nips nips2002 nips2002-43 knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Michael R. Deweese, Anthony M. Zador
Abstract: Cortical neurons have been reported to use both rate and temporal codes. Here we describe a novel mode in which each neuron generates exactly 0 or 1 action potentials, but not more, in response to a stimulus. We used cell-attached recording, which ensured single-unit isolation, to record responses in rat auditory cortex to brief tone pips. Surprisingly, the majority of neurons exhibited binary behavior with few multi-spike responses; several dramatic examples consisted of exactly one spike on 100% of trials, with no trial-to-trial variability in spike count. Many neurons were tuned to stimulus frequency. Since individual trials yielded at most one spike for most neurons, the information about stimulus frequency was encoded in the population, and would not have been accessible to later stages of processing that only had access to the activity of a single unit. These binary units allow a more efficient population code than is possible with conventional rate coding units, and are consistent with a model of cortical processing in which synchronous packets of spikes propagate stably from one neuronal population to the next. 1 Binary coding in auditory cortex We recorded responses of neurons in the auditory cortex of anesthetized rats to pure-tone pips of different frequencies [1, 2]. Each pip was presented repeatedly, allowing us to assess the variability of the neural response to multiple presentations of each stimulus. We first recorded multi-unit activity with conventional tungsten electrodes (Fig. 1a). The number of spikes in response to each pip fluctuated markedly from one trial to the next (Fig. 1e), as though governed by a random mechanism such as that generating the ticks of a Geiger counter. Highly variable responses such as these, which are at least as variable as a Poisson process, are the norm in the cortex [3-7], and have contributed to the widely held view that cortical spike trains are so noisy that only the average firing rate can be used to encode stimuli. Because we were recording the activity of an unknown number of neurons, we could not be sure whether the strong trial-to-trial fluctuations reflected the underlying variability of the single units. We therefore used an alternative technique, cell- a b Single-unit recording method 5mV Multi-unit 1sec Raw cellattached voltage 10 kHz c Single-unit . . . . .. .. ... . . .... . ... . Identified spikes Threshold e 28 kHz d Single-unit 80 120 160 200 Time (msec) N = 29 tones 3 2 1 Poisson N = 11 tones ry 40 4 na bi 38 kHz 0 Response variance/mean (spikes/trial) High-pass filtered 0 0 1 2 3 Mean response (spikes/trial) Figure 1: Multi-unit spiking activity was highly variable, but single units obeyed binomial statistics. a Multi-unit spike rasters from a conventional tungsten electrode recording showed high trial-to-trial variability in response to ten repetitions of the same 50 msec pure tone stimulus (bottom). Darker hash marks indicate spike times within the response period, which were used in the variability analysis. b Spikes recorded in cell-attached mode were easily identified from the raw voltage trace (top) by applying a high-pass filter (bottom) and thresholding (dark gray line). Spike times (black squares) were assigned to the peaks of suprathreshold segments. c Spike rasters from a cell-attached recording of single-unit responses to 25 repetitions of the same tone consisted of exactly one well-timed spike per trial (latency standard deviation = 1.0 msec), unlike the multi-unit responses (Fig. 1a). Under the Poisson assumption, this would have been highly unlikely (P ~ 10 -11). d The same neuron as in Fig. 1c responds with lower probability to repeated presentations of a different tone, but there are still no multi-spike responses. e We quantified response variability for each tone by dividing the variance in spike count by the mean spike count across all trials for that tone. Response variability for multi-unit tungsten recording (open triangles) was high for each of the 29 tones (out of 32) that elicited at least one spike on one trial. All but one point lie above one (horizontal gray line), which is the value produced by a Poisson process with any constant or time varying event rate. Single unit responses recorded in cell-attached mode were far less variable (filled circles). Ninety one percent (10/11) of the tones that elicited at least one spike from this neuron produced no multi-spike responses in 25 trials; the corresponding points fall on the diagonal line between (0,1) and (1,0), which provides a strict lower bound on the variability for any response set with a mean between 0 and 1. No point lies above one. attached recording with a patch pipette [8, 9], in order to ensure single unit isolation (Fig. 1b). This recording mode minimizes both of the main sources of error in spike detection: failure to detect a spike in the unit under observation (false negatives), and contamination by spikes from nearby neurons (false positives). It also differs from conventional extracellular recording methods in its selection bias: With cell- attached recording neurons are selected solely on the basis of the experimenter’s ability to form a seal, rather than on the basis of neuronal activity and responsiveness to stimuli as in conventional methods. Surprisingly, single unit responses were far more orderly than suggested by the multi-unit recordings; responses typically consisted of either 0 or 1 spikes per trial, and not more (Fig. 1c-e). In the most dramatic examples, each presentation of the same tone pip elicited exactly one spike (Fig. 1c). In most cases, however, some presentations failed to elicit a spike (Fig. 1d). Although low-variability responses have recently been observed in the cortex [10, 11] and elsewhere [12, 13], the binary behavior described here has not previously been reported for cortical neurons. a 1.4 N = 3055 response sets b 1.2 1 Poisson 28 kHz - 100 msec 0.8 0.6 0.4 0.2 0 0 ry na bi Response variance/mean (spikes/trial) The majority of the neurons (59%) in our study for which statistical significance could be assessed (at the p<0.001 significance level; see Fig. 2, caption) showed noisy binary behavior—“binary” because neurons produced either 0 or 1 spikes, and “noisy” because some stimuli elicited both single spikes and failures. In a substantial fraction of neurons, however, the responses showed more variability. We found no correlation between neuronal variability and cortical layer (inferred from the depth of the recording electrode), cortical area (inside vs. outside of area A1) or depth of anesthesia. Moreover, the binary mode of spiking was not due to the brevity (25 msec) of the stimuli; responses that were binary for short tones were comparably binary when longer (100 msec) tones were used (Fig. 2b). Not assessable Not significant Significant (p<0.001) 0.2 0.4 0.6 0.8 1 1.2 Mean response (spikes/trial) 28 kHz - 25 msec 1.4 0 40 80 120 160 Time (msec) 200 Figure 2: Half of the neuronal population exhibited binary firing behavior. a Of the 3055 sets of responses to 25 msec tones, 2588 (gray points) could not be assessed for significance at the p<0.001 level, 225 (open circles) were not significantly binary, and 242 were significantly binary (black points; see Identification methods for group statistics below). All points were jittered slightly so that overlying points could be seen in the figure. 2165 response sets contained no multi-spike responses; the corresponding points fell on the line from [0,1] to [1,0]. b The binary nature of single unit responses was insensitive to tone duration, even for frequencies that elicited the largest responses. Twenty additional spike rasters from the same neuron (and tone frequency) as in Fig. 1c contain no multi-spike responses whether in response to 100 msec tones (above) or 25 msec tones (below). Across the population, binary responses were as prevalent for 100 msec tones as for 25 msec tones (see Identification methods for group statistics). In many neurons, binary responses showed high temporal precision, with latencies sometimes exhibiting standard deviations as low as 1 msec (Fig. 3; see also Fig. 1c), comparable to previous observations in the auditory cortex [14], and only slightly more precise than in monkey visual area MT [5]. High temporal precision was positively correlated with high response probability (Fig. 3). a b N = (44 cells)x(32 tones) 14 N = 32 tones 12 30 Jitter (msec) Jitter (msec) 40 10 8 6 20 10 4 2 0 0 0 0.2 0.4 0.6 0.8 Mean response (spikes/trial) 1 0 0.4 0.8 1.2 1.6 Mean response (spikes/trial) 2 Figure 3: Trial-to-trial variability in latency of response to repeated presentations of the same tone decreased with increasing response probability. a Scatter plot of standard deviation of latency vs. mean response for 25 presentations each of 32 tones for a different neuron as in Figs. 1 and 2 (gray line is best linear fit). Rasters from 25 repeated presentations of a low response tone (upper left inset, which corresponds to left-most data point) display much more variable latencies than rasters from a high response tone (lower right inset; corresponds to right-most data point). b The negative correlation between latency variability and response size was present on average across the population of 44 neurons described in Identification methods for group statistics (linear fit, gray). The low trial-to-trial variability ruled out the possibility that the firing statistics could be accounted for by a simple rate-modulated Poisson process (Fig. 4a1,a2). In other systems, low variability has sometimes been modeled as a Poisson process followed by a post-spike refractory period [10, 12]. In our system, however, the range in latencies of evoked binary responses was often much greater than the refractory period, which could not have been longer than the 2 msec inter-spike intervals observed during epochs of spontaneous spiking, indicating that binary spiking did not result from any intrinsic property of the spike generating mechanism (Fig. 4a3). Moreover, a single stimulus-evoked spike could suppress subsequent spikes for as long as hundreds of milliseconds (e.g. Figs. 1d,4d), supporting the idea that binary spiking arises through a circuit-level, rather than a single-neuron, mechanism. Indeed, the fact that this suppression is observed even in the cortex of awake animals [15] suggests that binary spiking is not a special property of the anesthetized state. It seems surprising that binary spiking in the cortex has not previously been remarked upon. In the auditory cortex the explanation may be in part technical: Because firing rates in the auditory cortex tend to be low, multi-unit recording is often used to maximize the total amount of data collected. Moreover, our use of cell-attached recording minimizes the usual bias toward responsive or active neurons. Such explanations are not, however, likely to account for the failure to observe binary spiking in the visual cortex, where spike count statistics have been scrutinized more closely [3-7]. One possibility is that this reflects a fundamental difference between the auditory and visual systems. An alternative interpretation— a1 b Response probability 100 spikes/s 2 kHz Poisson simulation c 100 200 300 400 Time (msec) 500 20 Ratio of pool sizes a2 0 16 12 8 4 0 a3 Poisson with refractory period 0 40 80 120 160 200 Time (msec) d Response probability PSTH 0.2 0.4 0.6 0.8 1 Mean spike count per neuron 1 0.8 N = 32 tones 0.6 0.4 0.2 0 2.0 3.8 7.1 13.2 24.9 46.7 Tone frequency (kHz) Figure 4: a The lack of multi-spike responses elicited by the neuron shown in Fig. 3a were not due to an absolute refractory period since the range of latencies for many tones, like that shown here, was much greater than any reasonable estimate for the neuron’s refractory period. (a1) Experimentally recorded responses. (a2) Using the smoothed post stimulus time histogram (PSTH; bottom) from the set of responses in Fig. 4a, we generated rasters under the assumption of Poisson firing. In this representative example, four double-spike responses (arrows at left) were produced in 25 trials. (a3) We then generated rasters assuming that the neuron fired according to a Poisson process subject to a hard refractory period of 2 msec. Even with a refractory period, this representative example includes one triple- and three double-spike responses. The minimum interspike-interval during spontaneous firing events was less than two msec for five of our neurons, so 2 msec is a conservative upper bound for the refractory period. b. Spontaneous activity is reduced following high-probability responses. The PSTH (top; 0.25 msec bins) of the combined responses from the 25% (8/32) of tones that elicited the largest responses from the same neuron as in Figs. 3a and 4a illustrates a preclusion of spontaneous and evoked activity for over 200 msec following stimulation. The PSTHs from progressively less responsive groups of tones show progressively less preclusion following stimulation. c Fewer noisy binary neurons need to be pooled to achieve the same “signal-to-noise ratio” (SNR; see ref. [24]) as a collection of Poisson neurons. The ratio of the number of Poisson to binary neurons required to achieve the same SNR is plotted against the mean number of spikes elicited per neuron following stimulation; here we have defined the SNR to be the ratio of the mean spike count to the standard deviation of the spike count. d Spike probability tuning curve for the same neuron as in Figs. 1c-e and 2b fit to a Gaussian in tone frequency. and one that we favor—is that the difference rests not in the sensory modality, but instead in the difference between the stimuli used. In this view, the binary responses may not be limited to the auditory cortex; neurons in visual and other sensory cortices might exhibit similar responses to the appropriate stimuli. For example, the tone pips we used might be the auditory analog of a brief flash of light, rather than the oriented moving edges or gratings usually used to probe the primary visual cortex. Conversely, auditory stimuli analogous to edges or gratings [16, 17] may be more likely to elicit conventional, rate-modulated Poisson responses in the auditory cortex. Indeed, there may be a continuum between binary and Poisson modes. Thus, even in conventional rate-modulated responses, the first spike is often privileged in that it carries most of the information in the spike train [5, 14, 18]. The first spike may be particularly important as a means of rapidly signaling stimulus transients. Binary responses suggest a mode that complements conventional rate coding. In the simplest rate-coding model, a stimulus parameter (such as the frequency of a tone) governs only the rate at which a neuron generates spikes, but not the detailed positions of the spikes; the actual spike train itself is an instantiation of a random process (such as a Poisson process). By contrast, in the binomial model, the stimulus parameter (frequency) is encoded as the probability of firing (Fig. 4d). Binary coding has implications for cortical computation. In the rate coding model, stimulus encoding is “ergodic”: a stimulus parameter can be read out either by observing the activity of one neuron for a long time, or a population for a short time. By contrast, in the binary model the stimulus value can be decoded only by observing a neuronal population, so that there is no benefit to integrating over long time periods (cf. ref. [19]). One advantage of binary encoding is that it allows the population to signal quickly; the most compact message a neuron can send is one spike [20]. Binary coding is also more efficient in the context of population coding, as quantified by the signal-to-noise ratio (Fig. 4c). The precise organization of both spike number and time we have observed suggests that cortical activity consists, at least under some conditions, of packets of spikes synchronized across populations of neurons. Theoretical work [21-23] has shown how such packets can propagate stably from one population to the next, but only if neurons within each population fire at most one spike per packet; otherwise, the number of spikes per packet—and hence the width of each packet—grows at each propagation step. Interestingly, one prediction of stable propagation models is that spike probability should be related to timing precision, a prediction born out by our observations (Fig. 3). The role of these packets in computation remains an open question. 