biologically realistic stochastic neuronal dynamics we derive a tractable learning rule for the synaptic weights towards hidden and visible neurons that leads to optimal recall of the training sequences. We show that learning synaptic weights towards hidden neurons significantly improves the storing capacity of the network. Furthermore, we derive an approximate online learning rule and show that our learning rule is consistent with Spike-Timing Dependent Plasticity in that if a presynaptic spike shortly precedes a postynaptic spike, potentiation is induced and otherwise depression is elicited.
3 0.322541 133 nips-2011-Inferring spike-timing-dependent plasticity from spike train data
Author: Konrad Koerding, Ian Stevenson
Abstract: Synaptic plasticity underlies learning and is thus central for development, memory, and recovery from injury. However, it is often difficult to detect changes in synaptic strength in vivo, since intracellular recordings are experimentally challenging. Here we present two methods aimed at inferring changes in the coupling between pairs of neurons from extracellularly recorded spike trains. First, using a generalized bilinear model with Poisson output we estimate time-varying coupling assuming that all changes are spike-timing-dependent. This approach allows model-based estimation of STDP modification functions from pairs of spike trains. Then, using recursive point-process adaptive filtering methods we estimate more general variation in coupling strength over time. Using simulations of neurons undergoing spike-timing dependent modification, we show that the true modification function can be recovered. Using multi-electrode data from motor cortex we then illustrate the use of this technique on in vivo data. 1
4 0.30383733 23 nips-2011-Active dendrites: adaptation to spike-based communication
Author: Balazs B. Ujfalussy, Máté Lengyel
Abstract: Computational analyses of dendritic computations often assume stationary inputs to neurons, ignoring the pulsatile nature of spike-based communication between neurons and the moment-to-moment fluctuations caused by such spiking inputs. Conversely, circuit computations with spiking neurons are usually formalized without regard to the rich nonlinear nature of dendritic processing. Here we address the computational challenge faced by neurons that compute and represent analogue quantities but communicate with digital spikes, and show that reliable computation of even purely linear functions of inputs can require the interplay of strongly nonlinear subunits within the postsynaptic dendritic tree. Our theory predicts a matching of dendritic nonlinearities and synaptic weight distributions to the joint statistics of presynaptic inputs. This approach suggests normative roles for some puzzling forms of nonlinear dendritic dynamics and plasticity. 1
5 0.29089019 135 nips-2011-Information Rates and Optimal Decoding in Large Neural Populations
Author: Kamiar R. Rad, Liam Paninski
Abstract: Many fundamental questions in theoretical neuroscience involve optimal decoding and the computation of Shannon information rates in populations of spiking neurons. In this paper, we apply methods from the asymptotic theory of statistical inference to obtain a clearer analytical understanding of these quantities. We find that for large neural populations carrying a finite total amount of information, the full spiking population response is asymptotically as informative as a single observation from a Gaussian process whose mean and covariance can be characterized explicitly in terms of network and single neuron properties. The Gaussian form of this asymptotic sufficient statistic allows us in certain cases to perform optimal Bayesian decoding by simple linear transformations, and to obtain closed-form expressions of the Shannon information carried by the network. One technical advantage of the theory is that it may be applied easily even to non-Poisson point process network models; for example, we find that under some conditions, neural populations with strong history-dependent (non-Poisson) effects carry exactly the same information as do simpler equivalent populations of non-interacting Poisson neurons with matched firing rates. We argue that our findings help to clarify some results from the recent literature on neural decoding and neuroprosthetic design.
6 0.25542811 200 nips-2011-On the Analysis of Multi-Channel Neural Spike Data
7 0.19636621 86 nips-2011-Empirical models of spiking in neural populations
8 0.19321774 99 nips-2011-From Stochastic Nonlinear Integrate-and-Fire to Generalized Linear Models
9 0.18688433 82 nips-2011-Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons
10 0.18590294 37 nips-2011-Analytical Results for the Error in Filtering of Gaussian Processes
11 0.17713372 224 nips-2011-Probabilistic Modeling of Dependencies Among Visual Short-Term Memory Representations
12 0.17652199 24 nips-2011-Active learning of neural response functions with Gaussian processes
13 0.17244551 219 nips-2011-Predicting response time and error rates in visual search
14 0.16884144 13 nips-2011-A blind sparse deconvolution method for neural spike identification
15 0.16780134 2 nips-2011-A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm
16 0.16472113 75 nips-2011-Dynamical segmentation of single trials from population neural data
17 0.1415506 87 nips-2011-Energetically Optimal Action Potentials
18 0.12519042 292 nips-2011-Two is better than one: distinct roles for familiarity and recollection in retrieving palimpsest memories
19 0.12115581 183 nips-2011-Neural Reconstruction with Approximate Message Passing (NeuRAMP)
20 0.11625451 89 nips-2011-Estimating time-varying input signals and ion channel states from a single voltage trace of a neuron
topicId topicWeight
[(0, 0.259), (1, 0.171), (2, 0.52), (3, -0.066), (4, 0.141), (5, 0.007), (6, -0.105), (7, -0.102), (8, -0.074), (9, 0.028), (10, 0.053), (11, 0.051), (12, -0.082), (13, 0.046), (14, -0.062), (15, -0.052), (16, -0.052), (17, 0.028), (18, -0.01), (19, 0.025), (20, 0.035), (21, -0.001), (22, 0.044), (23, 0.031), (24, -0.019), (25, -0.097), (26, 0.063), (27, -0.081), (28, 0.017), (29, 0.074), (30, 0.021), (31, -0.089), (32, -0.025), (33, -0.065), (34, 0.043), (35, -0.016), (36, -0.009), (37, 0.011), (38, 0.048), (39, -0.065), (40, -0.042), (41, 0.08), (42, 0.001), (43, -0.042), (44, -0.031), (45, 0.089), (46, 0.005), (47, 0.024), (48, 0.026), (49, 0.023)]
simIndex simValue paperId paperTitle
same-paper 1 0.97046727 302 nips-2011-Variational Learning for Recurrent Spiking Networks
Author: Danilo J. Rezende, Daan Wierstra, Wulfram Gerstner
Abstract: We derive a plausible learning rule for feedforward, feedback and lateral connections in a recurrent network of spiking neurons. Operating in the context of a generative model for distributions of spike sequences, the learning mechanism is derived from variational inference principles. The synaptic plasticity rules found are interesting in that they are strongly reminiscent of experimental Spike Time Dependent Plasticity, and in that they differ for excitatory and inhibitory neurons. A simulation confirms the method’s applicability to learning both stationary and temporal spike patterns. 1
2 0.90796745 133 nips-2011-Inferring spike-timing-dependent plasticity from spike train data
Author: Konrad Koerding, Ian Stevenson
Abstract: Synaptic plasticity underlies learning and is thus central for development, memory, and recovery from injury. However, it is often difficult to detect changes in synaptic strength in vivo, since intracellular recordings are experimentally challenging. Here we present two methods aimed at inferring changes in the coupling between pairs of neurons from extracellularly recorded spike trains. First, using a generalized bilinear model with Poisson output we estimate time-varying coupling assuming that all changes are spike-timing-dependent. This approach allows model-based estimation of STDP modification functions from pairs of spike trains. Then, using recursive point-process adaptive filtering methods we estimate more general variation in coupling strength over time. Using simulations of neurons undergoing spike-timing dependent modification, we show that the true modification function can be recovered. Using multi-electrode data from motor cortex we then illustrate the use of this technique on in vivo data. 1
3 0.89912105 23 nips-2011-Active dendrites: adaptation to spike-based communication
Author: Balazs B. Ujfalussy, Máté Lengyel
Abstract: Computational analyses of dendritic computations often assume stationary inputs to neurons, ignoring the pulsatile nature of spike-based communication between neurons and the moment-to-moment fluctuations caused by such spiking inputs. Conversely, circuit computations with spiking neurons are usually formalized without regard to the rich nonlinear nature of dendritic processing. Here we address the computational challenge faced by neurons that compute and represent analogue quantities but communicate with digital spikes, and show that reliable computation of even purely linear functions of inputs can require the interplay of strongly nonlinear subunits within the postsynaptic dendritic tree. Our theory predicts a matching of dendritic nonlinearities and synaptic weight distributions to the joint statistics of presynaptic inputs. This approach suggests normative roles for some puzzling forms of nonlinear dendritic dynamics and plasticity. 1
4 0.77581656 249 nips-2011-Sequence learning with hidden units in spiking neural networks
Author: Johanni Brea, Walter Senn, Jean-pascal Pfister
Abstract: We consider a statistical framework in which recurrent networks of spiking neurons learn to generate spatio-temporal spike patterns. Given biologically realistic stochastic neuronal dynamics we derive a tractable learning rule for the synaptic weights towards hidden and visible neurons that leads to optimal recall of the training sequences. We show that learning synaptic weights towards hidden neurons significantly improves the storing capacity of the network. Furthermore, we derive an approximate online learning rule and show that our learning rule is consistent with Spike-Timing Dependent Plasticity in that if a presynaptic spike shortly precedes a postynaptic spike, potentiation is induced and otherwise depression is elicited.
