emnlp emnlp2010 emnlp2010-105 knowledge-graph by maker-knowledge-mining

105 emnlp-2010-Title Generation with Quasi-Synchronous Grammar


Source: pdf

Author: Kristian Woodsend ; Yansong Feng ; Mirella Lapata

Abstract: The task of selecting information and rendering it appropriately appears in multiple contexts in summarization. In this paper we present a model that simultaneously optimizes selection and rendering preferences. The model operates over a phrase-based representation of the source document which we obtain by merging PCFG parse trees and dependency graphs. Selection preferences for individual phrases are learned discriminatively, while a quasi-synchronous grammar (Smith and Eisner, 2006) captures rendering preferences such as paraphrases and compressions. Based on an integer linear programming formulation, the model learns to generate summaries that satisfy both types of preferences, while ensuring that length, topic coverage and grammar constraints are met. Experiments on headline and image caption generation show that our method obtains state-of-the-art performance using essentially the same model for both tasks without any major modifications.

Reference: text


Summary: the most important sentenses genereted by tfidf model

sentIndex sentText sentNum sentScore

1 The model operates over a phrase-based representation of the source document which we obtain by merging PCFG parse trees and dependency graphs. [sent-13, score-0.207]

2 Selection preferences for individual phrases are learned discriminatively, while a quasi-synchronous grammar (Smith and Eisner, 2006) captures rendering preferences such as paraphrases and compressions. [sent-14, score-0.403]

3 Based on an integer linear programming formulation, the model learns to generate summaries that satisfy both types of preferences, while ensuring that length, topic coverage and grammar constraints are met. [sent-15, score-0.228]

4 Experiments on headline and image caption generation show that our method obtains state-of-the-art performance using essentially the same model for both tasks without any major modifications. [sent-16, score-0.787]

5 The advantage of this approach is that it does not require a great deal of linguistic analysis to generate grammatical sentences, 513 assuming the source document was well written. [sent-20, score-0.17]

6 The conciseness can be improved when sentence extraction is interfaced with sentence compression, where words and clauses are deleted based on rules typically operating over parsed input (Jing, 2000; Daum e´ III and Marcu, 2002; Lin, 2003; Daum e´ III, 2006; Zajic et al. [sent-22, score-0.195]

7 An alternative abstractive or “bottom-up” approach involves identifying high-interest words and phrases in the source text, and combining them into new sentences guided by a language model (Banko et al. [sent-24, score-0.159]

8 Unfortunately, the resulting summaries are not always coherent individual constituent phrases are often combined without any semantic constraints or grammatical beyond the n-gram horizon imposed by the language model. [sent-27, score-0.249]

9 Constituent deletion and recombination are merely two of the many rewrite operations professional editors and abstractors employ when creating summaries (Jing, 2002). [sent-28, score-0.327]

10 News headlines for example are typically short (three to six words), written in the present tense and active voice, and often leave out forms of — — the verb be. [sent-31, score-0.281]

11 There are also different ways of writing a headline either directly by stating what the docuProceMedITin,g Ms oasfs thaceh 2u0se1t0ts C,o UnSfAer,e n9c-e1 on O Ectmobpeir ic 2a0l1 M0. [sent-32, score-0.406]

12 Importantly, these constraints are conflicting; the deletion of certain phrases may avoid redundancy but result in ungrammatical output and information loss. [sent-36, score-0.223]

13 Selection preferences are learned discriminatively, while a quasisynchronous grammar (QG, Smith and Eisner 2006) captures rendering preferences such as paraphrases and compressions. [sent-39, score-0.321]

14 A key insight in our approach is to formulate the summarization problem at the phrase level: both QG rules and information extraction operate over individual phrases rather than (as is the norm) sentences. [sent-44, score-0.279]

15 At this smaller unit level, QG rules become more widely applicable and compression falls naturally because only phrases deemed important should appear in the summary. [sent-45, score-0.347]

16 We evaluate the proposed model on headline generation and the related task of image caption gen- eration. [sent-46, score-0.787]

17 Ex514 perimental results show that our method obtains state-of-the-art performance, both in terms of grammaticality and informativeness for both tasks using the same summarization model. [sent-48, score-0.171]

18 A few previous approaches have attempted to interface sentence compression with summarization. [sent-52, score-0.24]

19 ILP models have also been developed for sentence rather than document compression (Clarke and Lapata, 2008). [sent-57, score-0.334]

20 The compressed sentence may also be “padded” with important content words or phrases to ensure that the topic of the document is covered (Zajic et al. [sent-69, score-0.288]