2 Identification methods for group statistics We recorded responses to 32 different 25 msec tones from each of 175 neurons from the auditory cortices of 16 Sprague-Dawley rats; each tone was repeated between 5 and 75 times (mean = 19). Thus our ensemble consisted of 32x175=5600 response sets, with between 5 and 75 samples in each set. Of these, 3055 response sets contained at least one spike on at least on trial. For each response set, we tested the hypothesis that the observed variability was significantly lower than expected from the null hypothesis of a Poisson process. The ability to assess significance depended on two parameters: the sample size (5-75) and the firing probability. Intuitively, the dependence on firing probability arises because at low firing rates most responses produce only trials with 0 or 1 spikes under both the Poisson and binary models; only at high firing rates do the two models make different predictions, since in that case the Poisson model includes many trials with 2 or even 3 spikes while the binary model generates only solitary spikes (see Fig. 4a1,a2). Using a stringent significance criterion of p<0.001, 467 response sets had a sufficient number of repeats to assess significance, given the observed firing probability. Of these, half (242/467=52%) were significantly less variable than expected by chance, five hundred-fold higher than the 467/1000=0.467 response sets expected, based on the 0.001 significance criterion, to yield a binary response set. Seventy-two neurons had at least one response set for which significance could be assessed, and of these, 49 neurons (49/72=68%) had at least one significantly sub-Poisson response set. Of this population of 49 neurons, five achieved low variability through repeatable bursty behavior (e.g., every spike count was either 0 or 3, but not 1 or 2) and were excluded from further analysis. The remaining 44 neurons formed the basis for the group statistics analyses shown in Figs. 2a and 3b. Nine of these neurons were subjected to an additional protocol consisting of at least 10 presentations each of 100 msec tones and 25 msec tones of all 32 frequencies. Of the 100 msec stimulation response sets, 44 were found to be significantly sub-Poisson at the p<0.05 level, in good agreement with the 43 found to be significant among the responses to 25 msec tones. 3 Bibliography 1. Kilgard, M.P. and M.M. Merzenich, Cortical map reorganization enabled by nucleus basalis activity. Science, 1998. 279(5357): p. 1714-8. 2. Sally, S.L. and J.B. Kelly, Organization of auditory cortex in the albino rat: sound frequency. J Neurophysiol, 1988. 59(5): p. 1627-38. 3. Softky, W.R. and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci, 1993. 13(1): p. 334-50. 4. Stevens, C.F. and A.M. Zador, Input synchrony and the irregular firing of cortical neurons. Nat Neurosci, 1998. 1(3): p. 210-7. 5. Buracas, G.T., A.M. Zador, M.R. DeWeese, and T.D. Albright, Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron, 1998. 20(5): p. 959-69. 6. Shadlen, M.N. and W.T. Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci, 1998. 18(10): p. 3870-96. 7. Tolhurst, D.J., J.A. Movshon, and A.F. Dean, The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res, 1983. 23(8): p. 775-85. 8. Otmakhov, N., A.M. Shirke, and R. Malinow, Measuring the impact of probabilistic transmission on neuronal output. Neuron, 1993. 10(6): p. 1101-11. 9. Friedrich, R.W. and G. Laurent, Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science, 2001. 291(5505): p. 889-94. 10. Kara, P., P. Reinagel, and R.C. Reid, Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 2000. 27(3): p. 635-46. 11. Gur, M., A. Beylin, and D.M. Snodderly, Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci, 1997. 17(8): p. 2914-20. 12. Berry, M.J., D.K. Warland, and M. Meister, The structure and precision of retinal spike trains. Proc Natl Acad Sci U S A, 1997. 94(10): p. 5411-6. 13. de Ruyter van Steveninck, R.R., G.D. Lewen, S.P. Strong, R. Koberle, and W. Bialek, Reproducibility and variability in neural spike trains. Science, 1997. 275(5307): p. 1805-8. 14. Heil, P., Auditory cortical onset responses revisited. I. First-spike timing. J Neurophysiol, 1997. 77(5): p. 2616-41. 15. Lu, T., L. Liang, and X. Wang, Temporal and rate representations of timevarying signals in the auditory cortex of awake primates. Nat Neurosci, 2001. 4(11): p. 1131-8. 16. Kowalski, N., D.A. Depireux, and S.A. Shamma, Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol, 1996. 76(5): p. 350323. 17. deCharms, R.C., D.T. Blake, and M.M. Merzenich, Optimizing sound features for cortical neurons. Science, 1998. 280(5368): p. 1439-43. 18. Panzeri, S., R.S. Petersen, S.R. Schultz, M. Lebedev, and M.E. Diamond, The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 2001. 29(3): p. 769-77. 19. Britten, K.H., M.N. Shadlen, W.T. Newsome, and J.A. Movshon, The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci, 1992. 12(12): p. 4745-65. 20. Delorme, A. and S.J. Thorpe, Face identification using one spike per neuron: resistance to image degradations. Neural Netw, 2001. 14(6-7): p. 795-803. 21. Diesmann, M., M.O. Gewaltig, and A. Aertsen, Stable propagation of synchronous spiking in cortical neural networks. Nature, 1999. 402(6761): p. 529-33. 22. Marsalek, P., C. Koch, and J. Maunsell, On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A, 1997. 94(2): p. 735-40. 23. Kistler, W.M. and W. Gerstner, Stable propagation of activity pulses in populations of spiking neurons. Neural Comp., 2002. 14: p. 987-997. 24. Zohary, E., M.N. Shadlen, and W.T. Newsome, Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 1994. 370(6485): p. 140-3. 25. Abbott, L.F. and P. Dayan, The effect of correlated variability on the accuracy of a population code. Neural Comput, 1999. 11(1): p. 91-101.
Reference: text
sentIndex sentText sentNum sentScore
1 Here we describe a novel mode in which each neuron generates exactly 0 or 1 action potentials, but not more, in response to a stimulus. [sent-6, score-0.363]
2 We used cell-attached recording, which ensured single-unit isolation, to record responses in rat auditory cortex to brief tone pips. [sent-7, score-0.725]
3 Surprisingly, the majority of neurons exhibited binary behavior with few multi-spike responses; several dramatic examples consisted of exactly one spike on 100% of trials, with no trial-to-trial variability in spike count. [sent-8, score-1.073]
4 Since individual trials yielded at most one spike for most neurons, the information about stimulus frequency was encoded in the population, and would not have been accessible to later stages of processing that only had access to the activity of a single unit. [sent-10, score-0.479]
5 These binary units allow a more efficient population code than is possible with conventional rate coding units, and are consistent with a model of cortical processing in which synchronous packets of spikes propagate stably from one neuronal population to the next. [sent-11, score-0.937]
6 1 Binary coding in auditory cortex We recorded responses of neurons in the auditory cortex of anesthetized rats to pure-tone pips of different frequencies [1, 2]. [sent-12, score-1.141]
7 Each pip was presented repeatedly, allowing us to assess the variability of the neural response to multiple presentations of each stimulus. [sent-13, score-0.44]
8 We first recorded multi-unit activity with conventional tungsten electrodes (Fig. [sent-14, score-0.233]
9 The number of spikes in response to each pip fluctuated markedly from one trial to the next (Fig. [sent-16, score-0.365]
10 Highly variable responses such as these, which are at least as variable as a Poisson process, are the norm in the cortex [3-7], and have contributed to the widely held view that cortical spike trains are so noisy that only the average firing rate can be used to encode stimuli. [sent-18, score-0.889]
11 Because we were recording the activity of an unknown number of neurons, we could not be sure whether the strong trial-to-trial fluctuations reflected the underlying variability of the single units. [sent-19, score-0.322]
12 a Multi-unit spike rasters from a conventional tungsten electrode recording showed high trial-to-trial variability in response to ten repetitions of the same 50 msec pure tone stimulus (bottom). [sent-43, score-1.665]
13 Darker hash marks indicate spike times within the response period, which were used in the variability analysis. [sent-44, score-0.604]
14 c Spike rasters from a cell-attached recording of single-unit responses to 25 repetitions of the same tone consisted of exactly one well-timed spike per trial (latency standard deviation = 1. [sent-47, score-1.02]
15 e We quantified response variability for each tone by dividing the variance in spike count by the mean spike count across all trials for that tone. [sent-53, score-1.28]
16 Response variability for multi-unit tungsten recording (open triangles) was high for each of the 29 tones (out of 32) that elicited at least one spike on one trial. [sent-54, score-1.076]
17 Single unit responses recorded in cell-attached mode were far less variable (filled circles). [sent-56, score-0.314]
18 This recording mode minimizes both of the main sources of error in spike detection: failure to detect a spike in the unit under observation (false negatives), and contamination by spikes from nearby neurons (false positives). [sent-61, score-1.099]
19 Surprisingly, single unit responses were far more orderly than suggested by the multi-unit recordings; responses typically consisted of either 0 or 1 spikes per trial, and not more (Fig. [sent-63, score-0.613]
20 In the most dramatic examples, each presentation of the same tone pip elicited exactly one spike (Fig. [sent-65, score-0.661]
21 In most cases, however, some presentations failed to elicit a spike (Fig. [sent-67, score-0.381]
22 Although low-variability responses have recently been observed in the cortex [10, 11] and elsewhere [12, 13], the binary behavior described here has not previously been reported for cortical neurons. [sent-69, score-0.56]
23 2 0 0 ry na bi Response variance/mean (spikes/trial) The majority of the neurons (59%) in our study for which statistical significance could be assessed (at the p<0. [sent-76, score-0.326]
24 2, caption) showed noisy binary behavior—“binary” because neurons produced either 0 or 1 spikes, and “noisy” because some stimuli elicited both single spikes and failures. [sent-78, score-0.596]
25 We found no correlation between neuronal variability and cortical layer (inferred from the depth of the recording electrode), cortical area (inside vs. [sent-80, score-0.546]
26 Moreover, the binary mode of spiking was not due to the brevity (25 msec) of the stimuli; responses that were binary for short tones were comparably binary when longer (100 msec) tones were used (Fig. [sent-82, score-1.409]
27 2 Mean response (spikes/trial) 28 kHz - 25 msec 1. [sent-90, score-0.577]
28 4 0 40 80 120 160 Time (msec) 200 Figure 2: Half of the neuronal population exhibited binary firing behavior. [sent-91, score-0.452]
29 a Of the 3055 sets of responses to 25 msec tones, 2588 (gray points) could not be assessed for significance at the p<0. [sent-92, score-0.761]
30 001 level, 225 (open circles) were not significantly binary, and 242 were significantly binary (black points; see Identification methods for group statistics below). [sent-93, score-0.301]
31 b The binary nature of single unit responses was insensitive to tone duration, even for frequencies that elicited the largest responses. [sent-96, score-0.652]
32 Twenty additional spike rasters from the same neuron (and tone frequency) as in Fig. [sent-97, score-0.757]
33 1c contain no multi-spike responses whether in response to 100 msec tones (above) or 25 msec tones (below). [sent-98, score-1.838]
34 Across the population, binary responses were as prevalent for 100 msec tones as for 25 msec tones (see Identification methods for group statistics). [sent-99, score-1.833]
35 In many neurons, binary responses showed high temporal precision, with latencies sometimes exhibiting standard deviations as low as 1 msec (Fig. [sent-100, score-0.889]
36 1c), comparable to previous observations in the auditory cortex [14], and only slightly more precise than in monkey visual area MT [5]. [sent-102, score-0.324]
37 High temporal precision was positively correlated with high response probability (Fig. [sent-103, score-0.238]
38 a b N = (44 cells)x(32 tones) 14 N = 32 tones 12 30 Jitter (msec) Jitter (msec) 40 10 8 6 20 10 4 2 0 0 0 0. [sent-105, score-0.326]
39 6 Mean response (spikes/trial) 2 Figure 3: Trial-to-trial variability in latency of response to repeated presentations of the same tone decreased with increasing response probability. [sent-113, score-1.02]
40 mean response for 25 presentations each of 32 tones for a different neuron as in Figs. [sent-115, score-0.713]
41 Rasters from 25 repeated presentations of a low response tone (upper left inset, which corresponds to left-most data point) display much more variable latencies than rasters from a high response tone (lower right inset; corresponds to right-most data point). [sent-117, score-1.094]
42 b The negative correlation between latency variability and response size was present on average across the population of 44 neurons described in Identification methods for group statistics (linear fit, gray). [sent-118, score-0.673]
43 The low trial-to-trial variability ruled out the possibility that the firing statistics could be accounted for by a simple rate-modulated Poisson process (Fig. [sent-119, score-0.301]
44 In other systems, low variability has sometimes been modeled as a Poisson process followed by a post-spike refractory period [10, 12]. [sent-121, score-0.326]
45 Moreover, a single stimulus-evoked spike could suppress subsequent spikes for as long as hundreds of milliseconds (e. [sent-124, score-0.44]
46 1d,4d), supporting the idea that binary spiking arises through a circuit-level, rather than a single-neuron, mechanism. [sent-127, score-0.222]
47 Indeed, the fact that this suppression is observed even in the cortex of awake animals [15] suggests that binary spiking is not a special property of the anesthetized state. [sent-128, score-0.393]
48 It seems surprising that binary spiking in the cortex has not previously been remarked upon. [sent-129, score-0.333]
49 In the auditory cortex the explanation may be in part technical: Because firing rates in the auditory cortex tend to be low, multi-unit recording is often used to maximize the total amount of data collected. [sent-130, score-0.826]
50 Such explanations are not, however, likely to account for the failure to observe binary spiking in the visual cortex, where spike count statistics have been scrutinized more closely [3-7]. [sent-132, score-0.612]
51 7 Tone frequency (kHz) Figure 4: a The lack of multi-spike responses elicited by the neuron shown in Fig. [sent-148, score-0.44]
52 3a were not due to an absolute refractory period since the range of latencies for many tones, like that shown here, was much greater than any reasonable estimate for the neuron’s refractory period. [sent-149, score-0.352]
53 (a2) Using the smoothed post stimulus time histogram (PSTH; bottom) from the set of responses in Fig. [sent-151, score-0.283]