5 0.75805509 2 nips-2011-A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm
Author: Julie Dethier, Paul Nuyujukian, Chris Eliasmith, Terrence C. Stewart, Shauki A. Elasaad, Krishna V. Shenoy, Kwabena A. Boahen
Abstract: Motor prostheses aim to restore function to disabled patients. Despite compelling proof of concept systems, barriers to clinical translation remain. One challenge is to develop a low-power, fully-implantable system that dissipates only minimal power so as not to damage tissue. To this end, we implemented a Kalman-filter based decoder via a spiking neural network (SNN) and tested it in brain-machine interface (BMI) experiments with a rhesus monkey. The Kalman filter was trained to predict the arm’s velocity and mapped on to the SNN using the Neural Engineering Framework (NEF). A 2,000-neuron embedded Matlab SNN implementation runs in real-time and its closed-loop performance is quite comparable to that of the standard Kalman filter. The success of this closed-loop decoder holds promise for hardware SNN implementations of statistical signal processing algorithms on neuromorphic chips, which may offer power savings necessary to overcome a major obstacle to the successful clinical translation of neural motor prostheses. ∗ Present: Research Fellow F.R.S.-FNRS, Systmod Unit, University of Liege, Belgium. 1 1 Cortically-controlled motor prostheses: the challenge Motor prostheses aim to restore function for severely disabled patients by translating neural signals from the brain into useful control signals for prosthetic limbs or computer cursors. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. One example is the development of a fully-implantable system that meets power dissipation constraints, but is still powerful enough to perform complex operations. A recently reported closedloop cortically-controlled motor prosthesis is capable of producing quick, accurate, and robust computer cursor movements by decoding neural signals (threshold-crossings) from a 96-electrode array in rhesus macaque premotor/motor cortex [1]-[4]. This, and previous designs (e.g., [5]), employ versions of the Kalman filter, ubiquitous in statistical signal processing. Such a filter and its variants are the state-of-the-art decoder for brain-machine interfaces (BMIs) in humans [5] and monkeys [2]. While these recent advances are encouraging, clinical translation of such BMIs requires fullyimplanted systems, which in turn impose severe power dissipation constraints. Even though it is an open, actively-debated question as to how much of the neural prosthetic system must be implanted, we note that there are no reports to date demonstrating a fully implantable 100-channel wireless transmission system, motivating performing decoding within the implanted chip. This computation is constrained by a stringent power budget: A 6 × 6mm2 implant must dissipate less than 10mW to avoid heating the brain by more than 1◦ C [6], which is believed to be important for long term cell health. With this power budget, current approaches can not scale to higher electrode densities or to substantially more computer-intensive decode/control algorithms. The feasibility of mapping a Kalman-filter based decoder algorithm [1]-[4] on to a spiking neural network (SNN) has been explored off-line (open-loop). In these off-line tests, the SNN’s performance virtually matched that of the standard implementation [7]. These simulations provide confidence that this algorithm—and others similar to it—could be implemented using an ultra-low-power approach potentially capable of meeting the severe power constraints set by clinical translation. This neuromorphic approach uses very-large-scale integrated systems containing microelectronic analog circuits to morph neural systems into silicon chips [8, 9]. These neuromorphic circuits may yield tremendous power savings—50nW per silicon neuron [10]—over digital circuits because they use physical operations to perform mathematical computations (analog approach). When implemented on a chip designed using the neuromorphic approach, a 2,000-neuron SNN network can consume as little as 100µW. Demonstrating this approach’s feasibility in a closed-loop system running in real-time is a key, non-incremental step in the development of a fully implantable decoding chip, and is necessary before proceeding with fabricating and implanting the chip. As noise, delay, and over-fitting play a more important role in the closed-loop setting, it is not obvious that the SNN’s stellar open-loop performance will hold up. In addition, performance criteria are different in the closed-loop and openloop settings (e.g., time per target vs. root mean squared error). Therefore, a SNN of a different size may be required to meet the desired specifications. Here we present results and assess the performance and viability of the SNN Kalman-filter based decoder in real-time, closed-loop tests, with the monkey performing a center-out-and-back target acquisition task. To achieve closed-loop operation, we developed an embedded Matlab implementation that ran a 2,000-neuron version of the SNN in real-time on a PC. We achieved almost a 50-fold speed-up by performing part of the computation in a lower-dimensional space defined by the formal method we used to map the Kalman filter on to the SNN. This shortcut allowed us to run a larger SNN in real-time than would otherwise be possible. 2 Spiking neural network mapping of control theory algorithms As reported in [11], a formal methodology, called the Neural Engineering Framework (NEF), has been developed to map control-theory algorithms onto a computational fabric consisting of a highly heterogeneous population of spiking neurons simply by programming the strengths of their connections. These artificial neurons are characterized by a nonlinear multi-dimensional-vector-to-spikerate function—ai (x(t)) for the ith neuron—with parameters (preferred direction, maximum firing rate, and spiking-threshold) drawn randomly from a wide distribution (standard deviation ≈ mean). 2 Spike rate (spikes/s) Representation ˆ x → ai (x) → x = ∑i ai (x)φix ˜ ai (x) = G(αi φix · x + Jibias ) 400 Transformation y = Ax → b j (Aˆ ) x Aˆ = ∑i ai (x)Aφix x x(t) B' y(t) A' 200 0 −1 Dynamics ˙ x = Ax → x = h ∗ A x A = τA + I 0 Stimulus x 1 bk(t) y(t) B' h(t) x(t) A' aj(t) Figure 1: NEF’s three principles. Representation. 1D tuning curves of a population of 50 leaky integrate-and-fire neurons. The neurons’ tuning curves map control variables (x) to spike rates (ai (x)); this nonlinear transformation is inverted by linear weighted decoding. G() is the neurons’ nonlinear current-to-spike-rate function. Transformation. SNN with populations bk (t) and a j (t) representing y(t) and x(t). Feedforward and recurrent weights are determined by B and A , as described next. Dynamics. The system’s dynamics is captured in a neurally plausible fashion by replacing integration with the synapses’ spike response, h(t), and replacing the matrices with A = τA + I and B = τB to compensate. The neural engineering approach to configuring SNNs to perform arbitrary computations is underlined by three principles (Figure 1) [11]-[14]: Representation is defined by nonlinear encoding of x(t) as a spike rate, ai (x(t))—represented by the neuron tuning curve—combined with optimal weighted linear decoding of ai (x(t)) to recover ˆ an estimate of x(t), x(t) = ∑i ai (x(t))φix , where φix are the decoding weights. Transformation is performed by using alternate decoding weights in the decoding operation to map transformations of x(t) directly into transformations of ai (x(t)). For example, y(t) = Ax(t) is represented by the spike rates b j (Aˆ (t)), where unit j’s input is computed directly from unit i’s x output using Aˆ (t) = ∑i ai (x(t))Aφix , an alternative linear weighting. x Dynamics brings the first two principles together and adds the time dimension to the circuit. This principle aims at reuniting the control-theory and neural levels by modifying the matrices to render the system neurally plausible, thereby permitting the synapses’ spike response, h(t), (i.e., impulse ˙ response) to capture the system’s dynamics. For example, for h(t) = τ −1 e−t/τ , x = Ax(t) is realized by replacing A with A = τA + I. This so-called neurally plausible matrix yields an equivalent dynamical system: x(t) = h(t) ∗ A x(t), where convolution replaces integration. The nonlinear encoding process—from a multi-dimensional stimulus, x(t), to a one-dimensional soma current, Ji (x(t)), to a firing rate, ai (x(t))—is specified as: ai (x(t)) = G(Ji (x(t))). (1) Here G is the neurons’ nonlinear current-to-spike-rate function, which is given by G(Ji (x)) = τ ref − τ RC ln (1 − Jth /Ji (x)) −1 , (2) for the leaky integrate-and-fire model (LIF). The LIF neuron has two behavioral regimes: subthreshold and super-threshold. The sub-threshold regime is described by an RC circuit with time constant τ RC . When the sub-threshold soma voltage reaches the threshold, Vth , the neuron emits a spike δ (t −tn ). After this spike, the neuron is reset and rests for τ ref seconds (absolute refractory period) before it resumes integrating. Jth = Vth /R is the minimum input current that produces spiking. Ignoring the soma’s RC time-constant when specifying the SNN’s dynamics are reasonable because the neurons cross threshold at a rate that is proportional to their input current, which thus sets the spike rate instantaneously, without any filtering [11]. The conversion from a multi-dimensional stimulus, x(t), to a one-dimensional soma current, Ji , is ˜ performed by assigning to the neuron a preferred direction, φix , in the stimulus space and taking the dot-product: ˜ Ji (x(t)) = αi φix · x(t) + Jibias , (3) 3 where αi is a gain or conversion factor, and Jibias is a bias current that accounts for background ˜ activity. For a 1D space, φix is either +1 or −1 (drawn randomly), for ON and OFF neurons, respectively. The resulting tuning curves are illustrated