nips nips2002 nips2002-60 knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Liam Paninski
Abstract: vVe analyze the convergence properties of three spike-triggered data analysis techniques. All of our results are obtained in the setting of a (possibly multidimensional) linear-nonlinear (LN) cascade model for stimulus-driven neural activity. We start by giving exact rate of convergence results for the common spike-triggered average (STA) technique. Next, we analyze a spike-triggered covariance method, variants of which have been recently exploited successfully by Bialek, Simoncelli, and colleagues. These first two methods suffer from extraneous conditions on their convergence; therefore, we introduce an estimator for the LN model parameters which is designed to be consistent under general conditions. We provide an algorithm for the computation of this estimator and derive its rate of convergence. We close with a brief discussion of the efficiency of these estimators and an application to data recorded from the primary motor cortex of awake, behaving primates. 1
Reference: text
sentIndex sentText sentNum sentScore
1 edu/rvliam Abstract vVe analyze the convergence properties of three spike-triggered data analysis techniques. [sent-6, score-0.376]
2 All of our results are obtained in the setting of a (possibly multidimensional) linear-nonlinear (LN) cascade model for stimulus-driven neural activity. [sent-7, score-0.17]
3 We start by giving exact rate of convergence results for the common spike-triggered average (STA) technique. [sent-8, score-0.374]
4 Next, we analyze a spike-triggered covariance method, variants of which have been recently exploited successfully by Bialek, Simoncelli, and colleagues. [sent-9, score-0.461]
5 These first two methods suffer from extraneous conditions on their convergence; therefore, we introduce an estimator for the LN model parameters which is designed to be consistent under general conditions. [sent-10, score-0.346]
6 We provide an algorithm for the computation of this estimator and derive its rate of convergence. [sent-11, score-0.197]
7 We close with a brief discussion of the efficiency of these estimators and an application to data recorded from the primary motor cortex of awake, behaving primates. [sent-12, score-0.723]
8 1 Introduction Systems-level neuroscientists have a few favorite problems, the most prominent of which is the "what" part of the neural coding problem: what makes a given neuron in a particular part of the brain fire? [sent-13, score-0.744]
9 In more technical language, we want to know about the conditional probability distributions P(spikelX = x), the probability that our cell emits a spike, given that some observable signal X in the world takes value x. [sent-14, score-0.7]
10 Because data is expensive, neuroscientists typically postulate a functional form for this collection of conditional distributions, and then fit experimental data to these functional models, in lieu of attempting to directly estimate P(spikelX = x) for each possible x. [sent-15, score-1.104]
11 In this paper, we analyze one such phenomenological model whose popularity seems to be on the rise: p(spikelx) = f( < k1 , x>, < k2 , x>, . [sent-16, score-0.486]
12 (1) Here f is some arbitrary nonconstant, ~m-measurable, [O,l]-valued function, and {k i } are some linearly independent elements of the dual space, X', of some topological vector space, X - the space of possible "input signals. [sent-20, score-0.303]
13 " Interpret f as a regular x conditional distribution. [sent-21, score-0.188]
wordName wordTfidf (topN-words)
[('spikelx', 0.491), ('neuroscientists', 0.285), ('liam', 0.26), ('analyze', 0.175), ('convergence', 0.158), ('ln', 0.157), ('lieu', 0.143), ('sta', 0.13), ('km', 0.121), ('phenomenological', 0.121), ('popularity', 0.121), ('paninski', 0.121), ('conditional', 0.119), ('fire', 0.114), ('behaving', 0.114), ('ki', 0.114), ('emits', 0.114), ('edu', 0.114), ('cascade', 0.114), ('efficiency', 0.114), ('estimator', 0.113), ('neuron', 0.111), ('postulate', 0.109), ('awake', 0.109), ('bialek', 0.109), ('simoncelli', 0.104), ('projects', 0.104), ('attempting', 0.096), ('prominent', 0.096), ('topological', 0.096), ('suffer', 0.096), ('spanned', 0.096), ('fit', 0.087), ('motor', 0.087), ('observable', 0.083), ('estimators', 0.083), ('variants', 0.081), ('functional', 0.08), ('york', 0.078), ('exploited', 0.077), ('dual', 0.075), ('brief', 0.073), ('expensive', 0.072), ('multidimensional', 0.072), ('signal', 0.071), ('interpret', 0.069), ('regular', 0.069), ('rise', 0.066), ('ny', 0.065), ('spike', 0.062), ('recorded', 0.061), ('subspace', 0.061), ('language', 0.06), ('coding', 0.059), ('cortex', 0.058), ('want', 0.056), ('giving', 0.056), ('cell', 0.055), ('successfully', 0.055), ('collection', 0.053), ('roughly', 0.051), ('primary', 0.05), ('possibly', 0.05), ('rate', 0.049), ('linearly', 0.048), ('designed', 0.048), ('know', 0.047), ('part', 0.046), ('brain', 0.045), ('onto', 0.045), ('distributions', 0.045), ('world', 0.045), ('seems', 0.045), ('properties', 0.043), ('exact', 0.042), ('covariance', 0.042), ('start', 0.041), ('center', 0.039), ('derive', 0.035), ('takes', 0.033), ('http', 0.033), ('consistent', 0.033), ('technical', 0.032), ('close', 0.031), ('recently', 0.031), ('techniques', 0.03), ('elements', 0.029), ('introduce', 0.029), ('typically', 0.029), ('application', 0.028), ('setting', 0.028), ('neural', 0.028), ('arbitrary', 0.028), ('common', 0.028), ('makes', 0.028), ('space', 0.027), ('conditions', 0.027), ('whose', 0.024), ('discussion', 0.024), ('experimental', 0.023)]
simIndex simValue paperId paperTitle
same-paper 1 1.0 60 nips-2002-Convergence Properties of Some Spike-Triggered Analysis Techniques
Author: Liam Paninski
Abstract: vVe analyze the convergence properties of three spike-triggered data analysis techniques. All of our results are obtained in the setting of a (possibly multidimensional) linear-nonlinear (LN) cascade model for stimulus-driven neural activity. We start by giving exact rate of convergence results for the common spike-triggered average (STA) technique. Next, we analyze a spike-triggered covariance method, variants of which have been recently exploited successfully by Bialek, Simoncelli, and colleagues. These first two methods suffer from extraneous conditions on their convergence; therefore, we introduce an estimator for the LN model parameters which is designed to be consistent under general conditions. We provide an algorithm for the computation of this estimator and derive its rate of convergence. We close with a brief discussion of the efficiency of these estimators and an application to data recorded from the primary motor cortex of awake, behaving primates. 1
2 0.084121495 171 nips-2002-Reconstructing Stimulus-Driven Neural Networks from Spike Times
Author: Duane Q. Nykamp
Abstract: We present a method to distinguish direct connections between two neurons from common input originating from other, unmeasured neurons. The distinction is computed from the spike times of the two neurons in response to a white noise stimulus. Although the method is based on a highly idealized linear-nonlinear approximation of neural response, we demonstrate via simulation that the approach can work with a more realistic, integrate-and-fire neuron model. We propose that the approach exemplified by this analysis may yield viable tools for reconstructing stimulus-driven neural networks from data gathered in neurophysiology experiments.