54 (a3) We then generated rasters assuming that the neuron fired according to a Poisson process subject to a hard refractory period of 2 msec. [sent-154, score-0.416]
55 The minimum interspike-interval during spontaneous firing events was less than two msec for five of our neurons, so 2 msec is a conservative upper bound for the refractory period. [sent-156, score-1.137]
56 25 msec bins) of the combined responses from the 25% (8/32) of tones that elicited the largest responses from the same neuron as in Figs. [sent-160, score-1.375]
57 3a and 4a illustrates a preclusion of spontaneous and evoked activity for over 200 msec following stimulation. [sent-161, score-0.552]
58 The PSTHs from progressively less responsive groups of tones show progressively less preclusion following stimulation. [sent-162, score-0.453]
59 c Fewer noisy binary neurons need to be pooled to achieve the same “signal-to-noise ratio” (SNR; see ref. [sent-163, score-0.31]
60 The ratio of the number of Poisson to binary neurons required to achieve the same SNR is plotted against the mean number of spikes elicited per neuron following stimulation; here we have defined the SNR to be the ratio of the mean spike count to the standard deviation of the spike count. [sent-165, score-1.419]
61 In this view, the binary responses may not be limited to the auditory cortex; neurons in visual and other sensory cortices might exhibit similar responses to the appropriate stimuli. [sent-169, score-0.962]
62 For example, the tone pips we used might be the auditory analog of a brief flash of light, rather than the oriented moving edges or gratings usually used to probe the primary visual cortex. [sent-170, score-0.494]
63 Conversely, auditory stimuli analogous to edges or gratings [16, 17] may be more likely to elicit conventional, rate-modulated Poisson responses in the auditory cortex. [sent-171, score-0.619]
64 Thus, even in conventional rate-modulated responses, the first spike is often privileged in that it carries most of the information in the spike train [5, 14, 18]. [sent-173, score-0.659]
65 The first spike may be particularly important as a means of rapidly signaling stimulus transients. [sent-174, score-0.377]
66 Binary responses suggest a mode that complements conventional rate coding. [sent-175, score-0.326]
67 In the simplest rate-coding model, a stimulus parameter (such as the frequency of a tone) governs only the rate at which a neuron generates spikes, but not the detailed positions of the spikes; the actual spike train itself is an instantiation of a random process (such as a Poisson process). [sent-176, score-0.509]
68 By contrast, in the binomial model, the stimulus parameter (frequency) is encoded as the probability of firing (Fig. [sent-177, score-0.246]
69 In the rate coding model, stimulus encoding is “ergodic”: a stimulus parameter can be read out either by observing the activity of one neuron for a long time, or a population for a short time. [sent-180, score-0.517]
70 By contrast, in the binary model the stimulus value can be decoded only by observing a neuronal population, so that there is no benefit to integrating over long time periods (cf. [sent-181, score-0.281]
71 One advantage of binary encoding is that it allows the population to signal quickly; the most compact message a neuron can send is one spike [20]. [sent-184, score-0.676]
72 Binary coding is also more efficient in the context of population coding, as quantified by the signal-to-noise ratio (Fig. [sent-185, score-0.257]
73 The precise organization of both spike number and time we have observed suggests that cortical activity consists, at least under some conditions, of packets of spikes synchronized across populations of neurons. [sent-187, score-0.743]
74 Theoretical work [21-23] has shown how such packets can propagate stably from one population to the next, but only if neurons within each population fire at most one spike per packet; otherwise, the number of spikes per packet—and hence the width of each packet—grows at each propagation step. [sent-188, score-1.04]
75 Interestingly, one prediction of stable propagation models is that spike probability should be related to timing precision, a prediction born out by our observations (Fig. [sent-189, score-0.327]
76 2 Identification methods for group statistics We recorded responses to 32 different 25 msec tones from each of 175 neurons from the auditory cortices of 16 Sprague-Dawley rats; each tone was repeated between 5 and 75 times (mean = 19). [sent-192, score-1.625]
77 Of these, 3055 response sets contained at least one spike on at least on trial. [sent-194, score-0.524]
78 For each response set, we tested the hypothesis that the observed variability was significantly lower than expected from the null hypothesis of a Poisson process. [sent-195, score-0.373]
79 The ability to assess significance depended on two parameters: the sample size (5-75) and the firing probability. [sent-196, score-0.256]
80 001, 467 response sets had a sufficient number of repeats to assess significance, given the observed firing probability. [sent-200, score-0.312]
81 Seventy-two neurons had at least one response set for which significance could be assessed, and of these, 49 neurons (49/72=68%) had at least one significantly sub-Poisson response set. [sent-204, score-0.929]
82 Of this population of 49 neurons, five achieved low variability through repeatable bursty behavior (e. [sent-205, score-0.301]
83 , every spike count was either 0 or 3, but not 1 or 2) and were excluded from further analysis. [sent-207, score-0.345]
84 Nine of these neurons were subjected to an additional protocol consisting of at least 10 presentations each of 100 msec tones and 25 msec tones of all 32 frequencies. [sent-210, score-1.746]
85 Of the 100 msec stimulation response sets, 44 were found to be significantly sub-Poisson at the p<0. [sent-211, score-0.644]
86 05 level, in good agreement with the 43 found to be significant among the responses to 25 msec tones. [sent-212, score-0.638]
87 Kelly, Organization of auditory cortex in the albino rat: sound frequency. [sent-227, score-0.279]
88 Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. [sent-235, score-0.288]
89 Zador, Input synchrony and the irregular firing of cortical neurons. [sent-244, score-0.249]
90 Albright, Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. [sent-257, score-0.258]
91 Dean, The statistical reliability of signals in single neurons in cat and monkey visual cortex. [sent-277, score-0.219]
92 Reid, Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. [sent-303, score-0.466]
93 Snodderly, Response variability of neurons in primary visual cortex (V1) of alert monkeys. [sent-312, score-0.464]
94 Meister, The structure and precision of retinal spike trains. [sent-322, score-0.325]
95 Wang, Temporal and rate representations of timevarying signals in the auditory cortex of awake primates. [sent-351, score-0.305]
96 Diamond, The role of spike timing in the coding of stimulus location in rat somatosensory cortex. [sent-387, score-0.468]
97 Thorpe, Face identification using one spike per neuron: resistance to image degradations. [sent-408, score-0.396]
98 Aertsen, Stable propagation of synchronous spiking in cortical neural networks. [sent-417, score-0.224]
99 Maunsell, On the relationship between synaptic input and spike output jitter in individual neurons. [sent-425, score-0.345]
100 Dayan, The effect of correlated variability on the accuracy of a population code. [sent-452, score-0.244]
wordName wordTfidf (topN-words)
[('msec', 0.405), ('tones', 0.326), ('spike', 0.298), ('tone', 0.208), ('responses', 0.204), ('neurons', 0.174), ('response', 0.172), ('auditory', 0.168), ('poisson', 0.163), ('spikes', 0.142), ('firing', 0.14), ('binary', 0.136), ('variability', 0.134), ('neuron', 0.132), ('recording', 0.128), ('rasters', 0.119), ('significance', 0.116), ('cortex', 0.111), ('population', 0.11), ('cortical', 0.109), ('refractory', 0.109), ('elicited', 0.104), ('spiking', 0.086), ('presentations', 0.083), ('stimulus', 0.079), ('latencies', 0.078), ('packets', 0.078), ('khz', 0.078), ('identification', 0.068), ('significantly', 0.067), ('neuronal', 0.066), ('neurosci', 0.065), ('conventional', 0.063), ('activity', 0.06), ('mode', 0.059), ('deweese', 0.059), ('newsome', 0.059), ('packet', 0.059), ('psth', 0.059), ('shadlen', 0.059), ('tungsten', 0.059), ('coding', 0.057), ('period', 0.056), ('zador', 0.055), ('latency', 0.052), ('recorded', 0.051), ('pip', 0.051), ('spontaneous', 0.048), ('count', 0.047), ('jitter', 0.047), ('visual', 0.045), ('trials', 0.042), ('neurophysiol', 0.041), ('stimuli', 0.04), ('gratings', 0.039), ('preclusion', 0.039), ('stably', 0.039), ('gray', 0.039), ('temporal', 0.039), ('snr', 0.037), ('assessed', 0.036), ('rat', 0.034), ('acad', 0.034), ('anesthetized', 0.034), ('movshon', 0.034), ('natl', 0.034), ('pips', 0.034), ('quantified', 0.034), ('responsive', 0.034), ('consisted', 0.033), ('implications', 0.032), ('fit', 0.031), ('cold', 0.031), ('cortices', 0.031), ('harbor', 0.031), ('identified', 0.031), ('inset', 0.031), ('isolation', 0.031), ('merzenich', 0.031), ('sci', 0.031), ('spring', 0.031), ('group', 0.031), ('per', 0.03), ('five', 0.03), ('ratio', 0.029), ('nat', 0.029), ('populations', 0.029), ('rats', 0.029), ('significant', 0.029), ('propagation', 0.029), ('low', 0.027), ('least', 0.027), ('repeated', 0.027), ('binomial', 0.027), ('discharge', 0.027), ('progressively', 0.027), ('psychophysical', 0.027), ('precision', 0.027), ('efficient', 0.027), ('awake', 0.026)]
simIndex simValue paperId paperTitle
same-paper 1 1.0000013 43 nips-2002-Binary Coding in Auditory Cortex
Author: Michael R. Deweese, Anthony M. Zador
Abstract: Cortical neurons have been reported to use both rate and temporal codes. Here we describe a novel mode in which each neuron generates exactly 0 or 1 action potentials, but not more, in response to a stimulus. We used cell-attached recording, which ensured single-unit isolation, to record responses in rat auditory cortex to brief tone pips. Surprisingly, the majority of neurons exhibited binary behavior with few multi-spike responses; several dramatic examples consisted of exactly one spike on 100% of trials, with no trial-to-trial variability in spike count. Many neurons were tuned to stimulus frequency. Since individual trials yielded at most one spike for most neurons, the information about stimulus frequency was encoded in the population, and would not have been accessible to later stages of processing that only had access to the activity of a single unit. These binary units allow a more efficient population code than is possible with conventional rate coding units, and are consistent with a model of cortical processing in which synchronous packets of spikes propagate stably from one neuronal population to the next. 1 Binary coding in auditory cortex We recorded responses of neurons in the auditory cortex of anesthetized rats to pure-tone pips of different frequencies [1, 2]. Each pip was presented repeatedly, allowing us to assess the variability of the neural response to multiple presentations of each stimulus. We first recorded multi-unit activity with conventional tungsten electrodes (Fig. 1a). The number of spikes in response to each pip fluctuated markedly from one trial to the next (Fig. 1e), as though governed by a random mechanism such as that generating the ticks of a Geiger counter. Highly variable responses such as these, which are at least as variable as a Poisson process, are the norm in the cortex [3-7], and have contributed to the widely held view that cortical spike trains are so noisy that only the average firing rate can be used to encode stimuli. Because we were recording the activity of an unknown number of neurons, we could not be sure whether the strong trial-to-trial fluctuations reflected the underlying variability of the single units. We therefore used an alternative technique, cell- a b Single-unit recording method 5mV Multi-unit 1sec Raw cellattached voltage 10 kHz c Single-unit . . . . .. .. ... . . .... . ... . Identified spikes Threshold e 28 kHz d Single-unit 80 120 160 200 Time (msec) N = 29 tones 3 2 1 Poisson N = 11 tones ry 40 4 na bi 38 kHz 0 Response variance/mean (spikes/trial) High-pass filtered 0 0 1 2 3 Mean response (spikes/trial) Figure 1: Multi-unit spiking activity was highly variable, but single units obeyed binomial statistics. a Multi-unit spike rasters from a conventional tungsten electrode recording showed high trial-to-trial variability in response to ten repetitions of the same 50 msec pure tone stimulus (bottom). Darker hash marks indicate spike times within the response period, which were used in the variability analysis. b Spikes recorded in cell-attached mode were easily identified from the raw voltage trace (top) by applying a high-pass filter (bottom) and thresholding (dark gray line). Spike times (black squares) were assigned to the peaks of suprathreshold segments. c Spike rasters from a cell-attached recording of single-unit responses to 25 repetitions of the same tone consisted of exactly one well-timed spike per trial (latency standard deviation = 1.0 msec), unlike the multi-unit responses (Fig. 1a). Under the Poisson assumption, this would have been highly unlikely (P ~ 10 -11). d The same neuron as in Fig. 1c responds with lower probability to repeated presentations of a different tone, but there are still no multi-spike responses. e We quantified response variability for each tone by dividing the variance in spike count by the mean spike count across all trials for that tone. Response variability for multi-unit tungsten recording (open triangles) was high for each of the 29 tones (out of 32) that elicited at least one spike on one trial. All but one point lie above one (horizontal gray line), which is the value produced by a Poisson process with any constant or time varying event rate. Single unit responses recorded in cell-attached mode were far less variable (filled circles). Ninety one percent (10/11) of the tones that elicited at least one spike from this neuron produced no multi-spike responses in 25 trials; the corresponding points fall on the diagonal line between (0,1) and (1,0), which provides a strict lower bound on the variability for any response set with a mean between 0 and 1. No point lies above one. attached recording with a patch pipette [8, 9], in order to ensure single unit isolation (Fig. 1b). This recording mode minimizes both of the main sources of error in spike detection: failure to detect a spike in the unit under observation (false negatives), and contamination by spikes from nearby neurons (false positives). It also differs from conventional extracellular recording methods in its selection bias: With cell- attached recording neurons are selected solely on the basis of the experimenter’s ability to form a seal, rather than on the basis of neuronal activity and responsiveness to stimuli as in conventional methods. Surprisingly, single unit responses were far more orderly than suggested by the multi-unit recordings; responses typically consisted of either 0 or 1 spikes per trial, and not more (Fig. 1c-e). In the most dramatic examples, each presentation of the same tone pip elicited exactly one spike (Fig. 1c). In most cases, however, some presentations failed to elicit a spike (Fig. 1d). Although low-variability responses have recently been observed in the cortex [10, 11] and elsewhere [12, 13], the binary behavior described here has not previously been reported for cortical neurons. a 1.4 N = 3055 response sets b 1.2 1 Poisson 28 kHz - 100 msec 0.8 0.6 0.4 0.2 0 0 ry na bi Response variance/mean (spikes/trial) The majority of the neurons (59%) in our study for which statistical significance could be assessed (at the p<0.001 significance level; see Fig. 2, caption) showed noisy binary behavior—“binary” because neurons produced either 0 or 1 spikes, and “noisy” because some stimuli elicited both single spikes and failures. In a substantial fraction of neurons, however, the responses showed more variability. We found no correlation between neuronal variability and cortical layer (inferred from the depth of the recording electrode), cortical area (inside vs. outside of area A1) or depth of anesthesia. Moreover, the binary mode of spiking was not due to the brevity (25 msec) of the stimuli; responses that were binary for short tones were comparably binary when longer (100 msec) tones were used (Fig. 2b). Not assessable Not significant Significant (p<0.001) 0.2 0.4 0.6 0.8 1 1.2 Mean response (spikes/trial) 28 kHz - 25 msec 1.4 0 40 80 120 160 Time (msec) 200 Figure 2: Half of the neuronal population exhibited binary firing behavior. a Of the 3055 sets of responses to 25 msec tones, 2588 (gray points) could not be assessed for significance at the p<0.001 level, 225 (open circles) were not significantly binary, and 242 were significantly binary (black points; see Identification methods for group statistics below). All points were jittered slightly so that overlying points could be seen in the figure. 