in Figure 1, left. The linear decoding process is characterized by the synapses’ spike response, h(t) (i.e., post-synaptic currents), and the decoding weights, φix , which are obtained by minimizing the mean square error. A single noise term, η, takes into account all sources of noise, which have the effect of introducing uncertainty into the decoding process. Hence, the transmitted firing rate can be written as ai (x(t)) + ηi , where ai (x(t)) represents the noiseless set of tuning curves and ηi is a random variable picked from a zero-mean Gaussian distribution with variance σ 2 . Consequently, the mean square error can be written as [11]: E = 1 ˆ [x(t) − x(t)]2 2 x,η,t = 2 1 2 x(t) − ∑ (ai (x(t)) + ηi ) φix i (4) x,η,t where · x,η denotes integration over the range of x and η, the expected noise. We assume that the noise is independent and has the same variance for each neuron [11], which yields: E= where σ2 1 2 2 x(t) − ∑ ai (x(t))φix i x,t 1 + σ 2 ∑(φix )2 , 2 i (5) is the noise variance ηi η j . This expression is minimized by: N φix = ∑ Γ−1 ϒ j , ij (6) j with Γi j = ai (x)a j (x) x + σ 2 δi j , where δ is the Kronecker delta function matrix, and ϒ j = xa j (x) x [11]. One consequence of modeling noise in the neural representation is that the matrix Γ is invertible despite the use of a highly overcomplete representation. In a noiseless representation, Γ is generally singular because, due to the large number of neurons, there is a high probability of having two neurons with similar tuning curves leading to two similar rows in Γ. 3 Kalman-filter based cortical decoder In the 1960’s, Kalman described a method that uses linear filtering to track the state of a dynamical system throughout time using a model of the dynamics of the system as well as noisy measurements [15]. The model dynamics gives an estimate of the state of the system at the next time step. This estimate is then corrected using the observations (i.e., measurements) at this time step. The relative weights for these two pieces of information are given by the Kalman gain, K [15, 16]. Whereas the Kalman gain is updated at each iteration, the state and observation matrices (defined below)—and corresponding noise matrices—are supposed constant. In the case of prosthetic applications, the system’s state vector is the cursor’s kinematics, xt = y [veltx , velt , 1], where the constant 1 allows for a fixed offset compensation. The measurement vector, yt , is the neural spike rate (spike counts in each time step) of 192 channels of neural threshold crossings. The system’s dynamics is modeled by: xt yt = Axt−1 + wt , = Cxt + qt , (7) (8) where A is the state matrix, C is the observation matrix, and wt and qt are additive, Gaussian noise sources with wt ∼ N (0, W) and qt ∼ N (0, Q). The model parameters (A, C, W and Q) are fit with training data by correlating the observed hand kinematics with the simultaneously measured neural signals (Figure 2). For an efficient decoding, we derived the steady-state update equation by replacing the adaptive Kalman gain by its steady-state formulation: K = (I + WCQ−1 C)−1 W CT Q−1 . This yields the following estimate of the system’s state: xt = (I − KC)Axt−1 + Kyt = MDT xt−1 + MDT yt , x y 4 (9) a Velocity (cm/s) Neuron 10 c 150 5 100 b 50 20 0 −20 0 0 x−velocity y−velocity 2000 4000 6000 8000 Time (ms) 10000 12000 1cm 14000 Trials: 0034-0049 Figure 2: Neural and kinematic measurements (monkey J, 2011-04-16, 16 continuous trials) used to fit the standard Kalman filter model. a. The 192 cortical recordings fed as input to fit the Kalman filter’s matrices (color code refers to the number of threshold crossings observed in each 50ms bin). b. Hand x- and y-velocity measurements correlated with the neural data to obtain the Kalman filter’s matrices. c. Cursor kinematics of 16 continuous trials under direct hand control. where MDT = (I − KC)A and MDT = K are the discrete time (DT) Kalman matrices. The steadyx y state formulation improves efficiency with little loss in accuracy because the optimal Kalman gain rapidly converges (typically less than 100 iterations). Indeed, in neural applications under both open-loop and closed-loop conditions, the difference between the full Kalman filter and its steadystate implementation falls to within 1% in a few seconds [17]. This simplifying assumption reduces the execution time for decoding a typical neuronal firing rate signal approximately seven-fold [17], a critical speed-up for real-time applications. 4 Kalman filter with a spiking neural network To implement the Kalman filter with a SNN by applying the NEF, we first convert Equation 9 from DT to continuous time (CT), and then replace the CT matrices with neurally plausible ones, which yields: x(t) = h(t) ∗ A x(t) + B y(t) , (10) where A = τMCT + I, B = τMCT , with MCT = MDT − I /∆t and MCT = MDT /∆t, the CT x y x x y y Kalman matrices, and ∆t = 50ms, the discrete time step; τ is the synaptic time-constant. The jth neuron’s input current (see Equation 3) is computed from the system’s current state, x(t), which is computed from estimates of the system’s previous state (ˆ (t) = ∑i ai (t)φix ) and current x y input (ˆ (t) = ∑k bk (t)φk ) using Equation 10. This yields: y ˜x J j (x(t)) = α j φ j · x(t) + J bias j ˜x ˆ ˆ = α j φ j · h(t) ∗ A x(t) + B y(t) ˜x = α j φ j · h(t) ∗ A + J bias j ∑ ai (t)φix + B ∑ bk (t)φky i + J bias j (11) k This last equation can be written in a neural network form: J j (x(t)) = h(t) ∗ ∑ ω ji ai (t) + ∑ ω jk bk (t) i + J bias j (12) k y ˜x ˜x where ω ji = α j φ j A φix and ω jk = α j φ j B φk are the recurrent and feedforward weights, respectively. 5 Efficient implementation of the SNN In this section, we describe the two distinct steps carried out when implementing the SNN: creating and running the network. The first step has no computational constraints whereas the second must be very efficient in order to be successfully deployed in the closed-loop experimental setting. 5 x ( 1000 x ( = 1000 1000 = 1000 x 1000 b 1000 x 1000 1000 a Figure 3: Computing a 1000-neuron pool’s recurrent connections. a. Using connection weights requires multiplying a 1000×1000 matrix by a 1000 ×1 vector. b. Operating in the lower-dimensional state space requires multiplying a 1 × 1000 vector by a 1000 × 1 vector to get the decoded state, multiplying this state by a component of the A matrix to update it, and multiplying the updated state by a 1000 × 1 vector to re-encode it as firing rates, which are then used to update the soma current for every neuron. Network creation: This step generates, for a specified number of neurons composing the network, x ˜x the gain α j , bias current J bias , preferred direction φ j , and decoding weight φ j for each neuron. The j ˜x preferred directions φ j are drawn randomly from a uniform distribution over the unit sphere. The maximum firing rate, max G(J j (x)), and the normalized x-axis intercept, G(J j (x)) = 0, are drawn randomly from a uniform distribution on [200, 400] Hz and [-1, 1], respectively. From these two specifications, α j and J bias are computed using Equation 2 and Equation 3. The decoding weights j x φ j are computed by minimizing the mean square error (Equation 6). For efficient implementation, we used two 1D integrators (i.e., two recurrent neuron pools, with each pool representing a scalar) rather than a single 3D integrator (i.e., one recurrent neuron pool, with the pool representing a 3D vector by itself) [13]. The constant 1 is fed to the 1D integrators as an input, rather than continuously integrated as part of the state vector. We also replaced the bk (t) units’ spike rates (Figure 1, middle) with the 192 neural measurements (spike counts in 50ms bins), y which is equivalent to choosing φk from a standard basis (i.e., a unit vector with 1 at the kth position and 0 everywhere else) [7]. Network simulation: This step runs the simulation to update the soma current for every neuron, based on input spikes. The soma voltage is then updated following RC circuit dynamics. Gaussian noise is normally added at this step, the rest of the simulation being noiseless. Neurons with soma voltage above threshold generate a spike and enter their refractory period. The neuron firing rates are decoded using the linear decoding weights to get the updated states values, x and y-velocity. These values are smoothed with a filter identical to h(t), but with τ set to 5ms instead of 20ms to avoid introducing significant delay. Then the simulation step starts over again. In order to ensure rapid execution of the simulation step, neuron interactions are not updated dix rectly using the connection matrix (Equation 12), but rather indirectly with the decoding matrix φ j , ˜x dynamics matrix A , and preferred direction matrix φ j (Equation 11). To see why this is more efficient, suppose we have 1000 neurons in the a population for each of the state vector’s two scalars. Computing the recurrent connections using connection weights requires multiplying a 1000 × 1000 matrix by a 1000-dimensional vector (Figure 3a). This requires 106 multiplications and about 106 sums. Decoding each scalar (i.e., ∑i ai (t)φix ), however, requires only 1000 multiplications and 1000 sums. The decoded state vector is then updated by multiplying it by the (diagonal) A matrix, another 2 products and 1 sum. The updated state vector is then encoded by multiplying it with the neurons’ preferred direction vectors, another 1000 multiplications per scalar (Figure 3b). The resulting total of about 3000 operations is nearly three orders of magnitude fewer than using the connection weights to compute the identical transformation. To measure the speedup, we simulated a 2,000-neuron network on a computer running Matlab 2011a (Intel Core i7, 2.7-GHz, Mac OS X Lion). Although the exact run-times depend on the computing hardware and software, the run-time reduction factor should remain approximately constant across platforms. For each reported result, we ran the simulation 10 times to obtain a reliable estimate of the execution time. The run-time for neuron interactions using the recurrent connection weights was 9.9ms and dropped to 2.7µs in the lower-dimensional space, approximately a 3,500-fold speedup. Only the recurrent interactions benefit from the speedup, the execution time for the rest of the operations remaining constant. The run-time for a 50ms network simulation using the recurrent connec6 Table 1: Model parameters Symbol max G(J j (x)) G(J j (x)) = 0 J bias j αj ˜x φj Range 200-400 Hz −1 to 1 Satisfies first two Satisfies first two ˜x φj = 1 Description Maximum firing rate Normalized x-axis intercept Bias current Gain factor Preferred-direction vector σ2 τ RC j τ ref j τ PSC j 0.1 20 ms 1 ms 20 ms Gaussian noise variance RC time constant Refractory period PSC time constant tion weights was 0.94s and dropped to 0.0198s in the lower-dimensional space, a 47-fold speedup. These results demonstrate the efficiency the lower-dimensional space offers, which made the closedloop application of SNNs possible. 