3 0.083102986 141 nips-2002-Maximally Informative Dimensions: Analyzing Neural Responses to Natural Signals
Author: Tatyana Sharpee, Nicole C. Rust, William Bialek
Abstract: unkown-abstract
4 0.072175384 187 nips-2002-Spikernels: Embedding Spiking Neurons in Inner-Product Spaces
Author: Lavi Shpigelman, Yoram Singer, Rony Paz, Eilon Vaadia
Abstract: Inner-product operators, often referred to as kernels in statistical learning, define a mapping from some input space into a feature space. The focus of this paper is the construction of biologically-motivated kernels for cortical activities. The kernels we derive, termed Spikernels, map spike count sequences into an abstract vector space in which we can perform various prediction tasks. We discuss in detail the derivation of Spikernels and describe an efficient algorithm for computing their value on any two sequences of neural population spike counts. We demonstrate the merits of our modeling approach using the Spikernel and various standard kernels for the task of predicting hand movement velocities from cortical recordings. In all of our experiments all the kernels we tested outperform the standard scalar product used in regression with the Spikernel consistently achieving the best performance. 1
5 0.061884806 43 nips-2002-Binary Coding in Auditory Cortex
Author: Michael R. Deweese, Anthony M. Zador
Abstract: Cortical neurons have been reported to use both rate and temporal codes. Here we describe a novel mode in which each neuron generates exactly 0 or 1 action potentials, but not more, in response to a stimulus. We used cell-attached recording, which ensured single-unit isolation, to record responses in rat auditory cortex to brief tone pips. Surprisingly, the majority of neurons exhibited binary behavior with few multi-spike responses; several dramatic examples consisted of exactly one spike on 100% of trials, with no trial-to-trial variability in spike count. Many neurons were tuned to stimulus frequency. Since individual trials yielded at most one spike for most neurons, the information about stimulus frequency was encoded in the population, and would not have been accessible to later stages of processing that only had access to the activity of a single unit. These binary units allow a more efficient population code than is possible with conventional rate coding units, and are consistent with a model of cortical processing in which synchronous packets of spikes propagate stably from one neuronal population to the next. 1 Binary coding in auditory cortex We recorded responses of neurons in the auditory cortex of anesthetized rats to pure-tone pips of different frequencies [1, 2]. Each pip was presented repeatedly, allowing us to assess the variability of the neural response to multiple presentations of each stimulus. We first recorded multi-unit activity with conventional tungsten electrodes (Fig. 1a). The number of spikes in response to each pip fluctuated markedly from one trial to the next (Fig. 1e), as though governed by a random mechanism such as that generating the ticks of a Geiger counter. Highly variable responses such as these, which are at least as variable as a Poisson process, are the norm in the cortex [3-7], and have contributed to the widely held view that cortical spike trains are so noisy that only the average firing rate can be used to encode stimuli. Because we were recording the activity of an unknown number of neurons, we could not be sure whether the strong trial-to-trial fluctuations reflected the underlying variability of the single units. We therefore used an alternative technique, cell- a b Single-unit recording method 5mV Multi-unit 1sec Raw cellattached voltage 10 kHz c Single-unit . . . . .. .. ... . . .... . ... . Identified spikes Threshold e 28 kHz d Single-unit 80 120 160 200 Time (msec) N = 29 tones 3 2 1 Poisson N = 11 tones ry 40 4 na bi 38 kHz 0 Response variance/mean (spikes/trial) High-pass filtered 0 0 1 2 3 Mean response (spikes/trial) Figure 1: Multi-unit spiking activity was highly variable, but single units obeyed binomial statistics. a Multi-unit spike rasters from a conventional tungsten electrode recording showed high trial-to-trial variability in response to ten repetitions of the same 50 msec pure tone stimulus (bottom). Darker hash marks indicate spike times within the response period, which were used in the variability analysis. b Spikes recorded in cell-attached mode were easily identified from the raw voltage trace (top) by applying a high-pass filter (bottom) and thresholding (dark gray line). Spike times (black squares) were assigned to the peaks of suprathreshold segments. c Spike rasters from a cell-attached recording of single-unit responses to 25 repetitions of the same tone consisted of exactly one well-timed spike per trial (latency standard deviation = 1.0 msec), unlike the multi-unit responses (Fig. 1a). Under the Poisson assumption, this would have been highly unlikely (P ~ 10 -11). d The same neuron as in Fig. 1c responds with lower probability to repeated presentations of a different tone, but there are still no multi-spike responses. e We quantified response variability for each tone by dividing the variance in spike count by the mean spike count across all trials for that tone. Response variability for multi-unit tungsten recording (open triangles) was high for each of the 29 tones (out of 32) that elicited at least one spike on one trial. All but one point lie above one (horizontal gray line), which is the value produced by a Poisson process with any constant or time varying event rate. Single unit responses recorded in cell-attached mode were far less variable (filled circles). Ninety one percent (10/11) of the tones that elicited at least one spike from this neuron produced no multi-spike responses in 25 trials; the corresponding points fall on the diagonal line between (0,1) and (1,0), which provides a strict lower bound on the variability for any response set with a mean between 0 and 1. No point lies above one. attached recording with a patch pipette [8, 9], in order to ensure single unit isolation (Fig. 1b). This recording mode minimizes both of the main sources of error in spike detection: failure to detect a spike in the unit under observation (false negatives), and contamination by spikes from nearby neurons (false positives). It also differs from conventional extracellular recording methods in its selection bias: With cell- attached recording neurons are selected solely on the basis of the experimenter’s ability to form a seal, rather than on the basis of neuronal activity and responsiveness to stimuli as in conventional methods. Surprisingly, single unit responses were far more orderly than suggested by the multi-unit recordings; responses typically consisted of either 0 or 1 spikes per trial, and not more (Fig. 1c-e). In the most dramatic examples, each presentation of the same tone pip elicited exactly one spike (Fig. 1c). In most cases, however, some presentations failed to elicit a spike (Fig. 1d). Although low-variability responses have recently been observed in the cortex [10, 11] and elsewhere [12, 13], the binary behavior described here has not previously been reported for cortical neurons. a 1.4 N = 3055 response sets b 1.2 1 Poisson 28 kHz - 100 msec 0.8 0.6 0.4 0.2 0 0 ry na bi Response variance/mean (spikes/trial) The majority of the neurons (59%) in our study for which statistical significance could be assessed (at the p<0.001 significance level; see Fig. 2, caption) showed noisy binary behavior—“binary” because neurons produced either 0 or 1 spikes, and “noisy” because some stimuli elicited both single spikes and failures. In a substantial fraction of neurons, however, the responses showed more variability. We found no correlation between neuronal variability and cortical layer (inferred from the depth of the recording electrode), cortical area (inside vs. outside of area A1) or depth of anesthesia. Moreover, the binary mode of spiking was not due to the brevity (25 msec) of the stimuli; responses that were binary for short tones were comparably binary when longer (100 msec) tones were used (Fig. 2b). Not assessable Not significant Significant (p<0.001) 0.2 0.4 0.6 0.8 1 1.2 Mean response (spikes/trial) 28 kHz - 25 msec 1.4 0 40 80 120 160 Time (msec) 200 Figure 2: Half of the neuronal population exhibited binary firing behavior. a Of the 3055 sets of responses to 25 msec tones, 2588 (gray points) could not be assessed for significance at the p<0.001 level, 225 (open circles) were not significantly binary, and 242 were significantly binary (black points; see Identification methods for group statistics below). All points were jittered slightly so that overlying points could be seen in the figure. 