2165 response sets contained no multi-spike responses; the corresponding points fell on the line from [0,1] to [1,0]. b The binary nature of single unit responses was insensitive to tone duration, even for frequencies that elicited the largest responses. Twenty additional spike rasters from the same neuron (and tone frequency) as in Fig. 1c contain no multi-spike responses whether in response to 100 msec tones (above) or 25 msec tones (below). Across the population, binary responses were as prevalent for 100 msec tones as for 25 msec tones (see Identification methods for group statistics). In many neurons, binary responses showed high temporal precision, with latencies sometimes exhibiting standard deviations as low as 1 msec (Fig. 3; see also Fig. 1c), comparable to previous observations in the auditory cortex [14], and only slightly more precise than in monkey visual area MT [5]. High temporal precision was positively correlated with high response probability (Fig. 3). a b N = (44 cells)x(32 tones) 14 N = 32 tones 12 30 Jitter (msec) Jitter (msec) 40 10 8 6 20 10 4 2 0 0 0 0.2 0.4 0.6 0.8 Mean response (spikes/trial) 1 0 0.4 0.8 1.2 1.6 Mean response (spikes/trial) 2 Figure 3: Trial-to-trial variability in latency of response to repeated presentations of the same tone decreased with increasing response probability. a Scatter plot of standard deviation of latency vs. mean response for 25 presentations each of 32 tones for a different neuron as in Figs. 1 and 2 (gray line is best linear fit). Rasters from 25 repeated presentations of a low response tone (upper left inset, which corresponds to left-most data point) display much more variable latencies than rasters from a high response tone (lower right inset; corresponds to right-most data point). b The negative correlation between latency variability and response size was present on average across the population of 44 neurons described in Identification methods for group statistics (linear fit, gray). The low trial-to-trial variability ruled out the possibility that the firing statistics could be accounted for by a simple rate-modulated Poisson process (Fig. 4a1,a2). In other systems, low variability has sometimes been modeled as a Poisson process followed by a post-spike refractory period [10, 12]. In our system, however, the range in latencies of evoked binary responses was often much greater than the refractory period, which could not have been longer than the 2 msec inter-spike intervals observed during epochs of spontaneous spiking, indicating that binary spiking did not result from any intrinsic property of the spike generating mechanism (Fig. 4a3). Moreover, a single stimulus-evoked spike could suppress subsequent spikes for as long as hundreds of milliseconds (e.g. Figs. 1d,4d), supporting the idea that binary spiking arises through a circuit-level, rather than a single-neuron, mechanism. Indeed, the fact that this suppression is observed even in the cortex of awake animals [15] suggests that binary spiking is not a special property of the anesthetized state. It seems surprising that binary spiking in the cortex has not previously been remarked upon. In the auditory cortex the explanation may be in part technical: Because firing rates in the auditory cortex tend to be low, multi-unit recording is often used to maximize the total amount of data collected. Moreover, our use of cell-attached recording minimizes the usual bias toward responsive or active neurons. Such explanations are not, however, likely to account for the failure to observe binary spiking in the visual cortex, where spike count statistics have been scrutinized more closely [3-7]. One possibility is that this reflects a fundamental difference between the auditory and visual systems. An alternative interpretation— a1 b Response probability 100 spikes/s 2 kHz Poisson simulation c 100 200 300 400 Time (msec) 500 20 Ratio of pool sizes a2 0 16 12 8 4 0 a3 Poisson with refractory period 0 40 80 120 160 200 Time (msec) d Response probability PSTH 0.2 0.4 0.6 0.8 1 Mean spike count per neuron 1 0.8 N = 32 tones 0.6 0.4 0.2 0 2.0 3.8 7.1 13.2 24.9 46.7 Tone frequency (kHz) Figure 4: a The lack of multi-spike responses elicited by the neuron shown in Fig. 3a were not due to an absolute refractory period since the range of latencies for many tones, like that shown here, was much greater than any reasonable estimate for the neuron’s refractory period. (a1) Experimentally recorded responses. (a2) Using the smoothed post stimulus time histogram (PSTH; bottom) from the set of responses in Fig. 4a, we generated rasters under the assumption of Poisson firing. In this representative example, four double-spike responses (arrows at left) were produced in 25 trials. (a3) We then generated rasters assuming that the neuron fired according to a Poisson process subject to a hard refractory period of 2 msec. Even with a refractory period, this representative example includes one triple- and three double-spike responses. The minimum interspike-interval during spontaneous firing events was less than two msec for five of our neurons, so 2 msec is a conservative upper bound for the refractory period. b. Spontaneous activity is reduced following high-probability responses. The PSTH (top; 0.25 msec bins) of the combined responses from the 25% (8/32) of tones that elicited the largest responses from the same neuron as in Figs. 3a and 4a illustrates a preclusion of spontaneous and evoked activity for over 200 msec following stimulation. The PSTHs from progressively less responsive groups of tones show progressively less preclusion following stimulation. c Fewer noisy binary neurons need to be pooled to achieve the same “signal-to-noise ratio” (SNR; see ref. [24]) as a collection of Poisson neurons. The ratio of the number of Poisson to binary neurons required to achieve the same SNR is plotted against the mean number of spikes elicited per neuron following stimulation; here we have defined the SNR to be the ratio of the mean spike count to the standard deviation of the spike count. d Spike probability tuning curve for the same neuron as in Figs. 1c-e and 2b fit to a Gaussian in tone frequency. and one that we favor—is that the difference rests not in the sensory modality, but instead in the difference between the stimuli used. In this view, the binary responses may not be limited to the auditory cortex; neurons in visual and other sensory cortices might exhibit similar responses to the appropriate stimuli. For example, the tone pips we used might be the auditory analog of a brief flash of light, rather than the oriented moving edges or gratings usually used to probe the primary visual cortex. Conversely, auditory stimuli analogous to edges or gratings [16, 17] may be more likely to elicit conventional, rate-modulated Poisson responses in the auditory cortex. Indeed, there may be a continuum between binary and Poisson modes. Thus, even in conventional rate-modulated responses, the first spike is often privileged in that it carries most of the information in the spike train [5, 14, 18]. The first spike may be particularly important as a means of rapidly signaling stimulus transients. Binary responses suggest a mode that complements conventional rate coding. In the simplest rate-coding model, a stimulus parameter (such as the frequency of a tone) governs only the rate at which a neuron generates spikes, but not the detailed positions of the spikes; the actual spike train itself is an instantiation of a random process (such as a Poisson process). By contrast, in the binomial model, the stimulus parameter (frequency) is encoded as the probability of firing (Fig. 4d). Binary coding has implications for cortical computation. In the rate coding model, stimulus encoding is “ergodic”: a stimulus parameter can be read out either by observing the activity of one neuron for a long time, or a population for a short time. By contrast, in the binary model the stimulus value can be decoded only by observing a neuronal population, so that there is no benefit to integrating over long time periods (cf. ref. [19]). One advantage of binary encoding is that it allows the population to signal quickly; the most compact message a neuron can send is one spike [20]. Binary coding is also more efficient in the context of population coding, as quantified by the signal-to-noise ratio (Fig. 4c). The precise organization of both spike number and time we have observed suggests that cortical activity consists, at least under some conditions, of packets of spikes synchronized across populations of neurons. Theoretical work [21-23] has shown how such packets can propagate stably from one population to the next, but only if neurons within each population fire at most one spike per packet; otherwise, the number of spikes per packet—and hence the width of each packet—grows at each propagation step. Interestingly, one prediction of stable propagation models is that spike probability should be related to timing precision, a prediction born out by our observations (Fig. 3). The role of these packets in computation remains an open question. 2 Identification methods for group statistics We recorded responses to 32 different 25 msec tones from each of 175 neurons from the auditory cortices of 16 Sprague-Dawley rats; each tone was repeated between 5 and 75 times (mean = 19). Thus our ensemble consisted of 32x175=5600 response sets, with between 5 and 75 samples in each set. Of these, 3055 response sets contained at least one spike on at least on trial. For each response set, we tested the hypothesis that the observed variability was significantly lower than expected from the null hypothesis of a Poisson process. The ability to assess significance depended on two parameters: the sample size (5-75) and the firing probability. Intuitively, the dependence on firing probability arises because at low firing rates most responses produce only trials with 0 or 1 spikes under both the Poisson and binary models; only at high firing rates do the two models make different predictions, since in that case the Poisson model includes many trials with 2 or even 3 spikes while the binary model generates only solitary spikes (see Fig. 4a1,a2). Using a stringent significance criterion of p<0.001, 467 response sets had a sufficient number of repeats to assess significance, given the observed firing probability. Of these, half (242/467=52%) were significantly less variable than expected by chance, five hundred-fold higher than the 467/1000=0.467 response sets expected, based on the 0.001 significance criterion, to yield a binary response set. Seventy-two neurons had at least one response set for which significance could be assessed, and of these, 49 neurons (49/72=68%) had at least one significantly sub-Poisson response set. Of this population of 49 neurons, five achieved low variability through repeatable bursty behavior (e.g., every spike count was either 0 or 3, but not 1 or 2) and were excluded from further analysis. The remaining 44 neurons formed the basis for the group statistics analyses shown in Figs. 2a and 3b. Nine of these neurons were subjected to an additional protocol consisting of at least 10 presentations each of 100 msec tones and 25 msec tones of all 32 frequencies. Of the 100 msec stimulation response sets, 44 were found to be significantly sub-Poisson at the p<0.05 level, in good agreement with the 43 found to be significant among the responses to 25 msec tones. 3 Bibliography 1. Kilgard, M.P. and M.M. Merzenich, Cortical map reorganization enabled by nucleus basalis activity. Science, 1998. 279(5357): p. 1714-8. 2. Sally, S.L. and J.B. Kelly, Organization of auditory cortex in the albino rat: sound frequency. J Neurophysiol, 1988. 59(5): p. 1627-38. 3. Softky, W.R. and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci, 1993. 13(1): p. 334-50. 4. Stevens, C.F. and A.M. Zador, Input synchrony and the irregular firing of cortical neurons. Nat Neurosci, 1998. 1(3): p. 210-7. 5. Buracas, G.T., A.M. Zador, M.R. DeWeese, and T.D. Albright, Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron, 1998. 20(5): p. 959-69. 6. Shadlen, M.N. and W.T. Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci, 1998. 18(10): p. 3870-96. 7. Tolhurst, D.J., J.A. Movshon, and A.F. Dean, The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res, 1983. 23(8): p. 775-85. 8. Otmakhov, N., A.M. Shirke, and R. Malinow, Measuring the impact of probabilistic transmission on neuronal output. Neuron, 1993. 10(6): p. 1101-11. 9. Friedrich, R.W. and G. Laurent, Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science, 2001. 291(5505): p. 889-94. 10. Kara, P., P. Reinagel, and R.C. Reid, Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 2000. 27(3): p. 635-46. 11. Gur, M., A. Beylin, and D.M. Snodderly, Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci, 1997. 17(8): p. 2914-20. 12. Berry, M.J., D.K. Warland, and M. Meister, The structure and precision of retinal spike trains. Proc Natl Acad Sci U S A, 1997. 94(10): p. 5411-6. 13. de Ruyter van Steveninck, R.R., G.D. Lewen, S.P. Strong, R. Koberle, and W. Bialek, Reproducibility and variability in neural spike trains. Science, 1997. 275(5307): p. 1805-8. 14. Heil, P., Auditory cortical onset responses revisited. I. First-spike timing. J Neurophysiol, 1997. 77(5): p. 2616-41. 15. Lu, T., L. Liang, and X. Wang, Temporal and rate representations of timevarying signals in the auditory cortex of awake primates. Nat Neurosci, 2001. 4(11): p. 1131-8. 16. Kowalski, N., D.A. Depireux, and S.A. Shamma, Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol, 1996. 76(5): p. 350323. 17. deCharms, R.C., D.T. Blake, and M.M. Merzenich, Optimizing sound features for cortical neurons. Science, 1998. 280(5368): p. 1439-43. 18. Panzeri, S., R.S. Petersen, S.R. Schultz, M. Lebedev, and M.E. Diamond, The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 2001. 29(3): p. 769-77. 19. Britten, K.H., M.N. Shadlen, W.T. Newsome, and J.A. Movshon, The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci, 1992. 12(12): p. 4745-65. 20. Delorme, A. and S.J. Thorpe, Face identification using one spike per neuron: resistance to image degradations. Neural Netw, 2001. 14(6-7): p. 795-803. 21. Diesmann, M., M.O. Gewaltig, and A. Aertsen, Stable propagation of synchronous spiking in cortical neural networks. Nature, 1999. 402(6761): p. 529-33. 22. Marsalek, P., C. Koch, and J. Maunsell, On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A, 1997. 94(2): p. 735-40. 23. Kistler, W.M. and W. Gerstner, Stable propagation of activity pulses in populations of spiking neurons. Neural Comp., 2002. 14: p. 987-997. 24. Zohary, E., M.N. Shadlen, and W.T. Newsome, Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 1994. 370(6485): p. 140-3. 25. Abbott, L.F. and P. Dayan, The effect of correlated variability on the accuracy of a population code. Neural Comput, 1999. 11(1): p. 91-101.