21 Other work generates headlines in a bottom-up fashion starting from important, individual words and phrases, that are glued together to create a fluent sentence. [sent-71, score-0.281]

22 (2000) draw inspiration from Machine Translation and generate headlines using statistical models for content selection and sentence realization. [sent-73, score-0.362]

23 Relatively little work has focused on caption generation, a task related to headline generation. [sent-74, score-0.623]

24 Like headlines, captions have to be short and informative. [sent-76, score-0.181]

25 In addition, a good caption must clearly identify the subject of the picture and establish its relevance to the article. [sent-77, score-0.217]

26 Feng and Lapata (2010a) develop ex- tractive and abstractive caption generation models that operate over the output of a probabilistic image annotation model that preprocesses the pictures and suggests keywords to describe their content. [sent-78, score-0.446]

27 Our own work develops an ILP-based summarization model with rewrite operations that are not limited to deletion, are defined over phrases, and encoded in quasi-synchronous grammar. [sent-81, score-0.188]

28 Unlike most synchronous grammar formalisms, QG does not posit a strict isomorphism between a source sentence and its target translation; it only loosely links the syntactic structure of the two, and is therefore well suited to describing the relationship between a document and its abstract. [sent-84, score-0.233]

29 Content selection is performed discriminatively; an SVM learns which information in the source document should be in the summary, and gives a real-valued salience score for each phrase. [sent-87, score-0.213]

30 QG rules are used to generate compressions and paraphrases of the source sentences. [sent-88, score-0.246]

31 An ILP model combines the output of these two components into an output summary, while optimizing content selection and surface realization preferences jointly. [sent-89, score-0.213]

32 1 Document Representation Our model operates on documents annotated with syntactic information which we obtain by parsing every sentence twice, once with a phrase structure parser and once with a dependency parser. [sent-91, score-0.203]

33 However, we do not merge the leaf nodes into phrases here, but keep the full tree structure, as we will apply compression to phrases through the QG. [sent-94, score-0.513]

34 2 Quasi-synchronous grammar Given an input sentence S1 or its parse tree T1, the QG constructs a monolingual grammar for parsing, or generating, the possible translation (or here, paraphrase) trees T2. [sent-97, score-0.188]

35 A grammar node in the target tree T2 is modeled on a subset ofnodes in the source tree, with a rather loose alignment between the trees. [sent-98, score-0.215]

36 Each sentence of the source document is compared to each sentence in the target document headline or caption, depending on the task. [sent-100, score-0.729]

37 Using the combined PCFG-dependency tree representation described above, we build up a list of leaf node alignments based on lexical identity, after — stemming and removing stop words. [sent-101, score-0.2]

38 We align direct parent nodes where more than one child node aligns. [sent-102, score-0.238]

39 (a) alignment of child nodes, involving compression through deletion; (b) rewriting involving child and grandchild nodes; (c) reordering of child nodes (with further compression through applying other QG rules on children). [sent-104, score-0.824]

40 Dotted lines show alignments in the grammar between source and target child nodes. [sent-106, score-0.206]

41 Finally, QG rules are created from aligned nodes above the leaf node level, recording the phrase and dependency label of nodes, and the alignment of child nodes. [sent-109, score-0.433]

42 Figure 1 shows some example alignments that are captured by the QG, with the source node on the left and the target node on the right. [sent-116, score-0.248]

43 Leaf nodes have their original text, while other nodes have a combined phrase and dependency label that they obtain in the merged representation described in Section 3. [sent-117, score-0.243]

44 In Figure 1(a), some child nodes are aligned while others are not present in the target tree. [sent-122, score-0.154]

45 This type of rule is common in our training data, and typically arises from the compression of names in noun phrases. [sent-123, score-0.193]

46 Figure 1(c) shows a rule involving the reordering of child nodes, and where additional rules are applied recursively to achieve further compression and a transformation in the phrase constituency. [sent-125, score-0.422]

47 Paraphrases are created from source sentence parse trees by applying suitable rules recursively. [sent-126, score-0.16]

48 Suitable rules have matching structure in terms of phrase and dependency label, for both the parent and child nodes. [sent-127, score-0.232]

49 , the root node of the paraphrase must match the phrase and dependency label of the corresponding node in the target tree). [sent-130, score-0.344]

50 Specifically, the model selects phrases and paraphrases from which to form the output sentence. [sent-138, score-0.213]

51 1, augmented with paraphrase choice nodes such as shown in Figure 2 rather than raw text. [sent-142, score-0.17]