2165 response sets contained no multi-spike responses; the corresponding points fell on the line from [0,1] to [1,0]. b The binary nature of single unit responses was insensitive to tone duration, even for frequencies that elicited the largest responses. Twenty additional spike rasters from the same neuron (and tone frequency) as in Fig. 1c contain no multi-spike responses whether in response to 100 msec tones (above) or 25 msec tones (below). Across the population, binary responses were as prevalent for 100 msec tones as for 25 msec tones (see Identification methods for group statistics). In many neurons, binary responses showed high temporal precision, with latencies sometimes exhibiting standard deviations as low as 1 msec (Fig. 3; see also Fig. 1c), comparable to previous observations in the auditory cortex [14], and only slightly more precise than in monkey visual area MT [5]. High temporal precision was positively correlated with high response probability (Fig. 3). a b N = (44 cells)x(32 tones) 14 N = 32 tones 12 30 Jitter (msec) Jitter (msec) 40 10 8 6 20 10 4 2 0 0 0 0.2 0.4 0.6 0.8 Mean response (spikes/trial) 1 0 0.4 0.8 1.2 1.6 Mean response (spikes/trial) 2 Figure 3: Trial-to-trial variability in latency of response to repeated presentations of the same tone decreased with increasing response probability. a Scatter plot of standard deviation of latency vs. mean response for 25 presentations each of 32 tones for a different neuron as in Figs. 1 and 2 (gray line is best linear fit). Rasters from 25 repeated presentations of a low response tone (upper left inset, which corresponds to left-most data point) display much more variable latencies than rasters from a high response tone (lower right inset; corresponds to right-most data point). b The negative correlation between latency variability and response size was present on average across the population of 44 neurons described in Identification methods for group statistics (linear fit, gray). The low trial-to-trial variability ruled out the possibility that the firing statistics could be accounted for by a simple rate-modulated Poisson process (Fig. 4a1,a2). In other systems, low variability has sometimes been modeled as a Poisson process followed by a post-spike refractory period [10, 12]. In our system, however, the range in latencies of evoked binary responses was often much greater than the refractory period, which could not have been longer than the 2 msec inter-spike intervals observed during epochs of spontaneous spiking, indicating that binary spiking did not result from any intrinsic property of the spike generating mechanism (Fig. 4a3). Moreover, a single stimulus-evoked spike could suppress subsequent spikes for as long as hundreds of milliseconds (e.g. Figs. 1d,4d), supporting the idea that binary spiking arises through a circuit-level, rather than a single-neuron, mechanism. Indeed, the fact that this suppression is observed even in the cortex of awake animals [15] suggests that binary spiking is not a special property of the anesthetized state. It seems surprising that binary spiking in the cortex has not previously been remarked upon. In the auditory cortex the explanation may be in part technical: Because firing rates in the auditory cortex tend to be low, multi-unit recording is often used to maximize the total amount of data collected. Moreover, our use of cell-attached recording minimizes the usual bias toward responsive or active neurons. Such explanations are not, however, likely to account for the failure to observe binary spiking in the visual cortex, where spike count statistics have been scrutinized more closely [3-7]. One possibility is that this reflects a fundamental difference between the auditory and visual systems. An alternative interpretation— a1 b Response probability 100 spikes/s 2 kHz Poisson simulation c 100 200 300 400 Time (msec) 500 20 Ratio of pool sizes a2 0 16 12 8 4 0 a3 Poisson with refractory period 0 40 80 120 160 200 Time (msec) d Response probability PSTH 0.2 0.4 0.6 0.8 1 Mean spike count per neuron 1 0.8 N = 32 tones 0.6 0.4 0.2 0 2.0 3.8 7.1 13.2 24.9 46.7 Tone frequency (kHz) Figure 4: a The lack of multi-spike responses elicited by the neuron shown in Fig. 3a were not due to an absolute refractory period since the range of latencies for many tones, like that shown here, was much greater than any reasonable estimate for the neuron’s refractory period. (a1) Experimentally recorded responses. (a2) Using the smoothed post stimulus time histogram (PSTH; bottom) from the set of responses in Fig. 4a, we generated rasters under the assumption of Poisson firing. In this representative example, four double-spike responses (arrows at left) were produced in 25 trials. (a3) We then generated rasters assuming that the neuron fired according to a Poisson process subject to a hard refractory period of 2 msec. Even with a refractory period, this representative example includes one triple- and three double-spike responses. The minimum interspike-interval during spontaneous firing events was less than two msec for five of our neurons, so 2 msec is a conservative upper bound for the refractory period. b. Spontaneous activity is reduced following high-probability responses. The PSTH (top; 0.25 msec bins) of the combined responses from the 25% (8/32) of tones that elicited the largest responses from the same neuron as in Figs. 3a and 4a illustrates a preclusion of spontaneous and evoked activity for over 200 msec following stimulation. The PSTHs from progressively less responsive groups of tones show progressively less preclusion following stimulation. c Fewer noisy binary neurons need to be pooled to achieve the same “signal-to-noise ratio” (SNR; see ref. [24]) as a collection of Poisson neurons. The ratio of the number of Poisson to binary neurons required to achieve the same SNR is plotted against the mean number of spikes elicited per neuron following stimulation; here we have defined the SNR to be the ratio of the mean spike count to the standard deviation of the spike count. d Spike probability tuning curve for the same neuron as in Figs. 1c-e and 2b fit to a Gaussian in tone frequency. and one that we favor—is that the difference rests not in the sensory modality, but instead in the difference between the stimuli used. In this view, the binary responses may not be limited to the auditory cortex; neurons in visual and other sensory cortices might exhibit similar responses to the appropriate stimuli. For example, the tone pips we used might be the auditory analog of a brief flash of light, rather than the oriented moving edges or gratings usually used to probe the primary visual cortex. Conversely, auditory stimuli analogous to edges or gratings [16, 17] may be more likely to elicit conventional, rate-modulated Poisson responses in the auditory cortex. Indeed, there may be a continuum between binary and Poisson modes. Thus, even in conventional rate-modulated responses, the first spike is often privileged in that it carries most of the information in the spike train [5, 14, 18]. The first spike may be particularly important as a means of rapidly signaling stimulus transients. Binary responses suggest a mode that complements conventional rate coding. In the simplest rate-coding model, a stimulus parameter (such as the frequency of a tone) governs only the rate at which a neuron generates spikes, but not the detailed positions of the spikes; the actual spike train itself is an instantiation of a random process (such as a Poisson process). By contrast, in the binomial model, the stimulus parameter (frequency) is encoded as the probability of firing (Fig. 4d). Binary coding has implications for cortical computation. In the rate coding model, stimulus encoding is “ergodic”: a stimulus parameter can be read out either by observing the activity of one neuron for a long time, or a population for a short time. By contrast, in the binary model the stimulus value can be decoded only by observing a neuronal population, so that there is no benefit to integrating over long time periods (cf. ref. [19]). One advantage of binary encoding is that it allows the population to signal quickly; the most compact message a neuron can send is one spike [20]. Binary coding is also more efficient in the context of population coding, as quantified by the signal-to-noise ratio (Fig. 4c). The precise organization of both spike number and time we have observed suggests that cortical activity consists, at least under some conditions, of packets of spikes synchronized across populations of neurons. Theoretical work [21-23] has shown how such packets can propagate stably from one population to the next, but only if neurons within each population fire at most one spike per packet; otherwise, the number of spikes per packet—and hence the width of each packet—grows at each propagation step. Interestingly, one prediction of stable propagation models is that spike probability should be related to timing precision, a prediction born out by our observations (Fig. 3). The role of these packets in computation remains an open question. 