2 0.41722721 76 nips-2002-Dynamical Constraints on Computing with Spike Timing in the Cortex
Author: Arunava Banerjee, Alexandre Pouget
Abstract: If the cortex uses spike timing to compute, the timing of the spikes must be robust to perturbations. Based on a recent framework that provides a simple criterion to determine whether a spike sequence produced by a generic network is sensitive to initial conditions, and numerical simulations of a variety of network architectures, we argue within the limits set by our model of the neuron, that it is unlikely that precise sequences of spike timings are used for computation under conditions typically found in the cortex.
3 0.34566221 184 nips-2002-Spectro-Temporal Receptive Fields of Subthreshold Responses in Auditory Cortex
Author: Christian K. Machens, Michael Wehr, Anthony M. Zador
Abstract: How do cortical neurons represent the acoustic environment? This question is often addressed by probing with simple stimuli such as clicks or tone pips. Such stimuli have the advantage of yielding easily interpreted answers, but have the disadvantage that they may fail to uncover complex or higher-order neuronal response properties. Here we adopt an alternative approach, probing neuronal responses with complex acoustic stimuli, including animal vocalizations and music. We have used in vivo whole cell methods in the rat auditory cortex to record subthreshold membrane potential fluctuations elicited by these stimuli. Whole cell recording reveals the total synaptic input to a neuron from all the other neurons in the circuit, instead of just its output—a sparse binary spike train—as in conventional single unit physiological recordings. Whole cell recording thus provides a much richer source of information about the neuron’s response. Many neurons responded robustly and reliably to the complex stimuli in our ensemble. Here we analyze the linear component—the spectrotemporal receptive field (STRF)—of the transformation from the sound (as represented by its time-varying spectrogram) to the neuron’s membrane potential. We find that the STRF has a rich dynamical structure, including excitatory regions positioned in general accord with the prediction of the simple tuning curve. We also find that in many cases, much of the neuron’s response, although deterministically related to the stimulus, cannot be predicted by the linear component, indicating the presence of as-yet-uncharacterized nonlinear response properties.
4 0.28342795 103 nips-2002-How Linear are Auditory Cortical Responses?
Author: Maneesh Sahani, Jennifer F. Linden
Abstract: By comparison to some other sensory cortices, the functional properties of cells in the primary auditory cortex are not yet well understood. Recent attempts to obtain a generalized description of auditory cortical responses have often relied upon characterization of the spectrotemporal receptive field (STRF), which amounts to a model of the stimulusresponse function (SRF) that is linear in the spectrogram of the stimulus. How well can such a model account for neural responses at the very first stages of auditory cortical processing? To answer this question, we develop a novel methodology for evaluating the fraction of stimulus-related response power in a population that can be captured by a given type of SRF model. We use this technique to show that, in the thalamo-recipient layers of primary auditory cortex, STRF models account for no more than 40% of the stimulus-related power in neural responses.
5 0.25223055 171 nips-2002-Reconstructing Stimulus-Driven Neural Networks from Spike Times
Author: Duane Q. Nykamp
Abstract: We present a method to distinguish direct connections between two neurons from common input originating from other, unmeasured neurons. The distinction is computed from the spike times of the two neurons in response to a white noise stimulus. Although the method is based on a highly idealized linear-nonlinear approximation of neural response, we demonstrate via simulation that the approach can work with a more realistic, integrate-and-fire neuron model. We propose that the approach exemplified by this analysis may yield viable tools for reconstructing stimulus-driven neural networks from data gathered in neurophysiology experiments.
6 0.25126031 12 nips-2002-A Neural Edge-Detection Model for Enhanced Auditory Sensitivity in Modulated Noise
7 0.24495931 116 nips-2002-Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior
8 0.23524055 141 nips-2002-Maximally Informative Dimensions: Analyzing Neural Responses to Natural Signals
9 0.19788456 148 nips-2002-Morton-Style Factorial Coding of Color in Primary Visual Cortex
10 0.19326083 44 nips-2002-Binary Tuning is Optimal for Neural Rate Coding with High Temporal Resolution
11 0.18362488 28 nips-2002-An Information Theoretic Approach to the Functional Classification of Neurons
12 0.1762421 187 nips-2002-Spikernels: Embedding Spiking Neurons in Inner-Product Spaces
13 0.16716887 102 nips-2002-Hidden Markov Model of Cortical Synaptic Plasticity: Derivation of the Learning Rule
14 0.15080626 50 nips-2002-Circuit Model of Short-Term Synaptic Dynamics
15 0.1501026 11 nips-2002-A Model for Real-Time Computation in Generic Neural Microcircuits
16 0.14446956 26 nips-2002-An Estimation-Theoretic Framework for the Presentation of Multiple Stimuli
17 0.13027097 79 nips-2002-Evidence Optimization Techniques for Estimating Stimulus-Response Functions
18 0.097824834 5 nips-2002-A Digital Antennal Lobe for Pattern Equalization: Analysis and Design
19 0.097648889 154 nips-2002-Neuromorphic Bisable VLSI Synapses with Spike-Timing-Dependent Plasticity
20 0.095599353 186 nips-2002-Spike Timing-Dependent Plasticity in the Address Domain
topicId topicWeight
[(0, -0.233), (1, 0.485), (2, 0.132), (3, -0.138), (4, 0.004), (5, -0.179), (6, -0.079), (7, 0.005), (8, -0.117), (9, -0.02), (10, -0.022), (11, -0.004), (12, -0.04), (13, -0.07), (14, -0.029), (15, -0.004), (16, -0.045), (17, 0.084), (18, 0.005), (19, 0.131), (20, -0.111), (21, 0.049), (22, -0.103), (23, 0.006), (24, 0.059), (25, 0.021), (26, 0.031), (27, -0.039), (28, -0.011), (29, 0.069), (30, 0.009), (31, -0.089), (32, -0.055), (33, 0.057), (34, -0.032), (35, 0.061), (36, -0.008), (37, 0.001), (38, 0.006), (39, 0.079), (40, 0.004), (41, -0.055), (42, -0.031), (43, -0.001), (44, 0.014), (45, 0.05), (46, 0.033), (47, -0.002), (48, 0.052), (49, 0.019)]
simIndex simValue paperId paperTitle
same-paper 1 0.98709905 43 nips-2002-Binary Coding in Auditory Cortex
Author: Michael R. Deweese, Anthony M. Zador
Abstract: Cortical neurons have been reported to use both rate and temporal codes. Here we describe a novel mode in which each neuron generates exactly 0 or 1 action potentials, but not more, in response to a stimulus. We used cell-attached recording, which ensured single-unit isolation, to record responses in rat auditory cortex to brief tone pips. Surprisingly, the majority of neurons exhibited binary behavior with few multi-spike responses; several dramatic examples consisted of exactly one spike on 100% of trials, with no trial-to-trial variability in spike count. Many neurons were tuned to stimulus frequency. Since individual trials yielded at most one spike for most neurons, the information about stimulus frequency was encoded in the population, and would not have been accessible to later stages of processing that only had access to the activity of a single unit. These binary units allow a more efficient population code than is possible with conventional rate coding units, and are consistent with a model of cortical processing in which synchronous packets of spikes propagate stably from one neuronal population to the next. 1 Binary coding in auditory cortex We recorded responses of neurons in the auditory cortex of anesthetized rats to pure-tone pips of different frequencies [1, 2]. Each pip was presented repeatedly, allowing us to assess the variability of the neural response to multiple presentations of each stimulus. We first recorded multi-unit activity with conventional tungsten electrodes (Fig. 1a). The number of spikes in response to each pip fluctuated markedly from one trial to the next (Fig. 1e), as though governed by a random mechanism such as that generating the ticks of a Geiger counter. Highly variable responses such as these, which are at least as variable as a Poisson process, are the norm in the cortex [3-7], and have contributed to the widely held view that cortical spike trains are so noisy that only the average firing rate can be used to encode stimuli. Because we were recording the activity of an unknown number of neurons, we could not be sure whether the strong trial-to-trial fluctuations reflected the underlying variability of the single units. We therefore used an alternative technique, cell- a b Single-unit recording method 5mV Multi-unit 1sec Raw cellattached voltage 10 kHz c Single-unit . . . . .. .. ... . . .... . ... . Identified spikes Threshold e 28 kHz d Single-unit 80 120 160 200 Time (msec) N = 29 tones 3 2 1 Poisson N = 11 tones ry 40 4 na bi 38 kHz 0 Response variance/mean (spikes/trial) High-pass filtered 0 0 1 2 3 Mean response (spikes/trial) Figure 1: Multi-unit spiking activity was highly variable, but single units obeyed binomial statistics. a Multi-unit spike rasters from a conventional tungsten electrode recording showed high trial-to-trial variability in response to ten repetitions of the same 50 msec pure tone stimulus (bottom). Darker hash marks indicate spike times within the response period, which were used in the variability analysis. b Spikes recorded in cell-attached mode were easily identified from the raw voltage trace (top) by applying a high-pass filter (bottom) and thresholding (dark gray line). Spike times (black squares) were assigned to the peaks of suprathreshold segments. c Spike rasters from a cell-attached recording of single-unit responses to 25 repetitions of the same tone consisted of exactly one well-timed spike per trial (latency standard deviation = 1.0 msec), unlike the multi-unit responses (Fig. 1a). Under the Poisson assumption, this would have been highly unlikely (P ~ 10 -11). d The same neuron as in Fig. 1c responds with lower probability to repeated presentations of a different tone, but there are still no multi-spike responses. e We quantified response variability for each tone by dividing the variance in spike count by the mean spike count across all trials for that tone. Response variability for multi-unit tungsten recording (open triangles) was high for each of the 29 tones (out of 32) that elicited at least one spike on one trial. All but one point lie above one (horizontal gray line), which is the value produced by a Poisson process with any constant or time varying event rate. Single unit responses recorded in cell-attached mode were far less variable (filled circles). Ninety one percent (10/11) of the tones that elicited at least one spike from this neuron produced no multi-spike responses in 25 trials; the corresponding points fall on the diagonal line between (0,1) and (1,0), which provides a strict lower bound on the variability for any response set with a mean between 0 and 1. No point lies above one. attached recording with a patch pipette [8, 9], in order to ensure single unit isolation (Fig. 1b). This recording mode minimizes both of the main sources of error in spike detection: failure to detect a spike in the unit under observation (false negatives), and contamination by spikes from nearby neurons (false positives). It also differs from conventional extracellular recording methods in its selection bias: With cell- attached recording neurons are selected solely on the basis of the experimenter’s ability to form a seal, rather than on the basis of neuronal activity and responsiveness to stimuli as in conventional methods. Surprisingly, single unit responses were far more orderly than suggested by the multi-unit recordings; responses typically consisted of either 0 or 1 spikes per trial, and not more (Fig. 1c-e). In the most dramatic examples, each presentation of the same tone pip elicited exactly one spike (Fig. 1c). In most cases, however, some presentations failed to elicit a spike (Fig. 1d). Although low-variability responses have recently been observed in the cortex [10, 11] and elsewhere [12, 13], the binary behavior described here has not previously been reported for cortical neurons. a 1.4 N = 3055 response sets b 1.2 1 Poisson 28 kHz - 100 msec 0.8 0.6 0.4 0.2 0 0 ry na bi Response variance/mean (spikes/trial) The majority of the neurons (59%) in our study for which statistical significance could be assessed (at the p<0.001 significance level; see Fig. 2, caption) showed noisy binary behavior—“binary” because neurons produced either 0 or 1 spikes, and “noisy” because some stimuli elicited both single spikes and failures. In a substantial fraction of neurons, however, the responses showed more variability. We found no correlation between neuronal variability and cortical layer (inferred from the depth of the recording electrode), cortical area (inside vs. outside of area A1) or depth of anesthesia. Moreover, the binary mode of spiking was not due to the brevity (25 msec) of the stimuli; responses that were binary for short tones were comparably binary when longer (100 msec) tones were used (Fig. 2b). Not assessable Not significant Significant (p<0.001) 0.2 0.4 0.6 0.8 1 1.2 Mean response (spikes/trial) 28 kHz - 25 msec 1.4 0 40 80 120 160 Time (msec) 200 Figure 2: Half of the neuronal population exhibited binary firing behavior. a Of the 3055 sets of responses to 25 msec tones, 2588 (gray points) could not be assessed for significance at the p<0.001 level, 225 (open circles) were not significantly binary, and 242 were significantly binary (black points; see Identification methods for group statistics below). All points were jittered slightly so that overlying points could be seen in the figure. 