6 Closed-loop implementation An adult male rhesus macaque (monkey J) was trained to perform a center-out-and-back reaching task for juice rewards to one of eight targets, with a 500ms hold time (Figure 4a) [1]. All animal protocols and procedures were approved by the Stanford Institutional Animal Care and Use Committee. Hand position was measured using a Polaris optical tracking system at 60Hz (Northern Digital Inc.). Neural data were recorded from two 96-electrode silicon arrays (Blackrock Microsystems) implanted in the dorsal pre-motor and motor cortex. These recordings (-4.5 RMS threshold crossing applied to each electrode’s signal) yielded tuned activity for the direction and speed of arm movements. As detailed in [1], a standard Kalman filter model was fit by correlating the observed hand kinematics with the simultaneously measured neural signals, while the monkey moved his arm to acquire virtual targets (Figure 2). The resulting model was used in a closed-loop system to control an on-screen cursor in real-time (Figure 4a, Decoder block). A steady-state version of this model serves as the standard against which the SNN implementation’s performance is compared. We built a SNN using the NEF methodology based on derived Kalman filter parameters mentioned above. This SNN was then simulated on an xPC Target (Mathworks) x86 system (Dell T3400, Intel Core 2 Duo E8600, 3.33GHz). It ran in closed-loop, replacing the standard Kalman filter as the decoder block in Figure 4a. The parameter values listed in Table 1 were used for the SNN implementation. We ensured that the time constants τiRC ,τiref , and τiPSC were smaller than the implementation’s time step (50ms). Noise was not explicitly added. It arose naturally from the fluctuations produced by representing a scalar with filtered spike trains, which has been shown to have effects similar to Gaussian noise [11]. For the purpose of computing the linear decoding weights (i.e., Γ), we modeled the resulting noise as Gaussian with a variance of 0.1. A 2,000-neuron version of the SNN-based decoder was tested in a closed-loop system, the largest network our embedded MatLab implementation could run in real-time. There were 1206 trials total among which 301 (center-outs only) were performed with the SNN and 302 with the standard (steady-state) Kalman filter. The block structure was randomized and interleaved, so that there is no behavioral bias present in the findings. 100 trials under hand control are used as a baseline comparison. Success corresponds to a target acquisition under 1500ms, with 500ms hold time. Success rates were higher than 99% on all blocks for the SNN implementation and 100% for the standard Kalman filter. The average time to acquire the target was slightly slower for the SNN (Figure 5b)—711ms vs. 661ms, respectively—we believe this could be improved by using more neurons in the SNN.1 The average distance to target (Figure 5a) and the average velocity of the cursor (Figure 5c) are very similar. 1 Off-line, the SNN performed better as we increased the number of neurons [7]. 7 a Neural Spikes b c BMI: Kalman decoder BMI: SNN decoder Decoder Cursor Velocity 1cm 1cm Trials: 2056-2071 Trials: 1748-1763 5 0 0 400 Time after Target Onset (ms) 800 Target acquisition time histogram 40 Mean cursor velocity 50 Standard Kalman filter 40 20 Hand 30 30 Spiking Neural Network 20 10 0 c Cursor Velocity (cm/s) b Mean distance to target 10 Percent of Trials (%) a Distance to Target (cm) Figure 4: Experimental setup and results. a. Data are recorded from two 96-channel silicon electrode arrays implanted in dorsal pre-motor and motor cortex of an adult male monkey performing a centerout-and-back reach task for juice rewards to one of eight targets with a 500ms hold time. b. BMI position kinematics of 16 continuous trials for the standard Kalman filter implementation. c. BMI position kinematics of 16 continuous trials for the SNN implementation. 10 0 500 1000 Target Acquire Time (ms) 1500 0 0 200 400 600 800 Time after Target Onset (ms) 1000 Figure 5: SNN (red) performance compared to standard Kalman filter (blue) (hand trials are shown for reference (yellow)). The SNN achieves similar results—success rates are higher than 99% on all blocks—as the standard Kalman filter implementation. a. Plot of distance to target vs. time both after target onset for different control modalities. The thicker traces represent the average time when the cursor first enters the acceptance window until successfully entering for the 500ms hold time. b. Histogram of target acquisition time. c. Plot of mean cursor velocity vs. time. 7 Conclusions and future work The SNN’s performance was quite comparable to that produced by a standard Kalman filter implementation. The 2,000-neuron network had success rates higher than 99% on all blocks, with mean distance to target, target acquisition time, and mean cursor velocity curves very similar to the ones obtained with the standard implementation. Future work will explore whether these results extend to additional animals. As the Kalman filter and its variants are the state-of-the-art in cortically-controlled motor prostheses [1]-[5], these simulations provide confidence that similar levels of performance can be attained with a neuromorphic system, which can potentially overcome the power constraints set by clinical applications. Our ultimate goal is to develop an ultra-low-power neuromorphic chip for prosthetic applications on to which control theory algorithms can be mapped using the NEF. As our next step in this direction, we will begin exploring this mapping with Neurogrid, a hardware platform with sixteen programmable neuromorphic chips that can simulate up to a million spiking neurons in real-time [9]. However, bandwidth limitations prevent Neurogrid from realizing random connectivity patterns. It can only connect each neuron to thousands of others if neighboring neurons share common inputs — just as they do in the cortex. Such columnar organization may be possible with NEF-generated networks if preferred directions vectors are assigned topographically rather than randomly. Implementing this constraint effectively is a subject of ongoing research. Acknowledgment This work was supported in part by the Belgian American Education Foundation(J. Dethier), Stanford NIH Medical Scientist Training Program (MSTP) and Soros Fellowship (P. Nuyujukian), DARPA Revolutionizing Prosthetics program (N66001-06-C-8005, K. V. Shenoy), and two NIH Director’s Pioneer Awards (DP1-OD006409, K. V. Shenoy; DPI-OD000965, K. Boahen). 8 References [1] V. Gilja, Towards clinically viable neural prosthetic systems, Ph.D. Thesis, Department of Computer Science, Stanford University, 2010, pp 19–22 and pp 57–73. [2] V. Gilja, P. Nuyujukian, C.A. Chestek, J.P. Cunningham, J.M. Fan, B.M. Yu, S.I. Ryu, and K.V. Shenoy, A high-performance continuous cortically-controlled prosthesis enabled by feedback control design, 2010 Neuroscience Meeting Planner, San Diego, CA: Society for Neuroscience, 2010. [3] P. Nuyujukian, V. Gilja, C.A. Chestek, J.P. Cunningham, J.M. Fan, B.M. Yu, S.I. Ryu, and K.V. Shenoy, Generalization and robustness of a continuous cortically-controlled prosthesis enabled by feedback control design, 2010 Neuroscience Meeting Planner, San Diego, CA: Society for Neuroscience, 2010. [4] V. Gilja, C.A. Chestek, I. Diester, J.M. Henderson, K. Deisseroth, and K.V. Shenoy, Challenges and opportunities for next-generation intra-cortically based neural prostheses, IEEE Transactions on Biomedical Engineering, 2011, in press. [5] S.P. Kim, J.D. Simeral, L.R. Hochberg, J.P. Donoghue, and M.J. Black, Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia, Journal of Neural Engineering, vol. 5, 2008, pp 455–476. [6] S. Kim, P. Tathireddy, R.A. Normann, and F. Solzbacher, Thermal impact of an active 3-D microelectrode array implanted in the brain, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, 2007, pp 493–501. [7] J. Dethier, V. Gilja, P. Nuyujukian, S.A. Elassaad, K.V. Shenoy, and K. Boahen, Spiking neural network decoder for brain-machine interfaces, IEEE Engineering in Medicine & Biology Society Conference on Neural Engineering, Cancun, Mexico, 2011, pp 396–399. [8] K. Boahen, Neuromorphic microchips, Scientific American, vol. 292(5), 2005, pp 56–63. [9] R. Silver, K. Boahen, S. Grillner, N. Kopell, and K.L. Olsen, Neurotech for neuroscience: unifying concepts, organizing principles, and emerging tools, Journal of Neuroscience, vol. 27(44), 2007, pp 11807– 11819. [10] J.V. Arthur and K. Boahen, Silicon neuron design: the dynamical systems approach, IEEE Transactions on Circuits and Systems, vol. 58(5), 2011, pp 1034-1043. [11] C. Eliasmith and C.H. Anderson, Neural engineering: computation, representation, and dynamics in neurobiological systems, MIT Press, Cambridge, MA; 2003. [12] C. Eliasmith, A unified approach to building and controlling spiking attractor networks, Neural Computation, vol. 17, 2005, pp 1276–1314. [13] R. Singh and C. Eliasmith, Higher-dimensional neurons explain the tuning and dynamics of working memory cells, The Journal of Neuroscience, vol. 26(14), 2006, pp 3667–3678. [14] C. Eliasmith, How to build a brain: from function to implementation, Synthese, vol. 159(3), 2007, pp 373–388. [15] R.E. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME– Journal of Basic Engineering, vol. 82(Series D), 1960, pp 35–45. [16] G. Welsh and G. Bishop, An introduction to the Kalman Filter, University of North Carolina at Chapel Hill Chapel Hill NC, vol. 95(TR 95-041), 1995, pp 1–16. [17] W.Q. Malik, W. Truccolo, E.N. Brown, and L.R. Hochberg, Efficient decoding with steady-state Kalman filter in neural interface systems, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19(1), 2011, pp 25–34. 9