2 Identification methods for group statistics We recorded responses to 32 different 25 msec tones from each of 175 neurons from the auditory cortices of 16 Sprague-Dawley rats; each tone was repeated between 5 and 75 times (mean = 19). Thus our ensemble consisted of 32x175=5600 response sets, with between 5 and 75 samples in each set. Of these, 3055 response sets contained at least one spike on at least on trial. For each response set, we tested the hypothesis that the observed variability was significantly lower than expected from the null hypothesis of a Poisson process. The ability to assess significance depended on two parameters: the sample size (5-75) and the firing probability. Intuitively, the dependence on firing probability arises because at low firing rates most responses produce only trials with 0 or 1 spikes under both the Poisson and binary models; only at high firing rates do the two models make different predictions, since in that case the Poisson model includes many trials with 2 or even 3 spikes while the binary model generates only solitary spikes (see Fig. 4a1,a2). Using a stringent significance criterion of p<0.001, 467 response sets had a sufficient number of repeats to assess significance, given the observed firing probability. Of these, half (242/467=52%) were significantly less variable than expected by chance, five hundred-fold higher than the 467/1000=0.467 response sets expected, based on the 0.001 significance criterion, to yield a binary response set. Seventy-two neurons had at least one response set for which significance could be assessed, and of these, 49 neurons (49/72=68%) had at least one significantly sub-Poisson response set. Of this population of 49 neurons, five achieved low variability through repeatable bursty behavior (e.g., every spike count was either 0 or 3, but not 1 or 2) and were excluded from further analysis. The remaining 44 neurons formed the basis for the group statistics analyses shown in Figs. 2a and 3b. Nine of these neurons were subjected to an additional protocol consisting of at least 10 presentations each of 100 msec tones and 25 msec tones of all 32 frequencies. Of the 100 msec stimulation response sets, 44 were found to be significantly sub-Poisson at the p<0.05 level, in good agreement with the 43 found to be significant among the responses to 25 msec tones. 3 Bibliography 1. Kilgard, M.P. and M.M. Merzenich, Cortical map reorganization enabled by nucleus basalis activity. Science, 1998. 279(5357): p. 1714-8. 2. Sally, S.L. and J.B. Kelly, Organization of auditory cortex in the albino rat: sound frequency. J Neurophysiol, 1988. 59(5): p. 1627-38. 3. Softky, W.R. and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci, 1993. 13(1): p. 334-50. 4. Stevens, C.F. and A.M. Zador, Input synchrony and the irregular firing of cortical neurons. Nat Neurosci, 1998. 1(3): p. 210-7. 5. Buracas, G.T., A.M. Zador, M.R. DeWeese, and T.D. Albright, Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron, 1998. 20(5): p. 959-69. 6. Shadlen, M.N. and W.T. Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci, 1998. 18(10): p. 3870-96. 7. Tolhurst, D.J., J.A. Movshon, and A.F. Dean, The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res, 1983. 23(8): p. 775-85. 8. Otmakhov, N., A.M. Shirke, and R. Malinow, Measuring the impact of probabilistic transmission on neuronal output. Neuron, 1993. 10(6): p. 1101-11. 9. Friedrich, R.W. and G. Laurent, Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science, 2001. 291(5505): p. 889-94. 10. Kara, P., P. Reinagel, and R.C. Reid, Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 2000. 27(3): p. 635-46. 11. Gur, M., A. Beylin, and D.M. Snodderly, Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci, 1997. 17(8): p. 2914-20. 12. Berry, M.J., D.K. Warland, and M. Meister, The structure and precision of retinal spike trains. Proc Natl Acad Sci U S A, 1997. 94(10): p. 5411-6. 13. de Ruyter van Steveninck, R.R., G.D. Lewen, S.P. Strong, R. Koberle, and W. Bialek, Reproducibility and variability in neural spike trains. Science, 1997. 275(5307): p. 1805-8. 14. Heil, P., Auditory cortical onset responses revisited. I. First-spike timing. J Neurophysiol, 1997. 77(5): p. 2616-41. 15. Lu, T., L. Liang, and X. Wang, Temporal and rate representations of timevarying signals in the auditory cortex of awake primates. Nat Neurosci, 2001. 4(11): p. 1131-8. 16. Kowalski, N., D.A. Depireux, and S.A. Shamma, Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol, 1996. 76(5): p. 350323. 17. deCharms, R.C., D.T. Blake, and M.M. Merzenich, Optimizing sound features for cortical neurons. Science, 1998. 280(5368): p. 1439-43. 18. Panzeri, S., R.S. Petersen, S.R. Schultz, M. Lebedev, and M.E. Diamond, The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 2001. 29(3): p. 769-77. 19. Britten, K.H., M.N. Shadlen, W.T. Newsome, and J.A. Movshon, The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci, 1992. 12(12): p. 4745-65. 20. Delorme, A. and S.J. Thorpe, Face identification using one spike per neuron: resistance to image degradations. Neural Netw, 2001. 14(6-7): p. 795-803. 21. Diesmann, M., M.O. Gewaltig, and A. Aertsen, Stable propagation of synchronous spiking in cortical neural networks. Nature, 1999. 402(6761): p. 529-33. 22. Marsalek, P., C. Koch, and J. Maunsell, On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A, 1997. 94(2): p. 735-40. 23. Kistler, W.M. and W. Gerstner, Stable propagation of activity pulses in populations of spiking neurons. Neural Comp., 2002. 14: p. 987-997. 24. Zohary, E., M.N. Shadlen, and W.T. Newsome, Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 1994. 370(6485): p. 140-3. 25. Abbott, L.F. and P. Dayan, The effect of correlated variability on the accuracy of a population code. Neural Comput, 1999. 11(1): p. 91-101.
6 0.058811314 76 nips-2002-Dynamical Constraints on Computing with Spike Timing in the Cortex
7 0.056813158 116 nips-2002-Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior
8 0.056794494 9 nips-2002-A Minimal Intervention Principle for Coordinated Movement
9 0.053958535 28 nips-2002-An Information Theoretic Approach to the Functional Classification of Neurons
10 0.050937414 77 nips-2002-Effective Dimension and Generalization of Kernel Learning
11 0.048218813 148 nips-2002-Morton-Style Factorial Coding of Color in Primary Visual Cortex
12 0.047777977 184 nips-2002-Spectro-Temporal Receptive Fields of Subthreshold Responses in Auditory Cortex
13 0.047065362 44 nips-2002-Binary Tuning is Optimal for Neural Rate Coding with High Temporal Resolution
14 0.046348855 204 nips-2002-VIBES: A Variational Inference Engine for Bayesian Networks
15 0.043874301 50 nips-2002-Circuit Model of Short-Term Synaptic Dynamics
16 0.042674337 75 nips-2002-Dynamical Causal Learning
17 0.040079422 136 nips-2002-Linear Combinations of Optic Flow Vectors for Estimating Self-Motion - a Real-World Test of a Neural Model
18 0.03866588 153 nips-2002-Neural Decoding of Cursor Motion Using a Kalman Filter
19 0.03860813 193 nips-2002-Temporal Coherence, Natural Image Sequences, and the Visual Cortex
20 0.035458487 102 nips-2002-Hidden Markov Model of Cortical Synaptic Plasticity: Derivation of the Learning Rule
topicId topicWeight
[(0, -0.115), (1, 0.079), (2, 0.008), (3, -0.034), (4, -0.013), (5, -0.024), (6, -0.023), (7, 0.013), (8, -0.027), (9, 0.039), (10, -0.003), (11, -0.04), (12, 0.045), (13, -0.015), (14, -0.048), (15, 0.012), (16, -0.008), (17, -0.001), (18, -0.093), (19, -0.011), (20, -0.045), (21, 0.005), (22, -0.021), (23, -0.036), (24, 0.0), (25, -0.024), (26, -0.001), (27, -0.029), (28, 0.017), (29, 0.023), (30, -0.06), (31, 0.028), (32, 0.006), (33, 0.072), (34, -0.033), (35, 0.023), (36, -0.066), (37, -0.144), (38, 0.024), (39, 0.031), (40, 0.03), (41, -0.117), (42, 0.092), (43, -0.028), (44, 0.081), (45, -0.015), (46, -0.002), (47, -0.074), (48, 0.158), (49, -0.073)]
simIndex simValue paperId paperTitle
same-paper 1 0.94407296 60 nips-2002-Convergence Properties of Some Spike-Triggered Analysis Techniques
Author: Liam Paninski
Abstract: vVe analyze the convergence properties of three spike-triggered data analysis techniques. All of our results are obtained in the setting of a (possibly multidimensional) linear-nonlinear (LN) cascade model for stimulus-driven neural activity. We start by giving exact rate of convergence results for the common spike-triggered average (STA) technique. Next, we analyze a spike-triggered covariance method, variants of which have been recently exploited successfully by Bialek, Simoncelli, and colleagues. These first two methods suffer from extraneous conditions on their convergence; therefore, we introduce an estimator for the LN model parameters which is designed to be consistent under general conditions. We provide an algorithm for the computation of this estimator and derive its rate of convergence. We close with a brief discussion of the efficiency of these estimators and an application to data recorded from the primary motor cortex of awake, behaving primates. 1