2165 response sets contained no multi-spike responses; the corresponding points fell on the line from [0,1] to [1,0]. b The binary nature of single unit responses was insensitive to tone duration, even for frequencies that elicited the largest responses. Twenty additional spike rasters from the same neuron (and tone frequency) as in Fig. 1c contain no multi-spike responses whether in response to 100 msec tones (above) or 25 msec tones (below). Across the population, binary responses were as prevalent for 100 msec tones as for 25 msec tones (see Identification methods for group statistics). In many neurons, binary responses showed high temporal precision, with latencies sometimes exhibiting standard deviations as low as 1 msec (Fig. 3; see also Fig. 1c), comparable to previous observations in the auditory cortex [14], and only slightly more precise than in monkey visual area MT [5]. High temporal precision was positively correlated with high response probability (Fig. 3). a b N = (44 cells)x(32 tones) 14 N = 32 tones 12 30 Jitter (msec) Jitter (msec) 40 10 8 6 20 10 4 2 0 0 0 0.2 0.4 0.6 0.8 Mean response (spikes/trial) 1 0 0.4 0.8 1.2 1.6 Mean response (spikes/trial) 2 Figure 3: Trial-to-trial variability in latency of response to repeated presentations of the same tone decreased with increasing response probability. a Scatter plot of standard deviation of latency vs. mean response for 25 presentations each of 32 tones for a different neuron as in Figs. 1 and 2 (gray line is best linear fit). Rasters from 25 repeated presentations of a low response tone (upper left inset, which corresponds to left-most data point) display much more variable latencies than rasters from a high response tone (lower right inset; corresponds to right-most data point). b The negative correlation between latency variability and response size was present on average across the population of 44 neurons described in Identification methods for group statistics (linear fit, gray). The low trial-to-trial variability ruled out the possibility that the firing statistics could be accounted for by a simple rate-modulated Poisson process (Fig. 4a1,a2). In other systems, low variability has sometimes been modeled as a Poisson process followed by a post-spike refractory period [10, 12]. In our system, however, the range in latencies of evoked binary responses was often much greater than the refractory period, which could not have been longer than the 2 msec inter-spike intervals observed during epochs of spontaneous spiking, indicating that binary spiking did not result from any intrinsic property of the spike generating mechanism (Fig. 4a3). Moreover, a single stimulus-evoked spike could suppress subsequent spikes for as long as hundreds of milliseconds (e.g. Figs. 1d,4d), supporting the idea that binary spiking arises through a circuit-level, rather than a single-neuron, mechanism. Indeed, the fact that this suppression is observed even in the cortex of awake animals [15] suggests that binary spiking is not a special property of the anesthetized state. It seems surprising that binary spiking in the cortex has not previously been remarked upon. In the auditory cortex the explanation may be in part technical: Because firing rates in the auditory cortex tend to be low, multi-unit recording is often used to maximize the total amount of data collected. Moreover, our use of cell-attached recording minimizes the usual bias toward responsive or active neurons. Such explanations are not, however, likely to account for the failure to observe binary spiking in the visual cortex, where spike count statistics have been scrutinized more closely [3-7]. One possibility is that this reflects a fundamental difference between the auditory and visual systems. An alternative interpretation— a1 b Response probability 100 spikes/s 2 kHz Poisson simulation c 100 200 300 400 Time (msec) 500 20 Ratio of pool sizes a2 0 16 12 8 4 0 a3 Poisson with refractory period 0 40 80 120 160 200 Time (msec) d Response probability PSTH 0.2 0.4 0.6 0.8 1 Mean spike count per neuron 1 0.8 N = 32 tones 0.6 0.4 0.2 0 2.0 3.8 7.1 13.2 24.9 46.7 Tone frequency (kHz) Figure 4: a The lack of multi-spike responses elicited by the neuron shown in Fig. 3a were not due to an absolute refractory period since the range of latencies for many tones, like that shown here, was much greater than any reasonable estimate for the neuron’s refractory period. (a1) Experimentally recorded responses. (a2) Using the smoothed post stimulus time histogram (PSTH; bottom) from the set of responses in Fig. 4a, we generated rasters under the assumption of Poisson firing. In this representative example, four double-spike responses (arrows at left) were produced in 25 trials. (a3) We then generated rasters assuming that the neuron fired according to a Poisson process subject to a hard refractory period of 2 msec. Even with a refractory period, this representative example includes one triple- and three double-spike responses. The minimum interspike-interval during spontaneous firing events was less than two msec for five of our neurons, so 2 msec is a conservative upper bound for the refractory period. b. Spontaneous activity is reduced following high-probability responses. The PSTH (top; 0.25 msec bins) of the combined responses from the 25% (8/32) of tones that elicited the largest responses from the same neuron as in Figs. 3a and 4a illustrates a preclusion of spontaneous and evoked activity for over 200 msec following stimulation. The PSTHs from progressively less responsive groups of tones show progressively less preclusion following stimulation. c Fewer noisy binary neurons need to be pooled to achieve the same “signal-to-noise ratio” (SNR; see ref. [24]) as a collection of Poisson neurons. The ratio of the number of Poisson to binary neurons required to achieve the same SNR is plotted against the mean number of spikes elicited per neuron following stimulation; here we have defined the SNR to be the ratio of the mean spike count to the standard deviation of the spike count. d Spike probability tuning curve for the same neuron as in Figs. 1c-e and 2b fit to a Gaussian in tone frequency. and one that we favor—is that the difference rests not in the sensory modality, but instead in the difference between the stimuli used. In this view, the binary responses may not be limited to the auditory cortex; neurons in visual and other sensory cortices might exhibit similar responses to the appropriate stimuli. For example, the tone pips we used might be the auditory analog of a brief flash of light, rather than the oriented moving edges or gratings usually used to probe the primary visual cortex. Conversely, auditory stimuli analogous to edges or gratings [16, 17] may be more likely to elicit conventional, rate-modulated Poisson responses in the auditory cortex. Indeed, there may be a continuum between binary and Poisson modes. Thus, even in conventional rate-modulated responses, the first spike is often privileged in that it carries most of the information in the spike train [5, 14, 18]. The first spike may be particularly important as a means of rapidly signaling stimulus transients. Binary responses suggest a mode that complements conventional rate coding. In the simplest rate-coding model, a stimulus parameter (such as the frequency of a tone) governs only the rate at which a neuron generates spikes, but not the detailed positions of the spikes; the actual spike train itself is an instantiation of a random process (such as a Poisson process). By contrast, in the binomial model, the stimulus parameter (frequency) is encoded as the probability of firing (Fig. 4d). Binary coding has implications for cortical computation. In the rate coding model, stimulus encoding is “ergodic”: a stimulus parameter can be read out either by observing the activity of one neuron for a long time, or a population for a short time. By contrast, in the binary model the stimulus value can be decoded only by observing a neuronal population, so that there is no benefit to integrating over long time periods (cf. ref. [19]). One advantage of binary encoding is that it allows the population to signal quickly; the most compact message a neuron can send is one spike [20]. Binary coding is also more efficient in the context of population coding, as quantified by the signal-to-noise ratio (Fig. 4c). The precise organization of both spike number and time we have observed suggests that cortical activity consists, at least under some conditions, of packets of spikes synchronized across populations of neurons. Theoretical work [21-23] has shown how such packets can propagate stably from one population to the next, but only if neurons within each population fire at most one spike per packet; otherwise, the number of spikes per packet—and hence the width of each packet—grows at each propagation step. Interestingly, one prediction of stable propagation models is that spike probability should be related to timing precision, a prediction born out by our observations (Fig. 3). The role of these packets in computation remains an open question. 2 Identification methods for group statistics We recorded responses to 32 different 25 msec tones from each of 175 neurons from the auditory cortices of 16 Sprague-Dawley rats; each tone was repeated between 5 and 75 times (mean = 19). Thus our ensemble consisted of 32x175=5600 response sets, with between 5 and 75 samples in each set. Of these, 3055 response sets contained at least one spike on at least on trial. For each response set, we tested the hypothesis that the observed variability was significantly lower than expected from the null hypothesis of a Poisson process. The ability to assess significance depended on two parameters: the sample size (5-75) and the firing probability. Intuitively, the dependence on firing probability arises because at low firing rates most responses produce only trials with 0 or 1 spikes under both the Poisson and binary models; only at high firing rates do the two models make different predictions, since in that case the Poisson model includes many trials with 2 or even 3 spikes while the binary model generates only solitary spikes (see Fig. 4a1,a2). Using a stringent significance criterion of p<0.001, 467 response sets had a sufficient number of repeats to assess significance, given the observed firing probability. Of these, half (242/467=52%) were significantly less variable than expected by chance, five hundred-fold higher than the 467/1000=0.467 response sets expected, based on the 0.001 significance criterion, to yield a binary response set. Seventy-two neurons had at least one response set for which significance could be assessed, and of these, 49 neurons (49/72=68%) had at least one significantly sub-Poisson response set. Of this population of 49 neurons, five achieved low variability through repeatable bursty behavior (e.g., every spike count was either 0 or 3, but not 1 or 2) and were excluded from further analysis. The remaining 44 neurons formed the basis for the group statistics analyses shown in Figs. 2a and 3b. Nine of these neurons were subjected to an additional protocol consisting of at least 10 presentations each of 100 msec tones and 25 msec tones of all 32 frequencies. Of the 100 msec stimulation response sets, 44 were found to be significantly sub-Poisson at the p<0.05 level, in good agreement with the 43 found to be significant among the responses to 25 msec tones. 3 Bibliography 1. Kilgard, M.P. and M.M. Merzenich, Cortical map reorganization enabled by nucleus basalis activity. Science, 1998. 279(5357): p. 1714-8. 2. Sally, S.L. and J.B. Kelly, Organization of auditory cortex in the albino rat: sound frequency. J Neurophysiol, 1988. 59(5): p. 1627-38. 3. Softky, W.R. and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci, 1993. 13(1): p. 334-50. 4. Stevens, C.F. and A.M. Zador, Input synchrony and the irregular firing of cortical neurons. Nat Neurosci, 1998. 1(3): p. 210-7. 5. Buracas, G.T., A.M. Zador, M.R. DeWeese, and T.D. Albright, Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron, 1998. 20(5): p. 959-69. 6. Shadlen, M.N. and W.T. Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci, 1998. 18(10): p. 3870-96. 7. Tolhurst, D.J., J.A. Movshon, and A.F. Dean, The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res, 1983. 23(8): p. 775-85. 8. Otmakhov, N., A.M. Shirke, and R. Malinow, Measuring the impact of probabilistic transmission on neuronal output. Neuron, 1993. 10(6): p. 1101-11. 9. Friedrich, R.W. and G. Laurent, Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science, 2001. 291(5505): p. 889-94. 10. Kara, P., P. Reinagel, and R.C. Reid, Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 2000. 27(3): p. 635-46. 11. Gur, M., A. Beylin, and D.M. Snodderly, Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci, 1997. 17(8): p. 2914-20. 12. Berry, M.J., D.K. Warland, and M. Meister, The structure and precision of retinal spike trains. Proc Natl Acad Sci U S A, 1997. 94(10): p. 5411-6. 13. de Ruyter van Steveninck, R.R., G.D. Lewen, S.P. Strong, R. Koberle, and W. Bialek, Reproducibility and variability in neural spike trains. Science, 1997. 275(5307): p. 1805-8. 14. Heil, P., Auditory cortical onset responses revisited. I. First-spike timing. J Neurophysiol, 1997. 77(5): p. 2616-41. 15. Lu, T., L. Liang, and X. Wang, Temporal and rate representations of timevarying signals in the auditory cortex of awake primates. Nat Neurosci, 2001. 4(11): p. 1131-8. 16. Kowalski, N., D.A. Depireux, and S.A. Shamma, Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol, 1996. 76(5): p. 350323. 17. deCharms, R.C., D.T. Blake, and M.M. Merzenich, Optimizing sound features for cortical neurons. Science, 1998. 280(5368): p. 1439-43. 18. Panzeri, S., R.S. Petersen, S.R. Schultz, M. Lebedev, and M.E. Diamond, The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 2001. 29(3): p. 769-77. 19. Britten, K.H., M.N. Shadlen, W.T. Newsome, and J.A. Movshon, The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci, 1992. 12(12): p. 4745-65. 20. Delorme, A. and S.J. Thorpe, Face identification using one spike per neuron: resistance to image degradations. Neural Netw, 2001. 14(6-7): p. 795-803. 21. Diesmann, M., M.O. Gewaltig, and A. Aertsen, Stable propagation of synchronous spiking in cortical neural networks. Nature, 1999. 402(6761): p. 529-33. 22. Marsalek, P., C. Koch, and J. Maunsell, On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A, 1997. 94(2): p. 735-40. 23. Kistler, W.M. and W. Gerstner, Stable propagation of activity pulses in populations of spiking neurons. Neural Comp., 2002. 14: p. 987-997. 24. Zohary, E., M.N. Shadlen, and W.T. Newsome, Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 1994. 370(6485): p. 140-3. 25. Abbott, L.F. and P. Dayan, The effect of correlated variability on the accuracy of a population code. Neural Comput, 1999. 11(1): p. 91-101.
2 0.81229776 171 nips-2002-Reconstructing Stimulus-Driven Neural Networks from Spike Times
Author: Duane Q. Nykamp
Abstract: We present a method to distinguish direct connections between two neurons from common input originating from other, unmeasured neurons. The distinction is computed from the spike times of the two neurons in response to a white noise stimulus. Although the method is based on a highly idealized linear-nonlinear approximation of neural response, we demonstrate via simulation that the approach can work with a more realistic, integrate-and-fire neuron model. We propose that the approach exemplified by this analysis may yield viable tools for reconstructing stimulus-driven neural networks from data gathered in neurophysiology experiments.
3 0.80238074 184 nips-2002-Spectro-Temporal Receptive Fields of Subthreshold Responses in Auditory Cortex
Author: Christian K. Machens, Michael Wehr, Anthony M. Zador
Abstract: How do cortical neurons represent the acoustic environment? This question is often addressed by probing with simple stimuli such as clicks or tone pips. Such stimuli have the advantage of yielding easily interpreted answers, but have the disadvantage that they may fail to uncover complex or higher-order neuronal response properties. Here we adopt an alternative approach, probing neuronal responses with complex acoustic stimuli, including animal vocalizations and music. We have used in vivo whole cell methods in the rat auditory cortex to record subthreshold membrane potential fluctuations elicited by these stimuli. Whole cell recording reveals the total synaptic input to a neuron from all the other neurons in the circuit, instead of just its output—a sparse binary spike train—as in conventional single unit physiological recordings. Whole cell recording thus provides a much richer source of information about the neuron’s response. Many neurons responded robustly and reliably to the complex stimuli in our ensemble. Here we analyze the linear component—the spectrotemporal receptive field (STRF)—of the transformation from the sound (as represented by its time-varying spectrogram) to the neuron’s membrane potential. We find that the STRF has a rich dynamical structure, including excitatory regions positioned in general accord with the prediction of the simple tuning curve. We also find that in many cases, much of the neuron’s response, although deterministically related to the stimulus, cannot be predicted by the linear component, indicating the presence of as-yet-uncharacterized nonlinear response properties.