6 0.75221795 86 nips-2011-Empirical models of spiking in neural populations
7 0.74902427 99 nips-2011-From Stochastic Nonlinear Integrate-and-Fire to Generalized Linear Models
8 0.70745111 75 nips-2011-Dynamical segmentation of single trials from population neural data
9 0.70303464 135 nips-2011-Information Rates and Optimal Decoding in Large Neural Populations
11 0.65529418 292 nips-2011-Two is better than one: distinct roles for familiarity and recollection in retrieving palimpsest memories
12 0.62263155 224 nips-2011-Probabilistic Modeling of Dependencies Among Visual Short-Term Memory Representations
13 0.61348116 200 nips-2011-On the Analysis of Multi-Channel Neural Spike Data
14 0.5477317 82 nips-2011-Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons
15 0.52407485 24 nips-2011-Active learning of neural response functions with Gaussian processes
16 0.52170497 219 nips-2011-Predicting response time and error rates in visual search
17 0.51989359 13 nips-2011-A blind sparse deconvolution method for neural spike identification
18 0.50629574 89 nips-2011-Estimating time-varying input signals and ion channel states from a single voltage trace of a neuron
19 0.46472323 183 nips-2011-Neural Reconstruction with Approximate Message Passing (NeuRAMP)
20 0.4540709 37 nips-2011-Analytical Results for the Error in Filtering of Gaussian Processes
topicId topicWeight
[(4, 0.028), (20, 0.015), (26, 0.016), (31, 0.132), (33, 0.017), (43, 0.037), (45, 0.056), (57, 0.02), (74, 0.044), (83, 0.498), (99, 0.038)]
simIndex simValue paperId paperTitle
same-paper 1 0.95238215 302 nips-2011-Variational Learning for Recurrent Spiking Networks
Author: Danilo J. Rezende, Daan Wierstra, Wulfram Gerstner
Abstract: We derive a plausible learning rule for feedforward, feedback and lateral connections in a recurrent network of spiking neurons. Operating in the context of a generative model for distributions of spike sequences, the learning mechanism is derived from variational inference principles. The synaptic plasticity rules found are interesting in that they are strongly reminiscent of experimental Spike Time Dependent Plasticity, and in that they differ for excitatory and inhibitory neurons. A simulation confirms the method’s applicability to learning both stationary and temporal spike patterns. 1
2 0.89340448 40 nips-2011-Automated Refinement of Bayes Networks' Parameters based on Test Ordering Constraints
Author: Omar Z. Khan, Pascal Poupart, John-mark M. Agosta
Abstract: In this paper, we derive a method to refine a Bayes network diagnostic model by exploiting constraints implied by expert decisions on test ordering. At each step, the expert executes an evidence gathering test, which suggests the test’s relative diagnostic value. We demonstrate that consistency with an expert’s test selection leads to non-convex constraints on the model parameters. We incorporate these constraints by augmenting the network with nodes that represent the constraint likelihoods. Gibbs sampling, stochastic hill climbing and greedy search algorithms are proposed to find a MAP estimate that takes into account test ordering constraints and any data available. We demonstrate our approach on diagnostic sessions from a manufacturing scenario. 1 INTRODUCTION The problem of learning-by-example has the promise to create strong models from a restricted number of cases; certainly humans show the ability to generalize from limited experience. Machine Learning has seen numerous approaches to learning task performance by imitation, going back to some of the approaches to inductive learning from examples [14]. Of particular interest are problemsolving tasks that use a model to infer the source, or cause of a problem from a sequence of investigatory steps or tests. The specific example we adopt is a diagnostic task such as appears in medicine, electro-mechanical fault isolation, customer support and network diagnostics, among others. We define a diagnostic sequence as consisting of the assignment of values to a subset of tests. The diagnostic process embodies the choice of the best next test to execute at each step in the sequence, by measuring the diagnostic value among the set of available tests at each step, that is, the ability of a test to distinguish among the possible causes. One possible implementation with which to carry out this process, the one we apply, is a Bayes network [9]. As with all model-based approaches, provisioning an adequate model can be daunting, resulting in a “knowledge elicitation bottleneck.” A recent approach for easing the bottleneck grew out of the realization that the best time to gain an expert’s insight into the model structure is during the diagnostic process. Recent work in “QueryBased Diagnostics” [1] demonstrated a way to improve model quality by merging model use and model building into a single process. More precisely the expert can take steps to modify the network structure to add or remove nodes or links, interspersed within the diagnostic sequence. In this paper we show how to extend this variety of learning-by-example to include also refinement of model parameters based on the expert’s choice of test, from which we determine constraints. The nature of these constraints, as shown herein, is derived from the value of the tests to distinguish causes, a value referred to informally as value of information [10]. It is the effect of these novel constraints on network parameter learning that is elucidated in this paper. ∗ J. M. Agosta is no longer affiliated with Intel Corporation 1 Conventional statistical learning approaches are not suited to this problem, since the number of cases available from diagnostic sessions is small, and the data from any case is sparse. (Only a fraction of the tests are taken.) But more relevant is that one diagnostic sequence from an expert user represents the true behavior expected of the model, rather than a noisy realization of a case generated by the true model. We adopt a Bayesian approach, which offers a principled way to incorporate knowledge (constraints and data, when available) and also consider weakening the constraints, by applying a likelihood to them, so that possibly conflicting constraints can be incorporated consistently. Sec. 2 reviews related work and Sec. 3 provides some background on diagnostic networks and model consistency. Then, Sec. 4 describes an augmented Bayesian network that incorporates constraints implied by an expert’s choice of tests. Some sampling techniques are proposed to find the Maximum a posterior setting of the parameters given the constraints (and any data available). The approach is evaluated in Sec. 5 on synthetic data and a real world manufacturing diagnostic scenario. Finally, Sec. 6 discusses some future work. 2 RELATED WORK Parameter learning for Bayesian networks can be viewed as searching in a high-dimensional space. Adopting constraints on the parameters based on some domain knowledge is a way of pruning this search space and learning the parameters more efficiently, both in terms of data needed and time required. Qualitative probabilistic networks [17] allow qualitative constraints on the parameter space to be specified by experts. For instance, the influence of one variable on another, or the combined influence of multiple variables on another variable [5] leads to linear inequalities on the parameters. Wittig and Jameson [18] explain how to transform the likelihood of violating qualitative constraints into a penalty term to adjust maximum likelihood, which allows gradient ascent and Expectation Maximization (EM) to take into account linear qualitative constraints. Other examples of qualitative constraints include some parameters being larger than others, bounded in a range, within ϵ of each other, etc. Various proposals have been made that exploit such constraints. Altendorf et al. [2] provide an approximate technique based on constrained convex optimization for parameter learning. Niculescu et al. [15] also provide a technique based on constrained optimization with closed form solutions for different classes of constraints. Feelders [6] provides an alternate method based on isotonic regression while Liao and Ji [12] combine gradient descent with EM. de Campos and Ji [4] also use constrained convex optimization, however, they use Dirichlet priors on the parameters to incorporate any additional knowledge. Mao and Lebanon [13] also use Dirichlet priors, but they use probabilistic constraints to allow inaccuracies in the specification of the constraints. A major difference between our technique and previous work is on the type of constraints. Our constraints do not need to be explicitly specified by an expert. Instead, we passively observe the expert and learn from what choices are made and not made [16]. Furthermore, as we shall show later, our constraints are non-convex, preventing the direct application of existing techniques that assume linear or convex functions. We use Beta priors on the parameters, which can easily be extended to Dirichlet priors like previous work. We incorporate constraints in an augmented Bayesian network, similar to Liang et al. [11], though their constraints are on model predictions as opposed to ours which are on the parameters of the network. Finally, we also use the notion of probabilistic constraints to handle potential mistakes made by experts. 