2 0.54209858 141 nips-2002-Maximally Informative Dimensions: Analyzing Neural Responses to Natural Signals
Author: Tatyana Sharpee, Nicole C. Rust, William Bialek
Abstract: unkown-abstract
3 0.47685838 44 nips-2002-Binary Tuning is Optimal for Neural Rate Coding with High Temporal Resolution
Author: Matthias Bethge, David Rotermund, Klaus Pawelzik
Abstract: Here we derive optimal gain functions for minimum mean square reconstruction from neural rate responses subjected to Poisson noise. The shape of these functions strongly depends on the length T of the time window within which spikes are counted in order to estimate the underlying firing rate. A phase transition towards pure binary encoding occurs if the maximum mean spike count becomes smaller than approximately three provided the minimum firing rate is zero. For a particular function class, we were able to prove the existence of a second-order phase transition analytically. The critical decoding time window length obtained from the analytical derivation is in precise agreement with the numerical results. We conclude that under most circumstances relevant to information processing in the brain, rate coding can be better ascribed to a binary (low-entropy) code than to the other extreme of rich analog coding. 1 Optimal neuronal gain functions for short decoding time windows The use of action potentials (spikes) as a means of communication is the striking feature of neurons in the central nervous system. Since the discovery by Adrian [1] that action potentials are generated by sensory neurons with a frequency that is substantially determined by the stimulus, the idea of rate coding has become a prevalent paradigm in neuroscience [2]. In particular, today the coding properties of many neurons from various areas in the cortex have been characterized by tuning curves, which describe the average firing rate response as a function of certain stimulus parameters. This way of description is closely related to the idea of analog coding, which constitutes the basis for many neural network models. Reliabl v inference from the observed number of spikes about the underlying firing rate of a neuronal response, however, requires a sufficiently long time interval, while integration times of neurons in vivo [3] as well as reaction times of humans or animals when performing classification tasks [4, 5] are known to be rather short. Therefore, it is important to understand, how neural rate coding is affected by a limited time window available for decoding. While rate codes are usually characterized by tuning functions relating the intensity of the ,f * http://www.neuro.urn-bremen.dermbethge neuronal response to a particular stimulus parameter, the question, how relevant the idea of analog coding actually is does not depend on the particular entity represented by a neuron. Instead it suffices to determine the shape of the gain function, which displays the mean firing rate as a function of the actual analog signal to be sent to subsequent neurons. Here we seek for optimal gain functions that minimize the minimum average squared reconstruction error for a uniform source signal transmitted through a Poisson channel as a function of the maximum mean number of spikes. In formal terms, the issue is to optimally encode a real random variable x in the number of pulses emitted by a neuron within a certain time window. Thereby, x stands for the intended analog output of the neuron that shall be signaled to subsequent neurons. The latter, however, can only observe a number of spikes k integrated within a time interval of length T. The statistical dependency between x and k is specified by the assumption of Poisson noise p(kIJL(x)) = (JL~))k exp{ -JL(X)} , (1) and the choice of the gain function f(x), which together with T determines the mean spike count J.L(x) == T f(x) . An important additional constraint is the limited output range of the neuronal firing rate, which can be included by the requirement of a bounded gain function (fmin :::; f (x) :::; f max, VX). Since inhibition can reliably prevent a neuron from firing, we will here consider the case f min == 0 only. Instead of specifying f max, we impose a bound directly on the mean spike count (i.e. J.L(x) :::; /l), because f max constitutes a meaningful constraint only in conjunction with a fixed time window length T. As objective function we consider the minimum mean squared error (MMSE) with respect to Lebesgue measure for x E [0, 1], ~ 2 X _ E x2 _ E (i2 _ _ [jt( )] - [] [] - 3 X ~ (Xl (J01 xp(kIJL(x)) dx r J01p(kIJL(x)) dx' (2) where x(k) == E[xlk] denotes the mean square estimator, which is the conditional expectation (see e.g. [6]). 1.1 Tunings and errors As derived in [7] on the basis of Fisher information the optimal gain function for a single neuron in the asymptotic limit T -+ 00 has a parabolic shape: fasymp(x) == fmaxx2 . (3) For any finite /l, however, this gain function is not necessarily optimal, and in the limit T -+ 0, it is straight forward to show that the optimal tuning curve is a step function f step (xl'19) == fmax 8 (x - {)) , (4) where 8(z) denotes the Heaviside function that equals one, if z > 0 and zero if z < O. The optimal threshold 'l9(p,) of the step tuning curve depends on /l and can be determined analytically 11(-) =1_ It 3 - V8e-J.' +1 4(1 - e- il ) (5) as well as the corresponding MMSE [8]: 2 2[fste p] _ 1 ( 3'19 (p,) ) X - 12 1 - [(1 -11(p))(l - e-iL)]-1 - 1 . (6) 1 S +1 0.5 CJ;) o ........ '------'-----'---'---'--'~----'----'-- ~---'---'---'--'~ 10-1 ~---,.---,---.,...............---.----.---.---.-.......-.-.--.-~ ...............~ Figure 1: The upper panel shows a bifurcation plot for {}(Jt) - wand {}(Jt) + w of the optimal gain function in 51 as a function of {t illustrating the phase transition from binary to continuous encoding. The dotted line separates the regions before and after the phase transition in all three panels. Left from this line (i.e. for Jt < Jt C) the step function given by Eq. 4+5 is optimal. The middle panel shows the MMSE of this step function (dashed) and of the optimal gain function in 52 (solid), which becomes smaller than the first one after the phase transition. The relative deviation between the minimal errors of 51 and 52 (i.e. (X~l - X~2)/X~2) is displayed in the lower panel and has a maximum below 0.035. The binary shape for small {t and the continuous parabolic shape for large {t implies that there has to be a transition from discrete to analog encoding with increasing {to Unfortunately it is not possible to determine the optimal gain function within the set of all bounded functions B :== {fli : [0, 1] -+ [0, fmax]} and hence, one has to choose a certain parameterized function space 5 c B in advance that is feasible for the optimization. In [8], we investigated various such function-'spaces and for {t < 2.9, we did not find any gain function with an error smaller than the MMSE of the step function. Furthermore, we always observed a phase transition from binary to analog encoding at a critical {t C that depends only slightly on the function space. As one can see in Fig. 1 (upper) pc is approximately three. In this paper, we consider two function classes 51, 52, which both contain the binary gain function as well as the asymptotic optimal parabolic function as special cases. Furthermore 51 is a proper subset of 52. Our interest in 51 results from the fact that we can analyze the phase transition in this subset analytically, while 52 is the most general parameterization for which we have. determined the optimal encoding numerically. The latter has six free parameters a :::; b :::; c E [0, 1], fmid E (0, fmax), a, f3 E [0,00) and the parameterization of the gain functions is given by o fS2 (xla, b, c, fmid, a, (3) fmid ( ~=: == , O
4 0.43783635 171 nips-2002-Reconstructing Stimulus-Driven Neural Networks from Spike Times
Author: Duane Q. Nykamp
Abstract: We present a method to distinguish direct connections between two neurons from common input originating from other, unmeasured neurons. The distinction is computed from the spike times of the two neurons in response to a white noise stimulus. Although the method is based on a highly idealized linear-nonlinear approximation of neural response, we demonstrate via simulation that the approach can work with a more realistic, integrate-and-fire neuron model. We propose that the approach exemplified by this analysis may yield viable tools for reconstructing stimulus-driven neural networks from data gathered in neurophysiology experiments.