4 0.79137927 76 nips-2002-Dynamical Constraints on Computing with Spike Timing in the Cortex
Author: Arunava Banerjee, Alexandre Pouget
Abstract: If the cortex uses spike timing to compute, the timing of the spikes must be robust to perturbations. Based on a recent framework that provides a simple criterion to determine whether a spike sequence produced by a generic network is sensitive to initial conditions, and numerical simulations of a variety of network architectures, we argue within the limits set by our model of the neuron, that it is unlikely that precise sequences of spike timings are used for computation under conditions typically found in the cortex.
5 0.7039898 141 nips-2002-Maximally Informative Dimensions: Analyzing Neural Responses to Natural Signals
Author: Tatyana Sharpee, Nicole C. Rust, William Bialek
Abstract: unkown-abstract
6 0.6752556 12 nips-2002-A Neural Edge-Detection Model for Enhanced Auditory Sensitivity in Modulated Noise
7 0.64587444 44 nips-2002-Binary Tuning is Optimal for Neural Rate Coding with High Temporal Resolution
8 0.64164072 11 nips-2002-A Model for Real-Time Computation in Generic Neural Microcircuits
9 0.6052779 148 nips-2002-Morton-Style Factorial Coding of Color in Primary Visual Cortex
10 0.5801115 103 nips-2002-How Linear are Auditory Cortical Responses?
11 0.52305239 116 nips-2002-Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior
12 0.49629447 26 nips-2002-An Estimation-Theoretic Framework for the Presentation of Multiple Stimuli
13 0.4958165 50 nips-2002-Circuit Model of Short-Term Synaptic Dynamics
14 0.48264638 28 nips-2002-An Information Theoretic Approach to the Functional Classification of Neurons
15 0.4765588 102 nips-2002-Hidden Markov Model of Cortical Synaptic Plasticity: Derivation of the Learning Rule
16 0.44779208 60 nips-2002-Convergence Properties of Some Spike-Triggered Analysis Techniques
17 0.43716845 79 nips-2002-Evidence Optimization Techniques for Estimating Stimulus-Response Functions
18 0.42636138 5 nips-2002-A Digital Antennal Lobe for Pattern Equalization: Analysis and Design
19 0.42198032 187 nips-2002-Spikernels: Embedding Spiking Neurons in Inner-Product Spaces
20 0.41986176 160 nips-2002-Optoelectronic Implementation of a FitzHugh-Nagumo Neural Model
topicId topicWeight
[(23, 0.058), (24, 0.034), (42, 0.046), (45, 0.214), (54, 0.049), (55, 0.031), (57, 0.014), (64, 0.049), (67, 0.023), (68, 0.077), (74, 0.079), (75, 0.019), (92, 0.017), (98, 0.186)]
simIndex simValue paperId paperTitle
same-paper 1 0.8846401 43 nips-2002-Binary Coding in Auditory Cortex
Author: Michael R. Deweese, Anthony M. Zador
Abstract: Cortical neurons have been reported to use both rate and temporal codes. Here we describe a novel mode in which each neuron generates exactly 0 or 1 action potentials, but not more, in response to a stimulus. We used cell-attached recording, which ensured single-unit isolation, to record responses in rat auditory cortex to brief tone pips. Surprisingly, the majority of neurons exhibited binary behavior with few multi-spike responses; several dramatic examples consisted of exactly one spike on 100% of trials, with no trial-to-trial variability in spike count. Many neurons were tuned to stimulus frequency. Since individual trials yielded at most one spike for most neurons, the information about stimulus frequency was encoded in the population, and would not have been accessible to later stages of processing that only had access to the activity of a single unit. These binary units allow a more efficient population code than is possible with conventional rate coding units, and are consistent with a model of cortical processing in which synchronous packets of spikes propagate stably from one neuronal population to the next. 1 Binary coding in auditory cortex We recorded responses of neurons in the auditory cortex of anesthetized rats to pure-tone pips of different frequencies [1, 2]. Each pip was presented repeatedly, allowing us to assess the variability of the neural response to multiple presentations of each stimulus. We first recorded multi-unit activity with conventional tungsten electrodes (Fig. 1a). The number of spikes in response to each pip fluctuated markedly from one trial to the next (Fig. 1e), as though governed by a random mechanism such as that generating the ticks of a Geiger counter. Highly variable responses such as these, which are at least as variable as a Poisson process, are the norm in the cortex [3-7], and have contributed to the widely held view that cortical spike trains are so noisy that only the average firing rate can be used to encode stimuli. Because we were recording the activity of an unknown number of neurons, we could not be sure whether the strong trial-to-trial fluctuations reflected the underlying variability of the single units. We therefore used an alternative technique, cell- a b Single-unit recording method 5mV Multi-unit 1sec Raw cellattached voltage 10 kHz c Single-unit . . . . .. .. ... . . .... . ... . Identified spikes Threshold e 28 kHz d Single-unit 80 120 160 200 Time (msec) N = 29 tones 3 2 1 Poisson N = 11 tones ry 40 4 na bi 38 kHz 0 Response variance/mean (spikes/trial) High-pass filtered 0 0 1 2 3 Mean response (spikes/trial) Figure 1: Multi-unit spiking activity was highly variable, but single units obeyed binomial statistics. a Multi-unit spike rasters from a conventional tungsten electrode recording showed high trial-to-trial variability in response to ten repetitions of the same 50 msec pure tone stimulus (bottom). Darker hash marks indicate spike times within the response period, which were used in the variability analysis. b Spikes recorded in cell-attached mode were easily identified from the raw voltage trace (top) by applying a high-pass filter (bottom) and thresholding (dark gray line). Spike times (black squares) were assigned to the peaks of suprathreshold segments. c Spike rasters from a cell-attached recording of single-unit responses to 25 repetitions of the same tone consisted of exactly one well-timed spike per trial (latency standard deviation = 1.0 msec), unlike the multi-unit responses (Fig. 1a). Under the Poisson assumption, this would have been highly unlikely (P ~ 10 -11). d The same neuron as in Fig. 1c responds with lower probability to repeated presentations of a different tone, but there are still no multi-spike responses. e We quantified response variability for each tone by dividing the variance in spike count by the mean spike count across all trials for that tone. Response variability for multi-unit tungsten recording (open triangles) was high for each of the 29 tones (out of 32) that elicited at least one spike on one trial. All but one point lie above one (horizontal gray line), which is the value produced by a Poisson process with any constant or time varying event rate. Single unit responses recorded in cell-attached mode were far less variable (filled circles). Ninety one percent (10/11) of the tones that elicited at least one spike from this neuron produced no multi-spike responses in 25 trials; the corresponding points fall on the diagonal line between (0,1) and (1,0), which provides a strict lower bound on the variability for any response set with a mean between 0 and 1. No point lies above one. attached recording with a patch pipette [8, 9], in order to ensure single unit isolation (Fig. 1b). This recording mode minimizes both of the main sources of error in spike detection: failure to detect a spike in the unit under observation (false negatives), and contamination by spikes from nearby neurons (false positives). It also differs from conventional extracellular recording methods in its selection bias: With cell- attached recording neurons are selected solely on the basis of the experimenter’s ability to form a seal, rather than on the basis of neuronal activity and responsiveness to stimuli as in conventional methods. Surprisingly, single unit responses were far more orderly than suggested by the multi-unit recordings; responses typically consisted of either 0 or 1 spikes per trial, and not more (Fig. 1c-e). In the most dramatic examples, each presentation of the same tone pip elicited exactly one spike (Fig. 1c). In most cases, however, some presentations failed to elicit a spike (Fig. 1d). Although low-variability responses have recently been observed in the cortex [10, 11] and elsewhere [12, 13], the binary behavior described here has not previously been reported for cortical neurons. a 1.4 N = 3055 response sets b 1.2 1 Poisson 28 kHz - 100 msec 0.8 0.6 0.4 0.2 0 0 ry na bi Response variance/mean (spikes/trial) The majority of the neurons (59%) in our study for which statistical significance could be assessed (at the p<0.001 significance level; see Fig. 2, caption) showed noisy binary behavior—“binary” because neurons produced either 0 or 1 spikes, and “noisy” because some stimuli elicited both single spikes and failures. In a substantial fraction of neurons, however, the responses showed more variability. We found no correlation between neuronal variability and cortical layer (inferred from the depth of the recording electrode), cortical area (inside vs. outside of area A1) or depth of anesthesia. Moreover, the binary mode of spiking was not due to the brevity (25 msec) of the stimuli; responses that were binary for short tones were comparably binary when longer (100 msec) tones were used (Fig. 2b). Not assessable Not significant Significant (p<0.001) 0.2 0.4 0.6 0.8 1 1.2 Mean response (spikes/trial) 28 kHz - 25 msec 1.4 0 40 80 120 160 Time (msec) 200 Figure 2: Half of the neuronal population exhibited binary firing behavior. a Of the 3055 sets of responses to 25 msec tones, 2588 (gray points) could not be assessed for significance at the p<0.001 level, 225 (open circles) were not significantly binary, and 242 were significantly binary (black points; see Identification methods for group statistics below). All points were jittered slightly so that overlying points could be seen in the figure. 2165 response sets contained no multi-spike responses; the corresponding points fell on the line from [0,1] to [1,0]. b The binary nature of single unit responses was insensitive to tone duration, even for frequencies that elicited the largest responses. Twenty additional spike rasters from the same neuron (and tone frequency) as in Fig. 1c contain no multi-spike responses whether in response to 100 msec tones (above) or 25 msec tones (below). Across the population, binary responses were as prevalent for 100 msec tones as for 25 msec tones (see Identification methods for group statistics). In many neurons, binary responses showed high temporal precision, with latencies sometimes exhibiting standard deviations as low as 1 msec (Fig. 3; see also Fig. 1c), comparable to previous observations in the auditory cortex [14], and only slightly more precise than in monkey visual area MT [5]. High temporal precision was positively correlated with high response probability (Fig. 3). a b N = (44 cells)x(32 tones) 14 N = 32 tones 12 30 Jitter (msec) Jitter (msec) 40 10 8 6 20 10 4 2 0 0 0 0.2 0.4 0.6 0.8 Mean response (spikes/trial) 1 0 0.4 0.8 1.2 1.6 Mean response (spikes/trial) 2 Figure 3: Trial-to-trial variability in latency of response to repeated presentations of the same tone decreased with increasing response probability. a Scatter plot of standard deviation of latency vs. mean response for 25 presentations each of 32 tones for a different neuron as in Figs. 1 and 2 (gray line is best linear fit). Rasters from 25 repeated presentations of a low response tone (upper left inset, which corresponds to left-most data point) display much more variable latencies than rasters from a high response tone (lower right inset; corresponds to right-most data point). b The negative correlation between latency variability and response size was present on average across the population of 44 neurons described in Identification methods for group statistics (linear fit, gray). The low trial-to-trial variability ruled out the possibility that the firing statistics could be accounted for by a simple rate-modulated Poisson process (Fig. 4a1,a2). In other systems, low variability has sometimes been modeled as a Poisson process followed by a post-spike refractory period [10, 12]. In our system, however, the range in latencies of evoked binary responses was often much greater than the refractory period, which could not have been longer than the 2 msec inter-spike intervals observed during epochs of spontaneous spiking, indicating that binary spiking did not result from any intrinsic property of the spike generating mechanism (Fig. 4a3). Moreover, a single stimulus-evoked spike could suppress subsequent spikes for as long as hundreds of milliseconds (e.g. Figs. 1d,4d), supporting the idea that binary spiking arises through a circuit-level, rather than a single-neuron, mechanism. Indeed, the fact that this suppression is observed even in the cortex of awake animals [15] suggests that binary spiking is not a special property of the anesthetized state. It seems surprising that binary spiking in the cortex has not previously been remarked upon. In the auditory cortex the explanation may be in part technical: Because firing rates in the auditory cortex tend to be low, multi-unit recording is often used to maximize the total amount of data collected. Moreover, our use of cell-attached recording minimizes the usual bias toward responsive or active neurons. Such explanations are not, however, likely to account for the failure to observe binary spiking in the visual cortex, where spike count statistics have been scrutinized more closely [3-7]. One possibility is that this reflects a fundamental difference between the auditory and visual systems. An alternative interpretation— a1 b Response probability 100 spikes/s 2 kHz Poisson simulation c 100 200 300 400 Time (msec) 500 20 Ratio of pool sizes a2 0 16 12 8 4 0 a3 Poisson with refractory period 0 40 80 120 160 200 Time (msec) d Response probability PSTH 0.2 0.4 0.6 0.8 1 Mean spike count per neuron 1 0.8 N = 32 tones 0.6 0.4 0.2 0 2.0 3.8 7.1 13.2 24.9 46.7 Tone frequency (kHz) Figure 4: a The lack of multi-spike responses elicited by the neuron shown in Fig. 3a were not due to an absolute refractory period since the range of latencies for many tones, like that shown here, was much greater than any reasonable estimate for the neuron’s refractory period. (a1) Experimentally recorded responses. (a2) Using the smoothed post stimulus time histogram (PSTH; bottom) from the set of responses in Fig. 4a, we generated rasters under the assumption of Poisson firing. In this representative example, four double-spike responses (arrows at left) were produced in 25 trials. (a3) We then generated rasters assuming that the neuron fired according to a Poisson process subject to a hard refractory period of 2 msec. Even with a refractory period, this representative example includes one triple- and three double-spike responses. The minimum interspike-interval during spontaneous firing events was less than two msec for five of our neurons, so 2 msec is a conservative upper bound for the refractory period. b. Spontaneous activity is reduced following high-probability responses. The PSTH (top; 0.25 msec bins) of the combined responses