3 3.1 BACKGROUND DIAGNOSTIC BAYES NETWORKS We consider the class of bipartite Bayes networks that are widely used as diagnostic models, though our approach can be used for networks with any structure. The network forms a sparse, directed, causal graph, where arcs go from causes to observable node variables. We use upper case to denote random variables; C for causes, and T for observables (tests). Lower case letters denote values in the domain of a variable, e.g. c ∈ dom(C) = {c, c}, and bold letters denote sets of variables. A ¯ set of marginally independent binary-valued node variables C with distributions Pr(C) represent unobserved causes, and condition the remaining conditionally independent binary-valued test vari2 able nodes T. Each cause conditions one or more tests; likewise each test is conditioned by one or more causes, resulting in a graph with one or more possibly multiply-connected components. The test variable distributions Pr(T |C) incorporate the further modeling assumption of Independence of Causal Influence, the most familiar example being the Noisy-Or model [8]. To keep the exposition simple, we assume that all variables are binary and that conditional distributions are parametrized by the Noisy-Or; however, the algorithms described in the rest of the paper generalize to any discrete non-binary variable models. Conventionally, unobserved tests are ranked in a diagnostic Bayes network by their Value Of Information (VOI) conditioned on tests already observed. To be precise, VOI is the expected gain in utility if the test were to be observed. The complete computation requires a model equivalent to a partially observable Markov decision process. Instead, VOI is commonly approximated by a greedy computation of the Mutual Information between a test and the set of causes [3]. In this case, it is easy to show that Mutual Information is in turn well approximated to second order by the Gini impurity [7] as shown in Equation 1. ] [∑ ∑ GI(C|T ) = Pr(T = t) Pr(C = c|T = t)(1 − Pr(C = c|T = t)) (1) t c We will use the Gini measure as a surrogate for VOI, as a way to rank the best next test in the diagnostic sequence. 3.2 MODEL CONSISTENCY A model that is consistent with an expert would generate Gini impurity rankings consistent with the expert’s diagnostic sequence. We interpret the expert’s test choices as implying constraints on Gini impurity rankings between tests. To that effect, [1] defines the notion of Cause Consistency and Test Consistency, which indicate whether the cause and test orderings induced by the posterior distribution over causes and the VOI of each test agree with an expert’s observed choice. Assuming that the expert greedily chooses the most informative test T ∗ (i.e., test that yields the lowest Gini impurity) at each step, then the model is consistent with the expert’s choices when the following constraints are satisfied: GI(C|T ∗ ) ≤ GI(C|Ti ) ∀i (2) We demonstrate next how to exploit these constraints to refine the Bayes network. 4 MODEL REFINEMENT Consider a simple diagnosis example with two possible causes C1 and C2 and two tests T1 and T2 as shown in Figure 1. To keep the exposition simple, suppose that the priors for each cause are known (generally separate data is available to estimate these), but the conditional distribution of each test is unknown. Using the Noisy-OR parameterizations for the conditional distributions, the number of parameters are linear in the number of parents instead of exponential. ∏ i i Pr(Ti = true|C) = 1 − (1 − θ0 ) (1 − θj ) (3) j|Cj =true i Here, θ0 = Pr(Ti = true|Cj = f alse ∀j) is the leak probability that Ti will be true when none of i the causes are true and θj = Pr(Ti = true|Cj = true, Ck = f alse ∀k ̸= j) is the link reliability, which indicates the independent contribution of cause Cj to the probability that test Ti will be true. In the rest of this section, we describe how to learn the θ parameters while respecting the constraints implied by test consistency. 4.1 TEST CONSISTENCY CONSTRAINTS Suppose that an expert chooses test T1 instead of test T2 during the diagnostic process. This ordering by the expert implies that the current model (parametrized by the θ’s) must be consistent with the constraint GI(C|T2 ) − GI(C|T1 ) ≥ 0. Using the definition of Gini impurity in Eq. 1, we can rewrite 3 Figure 1: Network with 2 causes and 2 tests Figure 2: Augmented network with parameters and constraints Figure 3: Augmented network extended to handle inaccurate feedback the constraint for the network shown in Fig. 1 as follows: ∑ t1 ( ∑ (Pr(t1 |c1 , c2 ) Pr(c1 ) Pr(c2 ))2 Pr(t1 ) − Pr(t1 ) c ,c 1 2 ) ( ) ∑ ∑ (Pr(t2 |c1 , c2 ) Pr(c1 ) Pr(c2 ))2 − Pr(t2 ) − ≥0 Pr(t2 ) t c ,c 2 1 2 (4) Furthermore, using the Noisy-Or encoding from Eq. 3, we can rewrite the constraint as a polynomial in the θ’s. This polynomial is non-linear, and in general, not concave. The feasible space may consist of disconnected regions. Fig. 4 shows the surface corresponding to the polynomial for the 2 1 i i case where θ0 = 0 and θ1 = 0.5 for each test i, which leaves θ2 and θ2 as the only free variables. The parameters’ feasible space, satisfying the constraint consists of the two disconnected regions where the surface is positive. 4.2 AUGMENTED BAYES NETWORK Our objective is to learn the θ parameters of diagnostic Bayes networks given test constraints of the form described in Eq. 4. To deal with non-convex constraints and disconnected feasible regions, we pursue a Bayesian approach whereby we explicitly model the parameters and constraints as random variables in an augmented Bayes network (see Fig. 2). This allows us to frame the problem of learning the parameters as an inference problem in a hybrid Bayes network of discrete (T, C, V ) and continuous (Θ) variables. As we will see shortly, this augmented Bayes network provides a unifying framework to simultaneously learn from constraints and data, to deal with possibly inconsistent constraints, and to express preferences over the degree of satisfaction of the constraints. We encode the constraint derived from the expert feedback as a binary random variable V in the Bayes network. If V is true the constraint is satisfied, otherwise it is violated. Thus, if V is true then Θ lies in the positive region of Fig. 4, and if V is f alse then Θ lies in the negative region. We model the CPT for V as Pr(V |Θ) = max(0, π), where π = GI(C|T1 ) − GI(C|T2 ). Note that the value of GI(C|T ) lies in the interval [0,1], so the probability π will always be normalized. The intuition behind this definition of the CPT for V is that a constraint is more likely to be satisfied if the parameters lie in the interior of the constraint region. We place a Beta prior over each Θ parameter. Since the test variables are conditioned on the Θ parameters that are now part of the network, their conditional distributions become known. For instance, the conditional distribution for Ti (given in Eq. 3) is fully defined given the noisy-or parami eters θj . Hence the problem of learning the parameters becomes an inference problem to compute posteriors over the parameters given that the constraint is satisfied (and any data). In practice, it is more convenient to obtain a single value for the parameters instead of a posterior distribution since it is easier to make diagnostic predictions based on one Bayes network. We estimate the parameters by computing a maximum a posteriori (MAP) hypothesis given that the constraint is satisfied (and any data): Θ∗ = arg maxΘ Pr(Θ|V = true). 4 Algorithm 1 Pseudo Code for Gibbs Sampling, Stochastic Hill Climbing and Greedy Search 1 Fix observed variables, let V = true and randomly sample feasible starting state S 2 for i = 1 to #samples 3 for j = 1 to #hiddenV ariables 4 acceptSample = f alse; k = 0 5 repeat 6 Sample s′ from conditional of j th hidden variable Sj 7 S′ = S; Sj = s′ 8 if Sj is cause or test, then acceptSample = true 9 elseif S′ obeys constraints V∗ 10 if algo == Gibbs 11 Sample u from uniform distribution, U(0,1) p(S′ 12 if u < M q(S)′ ) where p and q are the true and proposal distributions and M > 1 13 acceptSample = true 14 elseif algo = = StochasticHillClimbing 15 if likelihood(S′ ) > likelihood(S), then acceptSample = true 16 elseif algo = = Greedy, then acceptSample = true 17 elseif algo = = Greedy 18 k = k+1 19 if k = = maxIterations, then s′ = Sj ; acceptSample = true 20 until acceptSample = = true 21 Sj = s′ 4.3 MAP ESTIMATION Previous approaches for parameter learning with domain knowledge include modified versions of EM or some other optimization techniques that account for linear/convex constraints on the parameters. Since our constraints are non-convex, we propose a new approach based on Gibbs sampling to approximate the posterior distribution, from which we compute the MAP estimate. Although the technique converges to the MAP in the limit, it may require excessive time. Hence, we modify Gibbs sampling to obtain more efficient stochastic hill climbing and greedy search algorithms with anytime properties. The pseudo code for our Gibbs sampler is provided in Algorithm 1. The two key steps are sampling the conditional distributions of each variable (line 6) and rejection sampling to ensure that the constraints are satisfied (lines 9 and 12). We sample each variable given the rest according to the following distributions: ti ∼ Pr(Ti |c, θi ) ∀i cj ∼ Pr(Cj |c − cj , t, θ) ∝ ∏ Pr(Cj ) j ∏ (5) Pr(ti |c, θi ) ∀j i i θj ∼ Pr(Θi |Θ − Θi , t, c, v) ∝ Pr(v|t, Θ) j j ∏ Pr(ti |cj , θi ) ∀i, j (6) (7) i The tests and causes are easily sampled from the multinomials as described in the equations above. However, sampling the θ’s is more difficult due to the factor Pr(v|Θ, t) = max(0, π), which is a truncated mixture of