5 0.41377324 43 nips-2002-Binary Coding in Auditory Cortex
Author: Michael R. Deweese, Anthony M. Zador
Abstract: Cortical neurons have been reported to use both rate and temporal codes. Here we describe a novel mode in which each neuron generates exactly 0 or 1 action potentials, but not more, in response to a stimulus. We used cell-attached recording, which ensured single-unit isolation, to record responses in rat auditory cortex to brief tone pips. Surprisingly, the majority of neurons exhibited binary behavior with few multi-spike responses; several dramatic examples consisted of exactly one spike on 100% of trials, with no trial-to-trial variability in spike count. Many neurons were tuned to stimulus frequency. Since individual trials yielded at most one spike for most neurons, the information about stimulus frequency was encoded in the population, and would not have been accessible to later stages of processing that only had access to the activity of a single unit. These binary units allow a more efficient population code than is possible with conventional rate coding units, and are consistent with a model of cortical processing in which synchronous packets of spikes propagate stably from one neuronal population to the next. 1 Binary coding in auditory cortex We recorded responses of neurons in the auditory cortex of anesthetized rats to pure-tone pips of different frequencies [1, 2]. Each pip was presented repeatedly, allowing us to assess the variability of the neural response to multiple presentations of each stimulus. We first recorded multi-unit activity with conventional tungsten electrodes (Fig. 1a). The number of spikes in response to each pip fluctuated markedly from one trial to the next (Fig. 1e), as though governed by a random mechanism such as that generating the ticks of a Geiger counter. Highly variable responses such as these, which are at least as variable as a Poisson process, are the norm in the cortex [3-7], and have contributed to the widely held view that cortical spike trains are so noisy that only the average firing rate can be used to encode stimuli. Because we were recording the activity of an unknown number of neurons, we could not be sure whether the strong trial-to-trial fluctuations reflected the underlying variability of the single units. We therefore used an alternative technique, cell- a b Single-unit recording method 5mV Multi-unit 1sec Raw cellattached voltage 10 kHz c Single-unit . . . . .. .. ... . . .... . ... . Identified spikes Threshold e 28 kHz d Single-unit 80 120 160 200 Time (msec) N = 29 tones 3 2 1 Poisson N = 11 tones ry 40 4 na bi 38 kHz 0 Response variance/mean (spikes/trial) High-pass filtered 0 0 1 2 3 Mean response (spikes/trial) Figure 1: Multi-unit spiking activity was highly variable, but single units obeyed binomial statistics. a Multi-unit spike rasters from a conventional tungsten electrode recording showed high trial-to-trial variability in response to ten repetitions of the same 50 msec pure tone stimulus (bottom). Darker hash marks indicate spike times within the response period, which were used in the variability analysis. b Spikes recorded in cell-attached mode were easily identified from the raw voltage trace (top) by applying a high-pass filter (bottom) and thresholding (dark gray line). Spike times (black squares) were assigned to the peaks of suprathreshold segments. c Spike rasters from a cell-attached recording of single-unit responses to 25 repetitions of the same tone consisted of exactly one well-timed spike per trial (latency standard deviation = 1.0 msec), unlike the multi-unit responses (Fig. 1a). Under the Poisson assumption, this would have been highly unlikely (P ~ 10 -11). d The same neuron as in Fig. 1c responds with lower probability to repeated presentations of a different tone, but there are still no multi-spike responses. e We quantified response variability for each tone by dividing the variance in spike count by the mean spike count across all trials for that tone. Response variability for multi-unit tungsten recording (open triangles) was high for each of the 29 tones (out of 32) that elicited at least one spike on one trial. All but one point lie above one (horizontal gray line), which is the value produced by a Poisson process with any constant or time varying event rate. Single unit responses recorded in cell-attached mode were far less variable (filled circles). Ninety one percent (10/11) of the tones that elicited at least one spike from this neuron produced no multi-spike responses in 25 trials; the corresponding points fall on the diagonal line between (0,1) and (1,0), which provides a strict lower bound on the variability for any response set with a mean between 0 and 1. No point lies above one. attached recording with a patch pipette [8, 9], in order to ensure single unit isolation (Fig. 1b). This recording mode minimizes both of the main sources of error in spike detection: failure to detect a spike in the unit under observation (false negatives), and contamination by spikes from nearby neurons (false positives). It also differs from conventional extracellular recording methods in its selection bias: With cell- attached recording neurons are selected solely on the basis of the experimenter’s ability to form a seal, rather than on the basis of neuronal activity and responsiveness to stimuli as in conventional methods. Surprisingly, single unit responses were far more orderly than suggested by the multi-unit recordings; responses typically consisted of either 0 or 1 spikes per trial, and not more (Fig. 1c-e). In the most dramatic examples, each presentation of the same tone pip elicited exactly one spike (Fig. 1c). In most cases, however, some presentations failed to elicit a spike (Fig. 1d). Although low-variability responses have recently been observed in the cortex [10, 11] and elsewhere [12, 13], the binary behavior described here has not previously been reported for cortical neurons. a 1.4 N = 3055 response sets b 1.2 1 Poisson 28 kHz - 100 msec 0.8 0.6 0.4 0.2 0 0 ry na bi Response variance/mean (spikes/trial) The majority of the neurons (59%) in our study for which statistical significance could be assessed (at the p<0.001 significance level; see Fig. 2, caption) showed noisy binary behavior—“binary” because neurons produced either 0 or 1 spikes, and “noisy” because some stimuli elicited both single spikes and failures. In a substantial fraction of neurons, however, the responses showed more variability. We found no correlation between neuronal variability and cortical layer (inferred from the depth of the recording electrode), cortical area (inside vs. outside of area A1) or depth of anesthesia. Moreover, the binary mode of spiking was not due to the brevity (25 msec) of the stimuli; responses that were binary for short tones were comparably binary when longer (100 msec) tones were used (Fig. 2b). Not assessable Not significant Significant (p<0.001) 0.2 0.4 0.6 0.8 1 1.2 Mean response (spikes/trial) 28 kHz - 25 msec 1.4 0 40 80 120 160 Time (msec) 200 Figure 2: Half of the neuronal population exhibited binary firing behavior. a Of the 3055 sets of responses to 25 msec tones, 2588 (gray points) could not be assessed for significance at the p<0.001 level, 225 (open circles) were not significantly binary, and 242 were significantly binary (black points; see Identification methods for group statistics below). All points were jittered slightly so that overlying points could be seen in the figure. 2165 response sets contained no multi-spike responses; the corresponding points fell on the line from [0,1] to [1,0]. b The binary nature of single unit responses was insensitive to tone duration, even for frequencies that elicited the largest responses. Twenty additional spike rasters from the same neuron (and tone frequency) as in Fig. 1c contain no multi-spike responses whether in response to 100 msec tones (above) or 25 msec tones (below). Across the population, binary responses were as prevalent for 100 msec tones as for 25 msec tones (see Identification methods for group statistics). In many neurons, binary responses showed high temporal precision, with latencies sometimes exhibiting standard deviations as low as 1 msec (Fig. 3; see also Fig. 1c), comparable to previous observations in the auditory cortex [14], and only slightly more precise than in monkey visual area MT [5]. High temporal precision was positively correlated with high response probability (Fig. 3). a b N = (44 cells)x(32 tones) 14 N = 32 tones 12 30 Jitter (msec) Jitter (msec) 40 10 8 6 20 10 4 2 0 0 0 0.2 0.4 0.6 0.8 Mean response (spikes/trial) 1 0 0.4 0.8 1.2 1.6 Mean response (spikes/trial) 2 Figure 3: Trial-to-trial variability in latency of response to repeated presentations of the same tone decreased with increasing response probability. a Scatter plot of standard deviation of latency vs. mean response for 25 presentations each of 32 tones for a different neuron as in Figs. 1 and 2 (gray line is best linear fit). Rasters from 25 repeated presentations of a low response tone (upper left inset, which corresponds to left-most data point) display much more variable latencies than rasters from a high response tone (lower right inset; corresponds to right-most data point). b The negative correlation between latency variability and response size was present on average across the population of 44 neurons described in Identification methods for group statistics (linear fit, gray). The low trial-to-trial variability ruled out the possibility that the firing statistics could be accounted for by a simple rate-modulated Poisson process (Fig. 4a1,a2). In other systems, low variability has sometimes been modeled as a Poisson process followed by a post-spike refractory period [10, 12]. In our system, however, the range in latencies of evoked binary responses was often much greater than the refractory period, which could not have been longer than the 2 msec inter-spike intervals observed during epochs of spontaneous spiking, indicating that binary spiking did not result from any intrinsic property of the spike generating mechanism (Fig. 4a3). Moreover, a single stimulus-evoked spike could suppress subsequent spikes for as long as hundreds of milliseconds (e.g. Figs. 1d,4d), supporting the idea that binary spiking arises through a circuit-level, rather than a single-neuron, mechanism. Indeed, the fact that this suppression is observed even in the cortex of awake animals [15] suggests that binary spiking is not a special property of the anesthetized state. It seems surprising that binary spiking in the cortex has not previously been remarked upon. In the auditory cortex the explanation may be in part technical: Because firing rates in the auditory cortex tend to be low, multi-unit recording is often used to maximize the total amount of data collected. Moreover, our use of cell-attached recording minimizes the usual bias toward responsive or active neurons. Such explanations are not, however, likely to account for the failure to observe binary spiking in the visual cortex, where spike count statistics have been scrutinized more closely [3-7]. One possibility is that this reflects a fundamental difference