52 Le⊂t the sets Di ⊂ P, ∀i ∈ P capture tsehen phrase dependency informat⊂ion f,o ∀ri e ∈ach phrase i, where each set Di contains the phrases that depend on the presence of i. [sent-144, score-0.218]

53 For caption generation, the model has as additional input a list of tags (keywords drawn from the source document) that correspond to the image, and we refer to this set of tags as T. [sent-147, score-0.258]

54 , where nr is a count of the number of times this particular QG rule r was seen in the training data, and Nr is the number of times all suitable rules for this phrase node were seen. [sent-160, score-0.207]

55 The objective function is the sum of the salience scores and paraphrase penalties of all the phrases chosen to form the output of a given document, subject to the constraints in Equations (1b)–(1j). [sent-165, score-0.35]

56 This is controlled by constraint (1f), and by placing all paraphrases in the set Di for the choice node i. [sent-175, score-0.214]

57 Where there are no applicable QG rules to guide the model, in general we require all child nodes j of the current node ito be included in the summary if node iis included. [sent-177, score-0.465]

58 In general, we force the parent node p of the current node ito be included in the output if i is, resulting in all ancestors up to the root node being included. [sent-180, score-0.31]

59 Constraint (1g) tells the ILP to output a sentence if one of its constituent phrases is chosen. [sent-182, score-0.158]

60 4 Experimental Set-up As mentioned earlier we evaluated the performance of our model on two title generation tasks, namely 518 headline and caption generation. [sent-184, score-0.757]

61 For the headline generation task, the full DUC-03 (Task 1) corpus was used for training; it contains 500 documents and 4 headline-style summaries per document. [sent-188, score-0.613]

62 If there was a unigram overlap (excluding stop words) between the phrase and any of the original title or caption, we marked this phrase with a positive label. [sent-193, score-0.155]

63 Additionally, the caption training set contained features for unigram and bigram overlap with the title. [sent-197, score-0.217]

64 For each ofthe two tasks, QG rules were extracted from the same data used to train the SVM, resulting in 2,910 distinct rules for headlines and 2,757 rules for the captions. [sent-201, score-0.497]

65 to headlines, captions involve slightly less deletion and a higher proportion of the phrases are unmodified. [sent-209, score-0.336]

66 The QG learning mechanism also discovers more alignments between source sentences and captions than it does for the headline task. [sent-210, score-0.667]

67 Title generation For the headline generation task, we evaluated our model on a testing partition from the DUC-04 corpus (75 documents, Task 1). [sent-211, score-0.568]

68 For the caption task, we used the test set (240 documents) described in Feng and Lapata (2010a). [sent-212, score-0.217]

69 Note the maximum number of sentences allowed to form a headline is set to 5 as some of the headlines in the DUC dataset contained multiple sentences. [sent-229, score-0.687]

70 The solution was converted into a sentence by removing nodes not chosen from the tree representation, then concatenating the remaining leaf nodes in order. [sent-231, score-0.282]

71 Model Comparison For the headline task, we compared our model to the DUC-04 standard baseline of the first sentence, truncated at the first word boundary after 75 characters; and the output of the Topiary system (Zajic et al. [sent-232, score-0.435]

72 The latter estimates the probability of a phrase appearing in the caption given the same phrase appearing in the corresponding document and uses a language model to select among many different surface realizations. [sent-236, score-0.443]

73 Evaluation We evaluated the quality of the headlines using ROUGE (Lin and Hovy, 2003). [sent-238, score-0.281]

74 We also use ROUGE to evaluate the automatic captions with the original BBC captions as reference. [sent-242, score-0.362]

75 In addition, we evaluated the generated headlines by eliciting human judgments. [sent-243, score-0.281]

76 Participants were presented with a news article and its corresponding headline and were asked to rate the latter along two dimensions: informativeness (does the headline capture the article’s most important information? [sent-244, score-0.904]

77 We randomly selected twelve documents from the test set and generated headlines with our model. [sent-248, score-0.314]

78 We also included the output of Topiary and the human written DUC-04 headlines as a gold standard. [sent-249, score-0.339]

79 We elicited judgments for the generated captions in a similar fashion. [sent-251, score-0.181]

80 Participants were presented with a document, an associated image, and its caption, and asked to rate the latter (using a 1–7 rating scale) with respect to grammaticality and informativeness (does it describe succinctly the content of the image and document? [sent-252, score-0.214]

81 Again, we randomly selected 12 document-image pairs from the test set and generated captions for them using the highest scoring document sentence according to the SVM, our ILP-based model, and the output of Feng and Lapata’s (2010a) system. [sent-254, score-0.351]