Betas. So, instead of sampling θ from its true conditional, we sample it from a proposal distribution that replaces max(0, π) by an un-truncated mixture of Betas equal to π + a where a is a constant that ensures that π + a is always positive. This is equivalent to ignoring the constraints. Then we ensure that the constraints are satisfied by rejecting the samples that violate the constraints. Once Gibbs sampling has been performed, we obtain a sample that approximates the posterior distribution over the parameters given the constraints (and any data). We return a single setting of the parameters by selecting the sampled instance with the highest posterior probability (i.e., MAP estimate). Since we will only return the MAP estimate, it is possible to speed up the search by modifying Gibbs sampling. In particular, we obtain a stochastic hill climbing algorithm by accepting a new sample only if its posterior probability improves upon that of the previous sample 5 Posterior Probability 0.1 0.08 Difference in Gini Impurity 0.1 0.05 0 −0.05 0.06 0.04 0.02 −0.1 1 0 1 1 0.8 0.5 0.6 0.8 0.4 Link Reliability of Test 2 and Cause 1 0 0.6 0.2 0 0.4 Link Reliability of Test 2 and Cause 2 Figure 4: Difference in Gini impurity for the network in 1 2 Fig. 1 when θ2 and θ2 are the only parameters allowed to vary. 0.2 Link Reliability of Test 2 and Cause 1 0 0 0.2 0.4 0.6 0.8 1 Link Reliability of Test 2 and Cause 1 Figure 5: Posterior over parameters computed through calculation after discretization. Figure 6: Posterior over parameters calculated through Sampling. (line 15). Thus, each iteration of the stochastic hill climber requires more time, but always improves the solution. As the number of constraints grows and the feasibility region shrinks, the Gibbs sampler and stochastic hill climber will reject most samples. We can mitigate this by using a Greedy sampler that caps the number of rejected samples, after which it abandons the sampling for the current variable to move on to the next variable (line 19). Even though the feasibility region is small overall, it may still be large in some dimensions, so it makes sense to try sampling another variable (that may have a larger range of feasible values) when it is taking too long to find a new feasible value for the current variable. 4.4 MODEL REFINEMENT WITH INCONSISTENT CONSTRAINTS So far, we have assumed that the expert’s actions generate a feasible region as a consequence of consistent constraints. We handle inconsistencies by further extending our augmented diagnostic Bayes network. We treat the observed constraint variable, V , as a probabilistic indicator of the true constraint V ∗ as shown in Figure 3. We can easily extend our techniques for computing the MAP to cater for this new constraint node by sampling an extra variable. 5 EVALUATION AND EXPERIMENTS 5.1 EVALUATION CRITERIA Formally, for M ∗ , the true model that we aim to learn, the diagnostic process determines the choice of best next test as the one with the smallest Gini impurity. If the correct choice for the next test is known (such as demonstrated by an expert), we can use this information to include a constraint on the model. We denote by V+ the set of observed constraints and by V∗ the set of all possible constraints that hold for M ∗ . Having only observed V+ , our technique will consider any M + ∈ M+ as a possible true model, where M+ is the set of all models that obey V + . We denote by M∗ the set of all models that are diagnostically equivalent to M ∗ (i.e., obey V ∗ and would recommend the MAP same steps as M ∗ ) and by MV+ the particular model obtained by MAP estimation based on the MAP constraints V+ . Similarly, when a dataset D is available, we denote by MD the model obtained MAP by MAP estimation based on D and by MDV+ , the model based on D and V+ . Ideally we would like to find the true underlying model M ∗ , hence we will report the KL divergence between the models found and M ∗ . However, other diagnostically equivalent M ∗ may recommend the same tests as M ∗ and thus have similar constraints, so we also report test consistency with M ∗ (i.e., # of recommended tests that are the same). 5.2 CORRECTNESS OF MODEL REFINEMENT Given V∗ , our technique for model adjustment is guaranteed to choose a model M MAP ∈ M∗ by construction. If any constraint V ∗ ∈ V∗ is violated, the rejection sampling step of our technique 6 100 Comparing convergence of Different Techniques 80 70 60 50 40 30 Data Only Constraints Only Data+Constraints 20 10 0 1 2 3 4 5 Number of constraints used 6 −10 −12 −14 −16 −18 7 −20 Figure 7: Mean KLdivergence and one standard deviation for a 3 cause 3 test network on learning with data, constraints and data+constraints. Gibbs Sampling Stochastic Hill Climbing Greedy Sampling −8 Negative Log Likelihood of MAP Estimate Percentage of tests correctly predicted 90 0 1 2 3 10 10 10 10 Elapsed Time (plotted on log scale from 0 to 1500 seconds) Figure 8: Test Consistency for a 3 cause 3 test network on learning with data, constraints and data+constraints. Figure 9: Convergence rate comparison. would reject that set of parameters. To illustrate this, consider the network in Fig. 2. There are six parameters (four link reliabilities and two leak parameters). Let us fix the leak parameters and the link reliability from the first cause to each test. Now we can compute the posterior surface over the two variable parameters after discretizing each parameter in small steps and then calculating the posterior probability at each step as shown in Fig. 5. We can compare this surface with that obtained after Gibbs sampling using our technique as shown in Fig. 6. We can see that our technique recovers the posterior surface from which we can compute the MAP. We obtain the same MAP estimate with the stochastic hill climbing and greedy search algorithms. 5.3 EXPERIMENTAL RESULTS ON SYNTHETIC PROBLEMS We start by presenting our results on a 3-cause by 3-test fully-connected bipartite Bayes network. We assume that there exists some M ∗ ∈ M∗ that we want to learn given V+ . We use our technique to find M MAP . To evaluate M MAP , we first compute the constraints, V∗ for M ∗ to get the feasible region associated with the true model. Next, we sample 100 other models from this feasible region that are diagnostically equivalent. We compare these models with M MAP (after collecting 200 samples with non-informative priors for the parameters). We compute the KL-divergence of M MAP with respect to each sampled model. We expect KLdivergence to decrease as the number of constraints in V+ increases since the feasible region beMAP comes smaller. Figure 7 confirms this trend and shows that MDV+ has lower mean KL-divergence MAP MAP than MV+ , which has lower mean KL-divergence than MD . The data points in D are limited to the results of the diagnostic sessions needed to obtain V+ . As constraints increase, more data is available and so the results for the data-only approach also improve with increasing constraints. We also compare the test consistency when learning from data only, constraints only or both. Given a fixed number of constraints, we enumerate the unobserved trajectories, and then compute the highest ranked test using the learnt model and the sampled true models, for each trajectory. The test consistency is reported as a percentage, with 100% consistency indicating that the learned and true models had the same highest ranked tests on every trajectory. Figure 8 presents these percentatges for the greedy sampling technique (the results are similar for the other techniques). It again appears that learning parameters with both constraints and data is better than learning with only constraints, which is most of the times better than learning with only data. Figure 9 compares the convergence rate of each technique to find the MAP estimate. As expected, Stochastic Hill Climbing and Greedy Sampling take less time than Gibbs sampling to find parameter settings with high posterior probability. 5.4 EXPERIMENTAL RESULTS ON REAL-WORLD PROBLEMS We evaluate our technique on a real-world diagnostic network collected and reported by Agosta et al. [1], where the authors collected detailed session logs over a period of seven weeks in which the 7 KL−divergence of when computing joint over all tests 8 Figure 10: Diagnostic Bayesian network collected from user trials and pruned to retain sub-networks with at least one constraint Data Only Constraints Only Data+Constraints 7 6 5 4 3 2 1 6 8 10 12 14 16 Number of constraints used 18 20 22 Figure 11: KL divergence comparison as the number of constraints increases for the real world problem. entire diagnostic sequence was recorded. The sequences intermingle model building and querying phases. The model network structure was inferred from an expert’s sequence of positing causes and tests. Test-ranking constraints were deduced from the expert’s test query sequences once the network structure is established. The 157 sessions captured over the seven weeks resulted in a Bayes network with 115 tests, 82 root causes and 188 arcs. The network consists of several disconnected sub-networks, each identified with a symptom represented by the first test in the sequence, and all subsequent tests applied within the same subnet. There were 20 sessions from which we were able to observe trajectories with at least two tests, resulting in a total of 32 test constraints. We pruned our diagnostic network to remove the sub-networks with no constraints to get a Bayes network with 54 tests, 30 root causes, and 67 parameters divided in 7 sub-networks, as shown in Figure 10, on which we apply our model refinement technique to learn the parameters for each sub-network separately. Since we don’t have the true underlying network and the full set of constraints (more constraints could be observed in future diagnostic sessions), we treated the 32 constraints as if they were V∗ and the corresponding feasible region M∗ as if it contained models diagnostically