between the auditory and visual systems. An alternative interpretation— a1 b Response probability 100 spikes/s 2 kHz Poisson simulation c 100 200 300 400 Time (msec) 500 20 Ratio of pool sizes a2 0 16 12 8 4 0 a3 Poisson with refractory period 0 40 80 120 160 200 Time (msec) d Response probability PSTH 0.2 0.4 0.6 0.8 1 Mean spike count per neuron 1 0.8 N = 32 tones 0.6 0.4 0.2 0 2.0 3.8 7.1 13.2 24.9 46.7 Tone frequency (kHz) Figure 4: a The lack of multi-spike responses elicited by the neuron shown in Fig. 3a were not due to an absolute refractory period since the range of latencies for many tones, like that shown here, was much greater than any reasonable estimate for the neuron’s refractory period. (a1) Experimentally recorded responses. (a2) Using the smoothed post stimulus time histogram (PSTH; bottom) from the set of responses in Fig. 4a, we generated rasters under the assumption of Poisson firing. In this representative example, four double-spike responses (arrows at left) were produced in 25 trials. (a3) We then generated rasters assuming that the neuron fired according to a Poisson process subject to a hard refractory period of 2 msec. Even with a refractory period, this representative example includes one triple- and three double-spike responses. The minimum interspike-interval during spontaneous firing events was less than two msec for five of our neurons, so 2 msec is a conservative upper bound for the refractory period. b. Spontaneous activity is reduced following high-probability responses. The PSTH (top; 0.25 msec bins) of the combined responses from the 25% (8/32) of tones that elicited the largest responses from the same neuron as in Figs. 3a and 4a illustrates a preclusion of spontaneous and evoked activity for over 200 msec following stimulation. The PSTHs from progressively less responsive groups of tones show progressively less preclusion following stimulation. c Fewer noisy binary neurons need to be pooled to achieve the same “signal-to-noise ratio” (SNR; see ref. [24]) as a collection of Poisson neurons. The ratio of the number of Poisson to binary neurons required to achieve the same SNR is plotted against the mean number of spikes elicited per neuron following stimulation; here we have defined the SNR to be the ratio of the mean spike count to the standard deviation of the spike count. d Spike probability tuning curve for the same neuron as in Figs. 1c-e and 2b fit to a Gaussian in tone frequency. and one that we favor—is that the difference rests not in the sensory modality, but instead in the difference between the stimuli used. In this view, the binary responses may not be limited to the auditory cortex; neurons in visual and other sensory cortices might exhibit similar responses to the appropriate stimuli. For example, the tone pips we used might be the auditory analog of a brief flash of light, rather than the oriented moving edges or gratings usually used to probe the primary visual cortex. Conversely, auditory stimuli analogous to edges or gratings [16, 17] may be more likely to elicit conventional, rate-modulated Poisson responses in the auditory cortex. Indeed, there may be a continuum between binary and Poisson modes. Thus, even in conventional rate-modulated responses, the first spike is often privileged in that it carries most of the information in the spike train [5, 14, 18]. The first spike may be particularly important as a means of rapidly signaling stimulus transients. Binary responses suggest a mode that complements conventional rate coding. In the simplest rate-coding model, a stimulus parameter (such as the frequency of a tone) governs only the rate at which a neuron generates spikes, but not the detailed positions of the spikes; the actual spike train itself is an instantiation of a random process (such as a Poisson process). By contrast, in the binomial model, the stimulus parameter (frequency) is encoded as the probability of firing (Fig. 4d). Binary coding has implications for cortical computation. In the rate coding model, stimulus encoding is “ergodic”: a stimulus parameter can be read out either by observing the activity of one neuron for a long time, or a population for a short time. By contrast, in the binary model the stimulus value can be decoded only by observing a neuronal population, so that there is no benefit to integrating over long time periods (cf. ref. [19]). One advantage of binary encoding is that it allows the population to signal quickly; the most compact message a neuron can send is one spike [20]. Binary coding is also more efficient in the context of population coding, as quantified by the signal-to-noise ratio (Fig. 4c). The precise organization of both spike number and time we have observed suggests that cortical activity consists, at least under some conditions, of packets of spikes synchronized across populations of neurons. Theoretical work [21-23] has shown how such packets can propagate stably from one population to the next, but only if neurons within each population fire at most one spike per packet; otherwise, the number of spikes per packet—and hence the width of each packet—grows at each propagation step. Interestingly, one prediction of stable propagation models is that spike probability should be related to timing precision, a prediction born out by our observations (Fig. 3). The role of these packets in computation remains an open question. 2 Identification methods for group statistics We recorded responses to 32 different 25 msec tones from each of 175 neurons from the auditory cortices of 16 Sprague-Dawley rats; each tone was repeated between 5 and 75 times (mean = 19). Thus our ensemble consisted of 32x175=5600 response sets, with between 5 and 75 samples in each set. Of these, 3055 response sets contained at least one spike on at least on trial. For each response set, we tested the hypothesis that the observed variability was significantly lower than expected from the null hypothesis of a Poisson process. The ability to assess significance depended on two parameters: the sample size (5-75) and the firing probability. Intuitively, the dependence on firing probability arises because at low firing rates most responses produce only trials with 0 or 1 spikes under both the Poisson and binary models; only at high firing rates do the two models make different predictions, since in that case the Poisson model includes many trials with 2 or even 3 spikes while the binary model generates only solitary spikes (see Fig. 4a1,a2). Using a stringent significance criterion of p<0.001, 467 response sets had a sufficient number of repeats to assess significance, given the observed firing probability. Of these, half (242/467=52%) were significantly less variable than expected by chance, five hundred-fold higher than the 467/1000=0.467 response sets expected, based on the 0.001 significance criterion, to yield a binary response set. Seventy-two neurons had at least one response set for which significance could be assessed, and of these, 49 neurons (49/72=68%) had at least one significantly sub-Poisson response set. Of this population of 49 neurons, five achieved low variability through repeatable bursty behavior (e.g., every spike count was either 0 or 3, but not 1 or 2) and were excluded from further analysis. The remaining 44 neurons formed the basis for the group statistics analyses shown in Figs. 2a and 3b. Nine of these neurons were subjected to an additional protocol consisting of at least 10 presentations each of 100 msec tones and 25 msec tones of all 32 frequencies. Of the 100 msec stimulation response sets, 44 were found to be significantly sub-Poisson at the p<0.05 level, in good agreement with the 43 found to be significant among the responses to 25 msec tones. 3 Bibliography 1. Kilgard, M.P. and M.M. Merzenich, Cortical map reorganization enabled by nucleus basalis activity. Science, 1998. 279(5357): p. 1714-8. 2. Sally, S.L. and J.B. Kelly, Organization of auditory cortex in the albino rat: sound frequency. J Neurophysiol, 1988. 59(5): p. 1627-38. 3. Softky, W.R. and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci, 1993. 13(1): p. 334-50. 4. Stevens, C.F. and A.M. Zador, Input synchrony and the irregular firing of cortical neurons. Nat Neurosci, 1998. 1(3): p. 210-7. 5. Buracas, G.T., A.M. Zador, M.R. DeWeese, and T.D. Albright, Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron, 1998. 20(5): p. 959-69. 6. Shadlen, M.N. and W.T. Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci, 1998. 18(10): p. 3870-96. 7. Tolhurst, D.J., J.A. Movshon, and A.F. Dean, The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res, 1983. 23(8): p. 775-85. 8. Otmakhov, N., A.M. Shirke, and R. Malinow, Measuring the impact of probabilistic transmission on neuronal output. Neuron, 1993. 10(6): p. 1101-11. 9. Friedrich, R.W. and G. Laurent, Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science, 2001. 291(5505): p. 889-94. 10. Kara, P., P. Reinagel, and R.C. Reid, Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 2000. 27(3): p. 635-46. 11. Gur, M., A. Beylin, and D.M. Snodderly, Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci, 1997. 17(8): p. 2914-20. 12. Berry, M.J., D.K. Warland, and M. Meister, The structure and precision of retinal spike trains. Proc Natl Acad Sci U S A, 1997. 94(10): p. 5411-6. 13. de Ruyter van Steveninck, R.R., G.D. Lewen, S.P. Strong, R. Koberle, and W. Bialek, Reproducibility and variability in neural spike trains. Science, 1997. 275(5307): p. 1805-8. 14. Heil, P., Auditory cortical onset responses revisited. I. First-spike timing. J Neurophysiol, 1997. 77(5): p. 2616-41. 15. Lu, T., L. Liang, and X. Wang, Temporal and rate representations of timevarying signals in the auditory cortex of awake primates. Nat Neurosci, 2001. 4(11): p. 1131-8. 16. Kowalski, N., D.A. Depireux, and S.A. Shamma, Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol, 1996. 76(5): p. 350323. 17. deCharms, R.C., D.T. Blake, and M.M. Merzenich, Optimizing sound features for cortical neurons. Science, 1998. 280(5368): p. 1439-43. 18. Panzeri, S., R.S. Petersen, S.R. Schultz, M. Lebedev, and M.E. Diamond, The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 2001. 29(3): p. 769-77. 19. Britten, K.H., M.N. Shadlen, W.T. Newsome, and J.A. Movshon, The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci, 1992. 12(12): p. 4745-65. 20. Delorme, A. and S.J. Thorpe, Face identification using one spike per neuron: resistance to image degradations. Neural Netw, 2001. 14(6-7): p. 795-803. 21. Diesmann, M., M.O. Gewaltig, and A. Aertsen, Stable propagation of synchronous spiking in cortical neural networks. Nature, 1999. 402(6761): p. 529-33. 22. Marsalek, P., C. Koch, and J. Maunsell, On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A, 1997. 94(2): p. 735-40. 23. Kistler, W.M. and W. Gerstner, Stable propagation of activity pulses in populations of spiking neurons. Neural Comp., 2002. 14: p. 987-997. 24. Zohary, E., M.N. Shadlen, and W.T. Newsome, Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 1994. 370(6485): p. 140-3. 25. Abbott, L.F. and P. Dayan, The effect of correlated variability on the accuracy of a population code. Neural Comput, 1999. 11(1): p. 91-101.