82 We also included the original BBC captions as an upper bound. [sent-255, score-0.21]

83 80 unpaid volunteers rated the headlines and 65 the captions, all self reported native English speakers. [sent-258, score-0.281]

84 5 Results We report results on the headline generation task in Figure 3, with ROUGE-1, ROUGE-2 and ROUGEL. [sent-259, score-0.487]

85 Note that the 95% confidence level intervals reported by ROUGE are so large that no results are statistically 520 Table 3: Example headline output. [sent-262, score-0.406]

86 Figure 3: ROUGE- 1, ROUGE-2 and ROUGE-L results on the DUC-04 headlines for our ILP model, the lead sentence baseline and Topiary. [sent-264, score-0.328]

87 Figure 4: ROUGE- 1, ROUGE-2 and ROUGE-L re- sults on the BBC captions for our ILP model, the sentence baseline chosen by the SVM, and Feng and Lapata’s (2010) model. [sent-265, score-0.228]

88 The ROUGE results for the caption generation task follow a similar pattern (see Figure 4). [sent-270, score-0.298]

89 Tables 3 and 4 show example output for the ILP model and the baselines on the headline and caption tasks respectively. [sent-272, score-0.652]

90 We can see that deletion rules dominate, and a more compressive style of paraphrasing has been learned for the headline task. [sent-274, score-0.638]

91 The results of our human evaluation study for the DUC-04 headlines are summarized in Table 5. [sent-275, score-0.281]

92 The headlines created by our model were considered significantly more important and more grammatical than those of the Topiary system (α < 0. [sent-283, score-0.316]

93 01), despite the better overlap of Topiary with the reference headlines as indicated in the Rouge results above. [sent-284, score-0.281]

94 The captions generated by our model are significantly more grammatical than those of Feng and Lapata (2010a) (α < 0. [sent-288, score-0.216]

95 The SVM, ILP model and reference captions do not differ significantly in terms of grammaticality. [sent-290, score-0.181]

96 The model operates over a syntax-rich representation of the source document and learns which phrases should be in the summary. [sent-299, score-0.255]

97 Content selection preferences are coupled with a quasi-synchronous grammar whose rules encode surface realization preferences (e. [sent-300, score-0.304]

98 In the future, we plan to explore how to integrate more sophisticated QG rules in the generation process. [sent-312, score-0.153]

99 Improving summarization performance by sentence compression a pilot study. [sent-422, score-0.314]

100 Multi-candidate reduction: Sentence compression as a tool for document summarization tasks. [sent-479, score-0.361]


similar papers computed by tfidf model

tfidf for this paper:

wordName wordTfidf (topN-words)

[('qg', 0.468), ('headline', 0.406), ('headlines', 0.281), ('caption', 0.217), ('ilp', 0.196), ('compression', 0.193), ('captions', 0.181), ('feng', 0.137), ('lapata', 0.136), ('topiary', 0.109), ('paraphrases', 0.102), ('document', 0.094), ('woodsend', 0.094), ('zajic', 0.094), ('summaries', 0.093), ('paraphrase', 0.091), ('rouge', 0.088), ('node', 0.084), ('image', 0.083), ('phrases', 0.082), ('generation', 0.081), ('nodes', 0.079), ('bbc', 0.078), ('salience', 0.078), ('child', 0.075), ('summarization', 0.074), ('deletion', 0.073), ('rules', 0.072), ('rewrite', 0.069), ('timor', 0.062), ('preferences', 0.06), ('smith', 0.056), ('paraphrasing', 0.055), ('informativeness', 0.053), ('mirella', 0.053), ('title', 0.053), ('svm', 0.052), ('grammar', 0.051), ('phrase', 0.051), ('jing', 0.049), ('rendering', 0.048), ('sentence', 0.047), ('abstractors', 0.047), ('yansong', 0.047), ('integer', 0.045), ('operations', 0.045), ('grammaticality', 0.044), ('banko', 0.042), ('summary', 0.042), ('di', 0.041), ('source', 0.041), ('daum', 0.041), ('cnn', 0.04), ('tree', 0.039), ('constraints', 0.039), ('gi', 0.039), ('news', 0.039), ('alignments', 0.039), ('operates', 0.038), ('leaf', 0.038), ('ratings', 0.037), ('east', 0.037), ('kristian', 0.036), ('abstractive', 0.036), ('grammatical', 0.035), ('eisner', 0.035), ('content', 0.034), ('dependency', 0.034), ('das', 0.033), ('documents', 0.033), ('style', 0.032), ('involving', 0.031), ('achterberg', 0.031), ('compressions', 0.031), ('disputedterritory', 0.031), ('extradition', 0.031), ('flattening', 0.031), ('laden', 0.031), ('mian', 0.031), ('ocalan', 0.031), ('plixi', 0.031), ('reluctant', 0.031), ('tmin', 0.031), ('webexp', 0.031), ('realization', 0.031), ('penalties', 0.031), ('deletions', 0.031), ('martins', 0.031), ('compressed', 0.031), ('dorr', 0.03), ('surface', 0.03), ('deleted', 0.029), ('output', 0.029), ('included', 0.029), ('seattle', 0.028), ('constraint', 0.028), ('koch', 0.027), ('stylistic', 0.027), ('kupiec', 0.027), ('keller', 0.027)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 1.0000004 105 emnlp-2010-Title Generation with Quasi-Synchronous Grammar