from the 25% (8/32) of tones that elicited the largest responses from the same neuron as in Figs. 3a and 4a illustrates a preclusion of spontaneous and evoked activity for over 200 msec following stimulation. The PSTHs from progressively less responsive groups of tones show progressively less preclusion following stimulation. c Fewer noisy binary neurons need to be pooled to achieve the same “signal-to-noise ratio” (SNR; see ref. [24]) as a collection of Poisson neurons. The ratio of the number of Poisson to binary neurons required to achieve the same SNR is plotted against the mean number of spikes elicited per neuron following stimulation; here we have defined the SNR to be the ratio of the mean spike count to the standard deviation of the spike count. d Spike probability tuning curve for the same neuron as in Figs. 1c-e and 2b fit to a Gaussian in tone frequency. and one that we favor—is that the difference rests not in the sensory modality, but instead in the difference between the stimuli used. In this view, the binary responses may not be limited to the auditory cortex; neurons in visual and other sensory cortices might exhibit similar responses to the appropriate stimuli. For example, the tone pips we used might be the auditory analog of a brief flash of light, rather than the oriented moving edges or gratings usually used to probe the primary visual cortex. Conversely, auditory stimuli analogous to edges or gratings [16, 17] may be more likely to elicit conventional, rate-modulated Poisson responses in the auditory cortex. Indeed, there may be a continuum between binary and Poisson modes. Thus, even in conventional rate-modulated responses, the first spike is often privileged in that it carries most of the information in the spike train [5, 14, 18]. The first spike may be particularly important as a means of rapidly signaling stimulus transients. Binary responses suggest a mode that complements conventional rate coding. In the simplest rate-coding model, a stimulus parameter (such as the frequency of a tone) governs only the rate at which a neuron generates spikes, but not the detailed positions of the spikes; the actual spike train itself is an instantiation of a random process (such as a Poisson process). By contrast, in the binomial model, the stimulus parameter (frequency) is encoded as the probability of firing (Fig. 4d). Binary coding has implications for cortical computation. In the rate coding model, stimulus encoding is “ergodic”: a stimulus parameter can be read out either by observing the activity of one neuron for a long time, or a population for a short time. By contrast, in the binary model the stimulus value can be decoded only by observing a neuronal population, so that there is no benefit to integrating over long time periods (cf. ref. [19]). One advantage of binary encoding is that it allows the population to signal quickly; the most compact message a neuron can send is one spike [20]. Binary coding is also more efficient in the context of population coding, as quantified by the signal-to-noise ratio (Fig. 4c). The precise organization of both spike number and time we have observed suggests that cortical activity consists, at least under some conditions, of packets of spikes synchronized across populations of neurons. Theoretical work [21-23] has shown how such packets can propagate stably from one population to the next, but only if neurons within each population fire at most one spike per packet; otherwise, the number of spikes per packet—and hence the width of each packet—grows at each propagation step. Interestingly, one prediction of stable propagation models is that spike probability should be related to timing precision, a prediction born out by our observations (Fig. 3). The role of these packets in computation remains an open question. 2 Identification methods for group statistics We recorded responses to 32 different 25 msec tones from each of 175 neurons from the auditory cortices of 16 Sprague-Dawley rats; each tone was repeated between 5 and 75 times (mean = 19). Thus our ensemble consisted of 32x175=5600 response sets, with between 5 and 75 samples in each set. Of these, 3055 response sets contained at least one spike on at least on trial. For each response set, we tested the hypothesis that the observed variability was significantly lower than expected from the null hypothesis of a Poisson process. The ability to assess significance depended on two parameters: the sample size (5-75) and the firing probability. Intuitively, the dependence on firing probability arises because at low firing rates most responses produce only trials with 0 or 1 spikes under both the Poisson and binary models; only at high firing rates do the two models make different predictions, since in that case the Poisson model includes many trials with 2 or even 3 spikes while the binary model generates only solitary spikes (see Fig. 4a1,a2). Using a stringent significance criterion of p<0.001, 467 response sets had a sufficient number of repeats to assess significance, given the observed firing probability. Of these, half (242/467=52%) were significantly less variable than expected by chance, five hundred-fold higher than the 467/1000=0.467 response sets expected, based on the 0.001 significance criterion, to yield a binary response set. Seventy-two neurons had at least one response set for which significance could be assessed, and of these, 49 neurons (49/72=68%) had at least one significantly sub-Poisson response set. Of this population of 49 neurons, five achieved low variability through repeatable bursty behavior (e.g., every spike count was either 0 or 3, but not 1 or 2) and were excluded from further analysis. The remaining 44 neurons formed the basis for the group statistics analyses shown in Figs. 2a and 3b. Nine of these neurons were subjected to an additional protocol consisting of at least 10 presentations each of 100 msec tones and 25 msec tones of all 32 frequencies. Of the 100 msec stimulation response sets, 44 were found to be significantly sub-Poisson at the p<0.05 level, in good agreement with the 43 found to be significant among the responses to 25 msec tones. 3 Bibliography 1. Kilgard, M.P. and M.M. Merzenich, Cortical map reorganization enabled by nucleus basalis activity. Science, 1998. 279(5357): p. 1714-8. 2. Sally, S.L. and J.B. Kelly, Organization of auditory cortex in the albino rat: sound frequency. J Neurophysiol, 1988. 59(5): p. 1627-38. 3. Softky, W.R. and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci, 1993. 13(1): p. 334-50. 4. Stevens, C.F. and A.M. Zador, Input synchrony and the irregular firing of cortical neurons. Nat Neurosci, 1998. 1(3): p. 210-7. 5. Buracas, G.T., A.M. Zador, M.R. DeWeese, and T.D. Albright, Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron, 1998. 20(5): p. 959-69. 6. Shadlen, M.N. and W.T. Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci, 1998. 18(10): p. 3870-96. 7. Tolhurst, D.J., J.A. Movshon, and A.F. Dean, The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res, 1983. 23(8): p. 775-85. 8. Otmakhov, N., A.M. Shirke, and R. Malinow, Measuring the impact of probabilistic transmission on neuronal output. Neuron, 1993. 10(6): p. 1101-11. 9. Friedrich, R.W. and G. Laurent, Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science, 2001. 291(5505): p. 889-94. 10. Kara, P., P. Reinagel, and R.C. Reid, Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 2000. 27(3): p. 635-46. 11. Gur, M., A. Beylin, and D.M. Snodderly, Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci, 1997. 17(8): p. 2914-20. 12. Berry, M.J., D.K. Warland, and M. Meister, The structure and precision of retinal spike trains. Proc Natl Acad Sci U S A, 1997. 94(10): p. 5411-6. 13. de Ruyter van Steveninck, R.R., G.D. Lewen, S.P. Strong, R. Koberle, and W. Bialek, Reproducibility and variability in neural spike trains. Science, 1997. 275(5307): p. 1805-8. 14. Heil, P., Auditory cortical onset responses revisited. I. First-spike timing. J Neurophysiol, 1997. 77(5): p. 2616-41. 15. Lu, T., L. Liang, and X. Wang, Temporal and rate representations of timevarying signals in the auditory cortex of awake primates. Nat Neurosci, 2001. 4(11): p. 1131-8. 16. Kowalski, N., D.A. Depireux, and S.A. Shamma, Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol, 1996. 76(5): p. 350323. 17. deCharms, R.C., D.T. Blake, and M.M. Merzenich, Optimizing sound features for cortical neurons. Science, 1998. 280(5368): p. 1439-43. 18. Panzeri, S., R.S. Petersen, S.R. Schultz, M. Lebedev, and M.E. Diamond, The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 2001. 29(3): p. 769-77. 19. Britten, K.H., M.N. Shadlen, W.T. Newsome, and J.A. Movshon, The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci, 1992. 12(12): p. 4745-65. 20. Delorme, A. and S.J. Thorpe, Face identification using one spike per neuron: resistance to image degradations. Neural Netw, 2001. 14(6-7): p. 795-803. 21. Diesmann, M., M.O. Gewaltig, and A. Aertsen, Stable propagation of synchronous spiking in cortical neural networks. Nature, 1999. 402(6761): p. 529-33. 22. Marsalek, P., C. Koch, and J. Maunsell, On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A, 1997. 94(2): p. 735-40. 23. Kistler, W.M. and W. Gerstner, Stable propagation of activity pulses in populations of spiking neurons. Neural Comp., 2002. 14: p. 987-997. 24. Zohary, E., M.N. Shadlen, and W.T. Newsome, Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 1994. 370(6485): p. 140-3. 25. Abbott, L.F. and P. Dayan, The effect of correlated variability on the accuracy of a population code. Neural Comput, 1999. 11(1): p. 91-101.
2 0.75753236 31 nips-2002-Application of Variational Bayesian Approach to Speech Recognition
Author: Shinji Watanabe, Yasuhiro Minami, Atsushi Nakamura, Naonori Ueda
Abstract: In this paper, we propose a Bayesian framework, which constructs shared-state triphone HMMs based on a variational Bayesian approach, and recognizes speech based on the Bayesian prediction classification; variational Bayesian estimation and clustering for speech recognition (VBEC). An appropriate model structure with high recognition performance can be found within a VBEC framework. Unlike conventional methods, including BIC or MDL criterion based on the maximum likelihood approach, the proposed model selection is valid in principle, even when there are insufficient amounts of data, because it does not use an asymptotic assumption. In isolated word recognition experiments, we show the advantage of VBEC over conventional methods, especially when dealing with small amounts of data.
3 0.7341426 173 nips-2002-Recovering Intrinsic Images from a Single Image
Author: Marshall F. Tappen, William T. Freeman, Edward H. Adelson
Abstract: We present an algorithm that uses multiple cues to recover shading and reflectance intrinsic images from a single image. Using both color information and a classifier trained to recognize gray-scale patterns, each image derivative is classified as being caused by shading or a change in the surface’s reflectance. Generalized Belief Propagation is then used to propagate information from areas where the correct classification is clear to areas where it is ambiguous. We also show results on real images.
4 0.6921519 184 nips-2002-Spectro-Temporal Receptive Fields of Subthreshold Responses in Auditory Cortex
Author: Christian K. Machens, Michael Wehr, Anthony M. Zador
Abstract: How do cortical neurons represent the acoustic environment? This question is often addressed by probing with simple stimuli such as clicks or tone pips. Such stimuli have the advantage of yielding easily interpreted answers, but have the disadvantage that they may fail to uncover complex or higher-order neuronal response properties. Here we adopt an alternative approach, probing neuronal responses with complex acoustic stimuli, including animal vocalizations and music. We have used in vivo whole cell methods in the rat auditory cortex to record subthreshold membrane potential fluctuations elicited by these stimuli. Whole cell recording reveals the total synaptic input to a neuron from all the other neurons in the circuit, instead of just its output—a sparse binary spike train—as in conventional single unit physiological recordings. Whole cell recording thus provides a much richer source of information about the neuron’s response. Many neurons responded robustly and reliably to the complex stimuli in our ensemble. Here we analyze the linear component—the spectrotemporal receptive field (STRF)—of the transformation from the sound (as represented by its time-varying spectrogram) to the neuron’s membrane potential. We find that the STRF has a rich dynamical structure, including excitatory regions positioned in general accord with the prediction of the simple tuning curve. We also find that in many cases, much of the neuron’s response, although deterministically related to the stimulus, cannot be predicted by the linear component, indicating the presence of as-yet-uncharacterized nonlinear response properties.
5 0.66902894 116 nips-2002-Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior
Author: Patrik O. Hoyer, Aapo Hyvärinen
Abstract: The responses of cortical sensory neurons are notoriously variable, with the number of spikes evoked by identical stimuli varying significantly from trial to trial. This variability is most often interpreted as ‘noise’, purely detrimental to the sensory system. In this paper, we propose an alternative view in which the variability is related to the uncertainty, about world parameters, which is inherent in the sensory stimulus. Specifically, the responses of a population of neurons are interpreted as stochastic samples from the posterior distribution in a latent variable model. In addition to giving theoretical arguments supporting such a representational scheme, we provide simulations suggesting how some aspects of response variability might be understood in this framework.
6 0.66704524 148 nips-2002-Morton-Style Factorial Coding of Color in Primary Visual Cortex
7 0.66393495 50 nips-2002-Circuit Model of Short-Term Synaptic Dynamics
8 0.66030443 92 nips-2002-FloatBoost Learning for Classification
9 0.65796381 103 nips-2002-How Linear are Auditory Cortical Responses?
10 0.65424085 199 nips-2002-Timing and Partial Observability in the Dopamine System
11 0.653669 129 nips-2002-Learning in Spiking Neural Assemblies
12 0.65209156 102 nips-2002-Hidden Markov Model of Cortical Synaptic Plasticity: Derivation of the Learning Rule
13 0.65062821 180 nips-2002-Selectivity and Metaplasticity in a Unified Calcium-Dependent Model
14 0.64975786 86 nips-2002-Fast Sparse Gaussian Process Methods: The Informative Vector Machine
15 0.64904308 73 nips-2002-Dynamic Bayesian Networks with Deterministic Latent Tables
16 0.64813012 79 nips-2002-Evidence Optimization Techniques for Estimating Stimulus-Response Functions
17 0.64533007 5 nips-2002-A Digital Antennal Lobe for Pattern Equalization: Analysis and Design
18 0.64360094 141 nips-2002-Maximally Informative Dimensions: Analyzing Neural Responses to Natural Signals
19 0.64128453 12 nips-2002-A Neural Edge-Detection Model for Enhanced Auditory Sensitivity in Modulated Noise
20 0.63959718 81 nips-2002-Expected and Unexpected Uncertainty: ACh and NE in the Neocortex