6 0.40581718 116 nips-2002-Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior
7 0.40098473 76 nips-2002-Dynamical Constraints on Computing with Spike Timing in the Cortex
8 0.38425949 187 nips-2002-Spikernels: Embedding Spiking Neurons in Inner-Product Spaces
9 0.37092358 28 nips-2002-An Information Theoretic Approach to the Functional Classification of Neurons
10 0.36506936 9 nips-2002-A Minimal Intervention Principle for Coordinated Movement
11 0.35506174 11 nips-2002-A Model for Real-Time Computation in Generic Neural Microcircuits
12 0.33421901 29 nips-2002-Analysis of Information in Speech Based on MANOVA
13 0.31167141 81 nips-2002-Expected and Unexpected Uncertainty: ACh and NE in the Neocortex
14 0.3106418 178 nips-2002-Robust Novelty Detection with Single-Class MPM
15 0.30910268 56 nips-2002-Concentration Inequalities for the Missing Mass and for Histogram Rule Error
16 0.30040109 197 nips-2002-The Stability of Kernel Principal Components Analysis and its Relation to the Process Eigenspectrum
17 0.29961881 148 nips-2002-Morton-Style Factorial Coding of Color in Primary Visual Cortex
18 0.28762335 77 nips-2002-Effective Dimension and Generalization of Kernel Learning
19 0.28242499 102 nips-2002-Hidden Markov Model of Cortical Synaptic Plasticity: Derivation of the Learning Rule
20 0.28216535 174 nips-2002-Regularized Greedy Importance Sampling
topicId topicWeight
[(11, 0.021), (23, 0.017), (29, 0.334), (42, 0.099), (54, 0.164), (55, 0.062), (64, 0.011), (68, 0.056), (74, 0.045), (75, 0.013), (92, 0.025), (98, 0.056)]
simIndex simValue paperId paperTitle
same-paper 1 0.78511059 60 nips-2002-Convergence Properties of Some Spike-Triggered Analysis Techniques
Author: Liam Paninski
Abstract: vVe analyze the convergence properties of three spike-triggered data analysis techniques. All of our results are obtained in the setting of a (possibly multidimensional) linear-nonlinear (LN) cascade model for stimulus-driven neural activity. We start by giving exact rate of convergence results for the common spike-triggered average (STA) technique. Next, we analyze a spike-triggered covariance method, variants of which have been recently exploited successfully by Bialek, Simoncelli, and colleagues. These first two methods suffer from extraneous conditions on their convergence; therefore, we introduce an estimator for the LN model parameters which is designed to be consistent under general conditions. We provide an algorithm for the computation of this estimator and derive its rate of convergence. We close with a brief discussion of the efficiency of these estimators and an application to data recorded from the primary motor cortex of awake, behaving primates. 1
2 0.60146832 124 nips-2002-Learning Graphical Models with Mercer Kernels
Author: Francis R. Bach, Michael I. Jordan
Abstract: We present a class of algorithms for learning the structure of graphical models from data. The algorithms are based on a measure known as the kernel generalized variance (KGV), which essentially allows us to treat all variables on an equal footing as Gaussians in a feature space obtained from Mercer kernels. Thus we are able to learn hybrid graphs involving discrete and continuous variables of arbitrary type. We explore the computational properties of our approach, showing how to use the kernel trick to compute the relevant statistics in linear time. We illustrate our framework with experiments involving discrete and continuous data.
3 0.53228688 190 nips-2002-Stochastic Neighbor Embedding
Author: Geoffrey E. Hinton, Sam T. Roweis
Abstract: We describe a probabilistic approach to the task of placing objects, described by high-dimensional vectors or by pairwise dissimilarities, in a low-dimensional space in a way that preserves neighbor identities. A Gaussian is centered on each object in the high-dimensional space and the densities under this Gaussian (or the given dissimilarities) are used to define a probability distribution over all the potential neighbors of the object. The aim of the embedding is to approximate this distribution as well as possible when the same operation is performed on the low-dimensional “images” of the objects. A natural cost function is a sum of Kullback-Leibler divergences, one per object, which leads to a simple gradient for adjusting the positions of the low-dimensional images. Unlike other dimensionality reduction methods, this probabilistic framework makes it easy to represent each object by a mixture of widely separated low-dimensional images. This allows ambiguous objects, like the document count vector for the word “bank”, to have versions close to the images of both “river” and “finance” without forcing the images of outdoor concepts to be located close to those of corporate concepts.
4 0.52223092 119 nips-2002-Kernel Dependency Estimation
Author: Jason Weston, Olivier Chapelle, Vladimir Vapnik, André Elisseeff, Bernhard Schölkopf
Abstract: We consider the learning problem of finding a dependency between a general class of objects and another, possibly different, general class of objects. The objects can be for example: vectors, images, strings, trees or graphs. Such a task is made possible by employing similarity measures in both input and output spaces using kernel functions, thus embedding the objects into vector spaces. We experimentally validate our approach on several tasks: mapping strings to strings, pattern recognition, and reconstruction from partial images. 1
5 0.51848716 169 nips-2002-Real-Time Particle Filters
Author: Cody Kwok, Dieter Fox, Marina Meila
Abstract: Particle filters estimate the state of dynamical systems from sensor information. In many real time applications of particle filters, however, sensor information arrives at a significantly higher rate than the update rate of the filter. The prevalent approach to dealing with such situations is to update the particle filter as often as possible and to discard sensor information that cannot be processed in time. In this paper we present real-time particle filters, which make use of all sensor information even when the filter update rate is below the update rate of the sensors. This is achieved by representing posteriors as mixtures of sample sets, where each mixture component integrates one observation arriving during a filter update. The weights of the mixture components are set so as to minimize the approximation error introduced by the mixture representation. Thereby, our approach focuses computational resources (samples) on valuable sensor information. Experiments using data collected with a mobile robot show that our approach yields strong improvements over other approaches.
6 0.51764059 49 nips-2002-Charting a Manifold
7 0.51641047 156 nips-2002-On the Complexity of Learning the Kernel Matrix
8 0.51628995 14 nips-2002-A Probabilistic Approach to Single Channel Blind Signal Separation
9 0.51375091 82 nips-2002-Exponential Family PCA for Belief Compression in POMDPs
10 0.51372707 34 nips-2002-Artefactual Structure from Least-Squares Multidimensional Scaling
11 0.51354736 106 nips-2002-Hyperkernels
12 0.51330984 21 nips-2002-Adaptive Classification by Variational Kalman Filtering
13 0.51330012 70 nips-2002-Distance Metric Learning with Application to Clustering with Side-Information
14 0.51250726 159 nips-2002-Optimality of Reinforcement Learning Algorithms with Linear Function Approximation
15 0.51014924 65 nips-2002-Derivative Observations in Gaussian Process Models of Dynamic Systems
16 0.50895125 52 nips-2002-Cluster Kernels for Semi-Supervised Learning
17 0.50885427 137 nips-2002-Location Estimation with a Differential Update Network
18 0.50822026 138 nips-2002-Manifold Parzen Windows
19 0.50710189 189 nips-2002-Stable Fixed Points of Loopy Belief Propagation Are Local Minima of the Bethe Free Energy
20 0.50678694 46 nips-2002-Boosting Density Estimation