equivalent to the unknown true model. Figure 11 reports the KL divergence between the models found by our algorithms and sampled models from M∗ as we increase the number of constraints. With such limited constraints and consequently large feasible regions, it is not surprising that the variation in KL divergence is large. Again, the MAP estimate based on both the constraints and the data has lower KL divergence than constraints only and data only. 6 CONCLUSION AND FUTURE WORK In summary, we presented an approach that can learn the parameters of a Bayes network based on constraints implied by test consistency and any data available. While several approaches exist to incorporate qualitative constraints in learning procedures, our work makes two important contributions: First, this is the first approach that exploits implicit constraints based on value of information assessments. Secondly it is the first approach that can handle non-convex constraints. We demonstrated the approach on synthetic data and on a real-world manufacturing diagnostic problem. Since data is generally sparse in diagnostics, this work makes an important advance to mitigate the model acquisition bottleneck, which has prevented the widespread application of diagnostic networks so far. In the future, it would be interesting to generalize this work to reinforcement learning in applications where data is sparse, but constraints may be inferred from expert interactions. Acknowledgments This work was supported by a grant from Intel Corporation. 8 References [1] John Mark Agosta, Omar Zia Khan, and Pascal Poupart. Evaluation results for a query-based diagnostics application. In The Fifth European Workshop on Probabilistic Graphical Models (PGM 10), Helsinki, Finland, September 13–15 2010. [2] Eric E. Altendorf, Angelo C. Restificar, and Thomas G. Dietterich. Learning from sparse data by exploiting monotonicity constraints. In Proceedings of Twenty First Conference on Uncertainty in Artificial Intelligence (UAI), Edinburgh, Scotland, July 2005. [3] Brigham S. Anderson and Andrew W. Moore. Fast information value for graphical models. In Proceedings of Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), pages 51–58, Vancouver, BC, Canada, December 2005. [4] Cassio P. de Campos and Qiang Ji. Improving Bayesian network parameter learning using constraints. In International Conference in Pattern Recognition (ICPR), Tampa, FL, USA, 2008. [5] Marek J. Druzdzel and Linda C. van der Gaag. Elicitation of probabilities for belief networks: combining qualitative and quantitative information. In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 141–148, Montreal, QC, Canada, 1995. [6] Ad J. Feelders. A new parameter learning method for Bayesian networks with qualitative influences. In Proceedings of Twenty Third International Conference on Uncertainty in Artificial Intelligence (UAI), Vancouver, BC, July 2007. [7] Mara Angeles Gil and Pedro Gil. A procedure to test the suitability of a factor for stratification in estimating diversity. Applied Mathematics and Computation, 43(3):221 – 229, 1991. [8] David Heckerman and John S. Breese. Causal independence for probability assessment and inference using bayesian networks. IEEE Systems, Man, and Cybernetics, 26(6):826–831, November 1996. [9] David Heckerman, John S. Breese, and Koos Rommelse. Decision-theoretic troubleshooting. Communications of the ACM, 38(3):49–56, 1995. [10] Ronald A. Howard. Information value theory. IEEE Transactions on Systems Science and Cybernetics, 2(1):22–26, August 1966. [11] Percy Liang, Michael I. Jordan, and Dan Klein. Learning from measurements in exponential families. In Proceedings of Twenty Sixth Annual International Conference on Machine Learning (ICML), Montreal, QC, Canada, June 2009. [12] Wenhui Liao and Qiang Ji. Learning Bayesian network parameters under incomplete data with domain knowledge. Pattern Recognition, 42:3046–3056, 2009. [13] Yi Mao and Guy Lebanon. Domain knowledge uncertainty and probabilistic parameter constraints. In Proceedings of Twenty Fifth Conference on Uncertainty in Artificial Intelligence (UAI), Montreal, QC, Canada, 2009. [14] Ryszard S. Michalski. A theory and methodology of inductive learning. Artificial Intelligence, 20:111–116, 1984. [15] Radu Stefan Niculescu, Tom M. Mitchell, and R. Bharat Rao. Bayesian network learning with parameter constraints. Journal of Machine Learning Research, 7:1357–1383, 2006. [16] Mark A. Peot and Ross D. Shachter. Learning from what you dont observe. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI), pages 439–446, Madison, WI, July 1998. [17] Michael P. Wellman. Fundamental concepts of qualitative probabilistic networks. Artificial Intelligence, 44(3):257–303, August 1990. [18] Frank Wittig and Anthony Jameson. Exploiting qualitative knowledge in the learning of conditional probabilities of Bayesian networks. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI), San Francisco, CA, July 2000. 9
3 0.87586093 145 nips-2011-Learning Eigenvectors for Free
Author: Wouter M. Koolen, Wojciech Kotlowski, Manfred K. Warmuth
Abstract: We extend the classical problem of predicting a sequence of outcomes from a finite alphabet to the matrix domain. In this extension, the alphabet of n outcomes is replaced by the set of all dyads, i.e. outer products uu where u is a vector in Rn of unit length. Whereas in the classical case the goal is to learn (i.e. sequentially predict as well as) the best multinomial distribution, in the matrix case we desire to learn the density matrix that best explains the observed sequence of dyads. We show how popular online algorithms for learning a multinomial distribution can be extended to learn density matrices. Intuitively, learning the n2 parameters of a density matrix is much harder than learning the n parameters of a multinomial distribution. Completely surprisingly, we prove that the worst-case regrets of certain classical algorithms and their matrix generalizations are identical. The reason is that the worst-case sequence of dyads share a common eigensystem, i.e. the worst case regret is achieved in the classical case. So these matrix algorithms learn the eigenvectors without any regret. 1
4 0.87115985 13 nips-2011-A blind sparse deconvolution method for neural spike identification
Author: Chaitanya Ekanadham, Daniel Tranchina, Eero P. Simoncelli
Abstract: We consider the problem of estimating neural spikes from extracellular voltage recordings. Most current methods are based on clustering, which requires substantial human supervision and systematically mishandles temporally overlapping spikes. We formulate the problem as one of statistical inference, in which the recorded voltage is a noisy sum of the spike trains of each neuron convolved with its associated spike waveform. Joint maximum-a-posteriori (MAP) estimation of the waveforms and spikes is then a blind deconvolution problem in which the coefficients are sparse. We develop a block-coordinate descent procedure to approximate the MAP solution, based on our recently developed continuous basis pursuit method. We validate our method on simulated data as well as real data for which ground truth is available via simultaneous intracellular recordings. In both cases, our method substantially reduces the number of missed spikes and false positives when compared to a standard clustering algorithm, primarily by recovering overlapping spikes. The method offers a fully automated alternative to clustering methods that is less susceptible to systematic errors. 1
5 0.78851432 262 nips-2011-Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation
Author: Cho-jui Hsieh, Inderjit S. Dhillon, Pradeep K. Ravikumar, Mátyás A. Sustik
Abstract: The 1 regularized Gaussian maximum likelihood estimator has been shown to have strong statistical guarantees in recovering a sparse inverse covariance matrix, or alternatively the underlying graph structure of a Gaussian Markov Random Field, from very limited samples. We propose a novel algorithm for solving the resulting optimization problem which is a regularized log-determinant program. In contrast to other state-of-the-art methods that largely use first order gradient information, our algorithm is based on Newton’s method and employs a quadratic approximation, but with some modifications that leverage the structure of the sparse Gaussian MLE problem. We show that our method is superlinearly convergent, and also present experimental results using synthetic and real application data that demonstrate the considerable improvements in performance of our method when compared to other state-of-the-art methods.
6 0.6751104 133 nips-2011-Inferring spike-timing-dependent plasticity from spike train data
7 0.63675666 249 nips-2011-Sequence learning with hidden units in spiking neural networks
8 0.62063605 135 nips-2011-Information Rates and Optimal Decoding in Large Neural Populations
9 0.57863241 2 nips-2011-A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm
10 0.54386938 86 nips-2011-Empirical models of spiking in neural populations
11 0.5392682 99 nips-2011-From Stochastic Nonlinear Integrate-and-Fire to Generalized Linear Models
12 0.53759885 292 nips-2011-Two is better than one: distinct roles for familiarity and recollection in retrieving palimpsest memories
13 0.52683455 75 nips-2011-Dynamical segmentation of single trials from population neural data
14 0.51782453 219 nips-2011-Predicting response time and error rates in visual search
15 0.51464504 23 nips-2011-Active dendrites: adaptation to spike-based communication
16 0.5144521 102 nips-2011-Generalised Coupled Tensor Factorisation
17 0.4982397 158 nips-2011-Learning unbelievable probabilities
18 0.49464321 57 nips-2011-Comparative Analysis of Viterbi Training and Maximum Likelihood Estimation for HMMs
19 0.48318827 37 nips-2011-Analytical Results for the Error in Filtering of Gaussian Processes
20 0.4821755 183 nips-2011-Neural Reconstruction with Approximate Message Passing (NeuRAMP)