Author: Kristian Woodsend ; Yansong Feng ; Mirella Lapata

Abstract: The task of selecting information and rendering it appropriately appears in multiple contexts in summarization. In this paper we present a model that simultaneously optimizes selection and rendering preferences. The model operates over a phrase-based representation of the source document which we obtain by merging PCFG parse trees and dependency graphs. Selection preferences for individual phrases are learned discriminatively, while a quasi-synchronous grammar (Smith and Eisner, 2006) captures rendering preferences such as paraphrases and compressions. Based on an integer linear programming formulation, the model learns to generate summaries that satisfy both types of preferences, while ensuring that length, topic coverage and grammar constraints are met. Experiments on headline and image caption generation show that our method obtains state-of-the-art performance using essentially the same model for both tasks without any major modifications.

2 0.14646335 82 emnlp-2010-Multi-Document Summarization Using A* Search and Discriminative Learning

Author: Ahmet Aker ; Trevor Cohn ; Robert Gaizauskas

Abstract: In this paper we address two key challenges for extractive multi-document summarization: the search problem of finding the best scoring summary and the training problem of learning the best model parameters. We propose an A* search algorithm to find the best extractive summary up to a given length, which is both optimal and efficient to run. Further, we propose a discriminative training algorithm which directly maximises the quality ofthe best summary, rather than assuming a sentence-level decomposition as in earlier work. Our approach leads to significantly better results than earlier techniques across a number of evaluation metrics.

3 0.12951656 47 emnlp-2010-Example-Based Paraphrasing for Improved Phrase-Based Statistical Machine Translation

Author: Aurelien Max

Abstract: In this article, an original view on how to improve phrase translation estimates is proposed. This proposal is grounded on two main ideas: first, that appropriate examples of a given phrase should participate more in building its translation distribution; second, that paraphrases can be used to better estimate this distribution. Initial experiments provide evidence of the potential of our approach and its implementation for effectively improving translation performance.

4 0.0995868 18 emnlp-2010-Assessing Phrase-Based Translation Models with Oracle Decoding

Author: Guillaume Wisniewski ; Alexandre Allauzen ; Francois Yvon

Abstract: Extant Statistical Machine Translation (SMT) systems are very complex softwares, which embed multiple layers of heuristics and embark very large numbers of numerical parameters. As a result, it is difficult to analyze output translations and there is a real need for tools that could help developers to better understand the various causes of errors. In this study, we make a step in that direction and present an attempt to evaluate the quality of the phrase-based translation model. In order to identify those translation errors that stem from deficiencies in the phrase table (PT), we propose to compute the oracle BLEU-4 score, that is the best score that a system based on this PT can achieve on a reference corpus. By casting the computation of the oracle BLEU-1 as an Integer Linear Programming (ILP) problem, we show that it is possible to efficiently compute accurate lower-bounds of this score, and report measures performed on several standard benchmarks. Various other applications of these oracle decoding techniques are also reported and discussed. 1 Phrase-Based Machine Translation 1.1 Principle A Phrase-Based Translation System (PBTS) consists of a ruleset and a scoring function (Lopez, 2009). The ruleset, represented in the phrase table, is a set of phrase1pairs {(f, e) }, each pair expressing that the source phrase f can ,bee) r}e,w earicthten p (atirra enxslparteedss)i inngto t a target phrase e. Trarsaens flation hypotheses are generated by iteratively rewriting portions of the source sentence as prescribed by the ruleset, until each source word has been consumed by exactly one rule. The order of target words in an hypothesis is uniquely determined by the order in which the rewrite operation are performed. The search space ofthe translation model corresponds to the set of all possible sequences of 1Following the usage in statistical machine translation literature, use “phrase” to denote a subsequence of consecutive words. we 933 rules applications. The scoring function aims to rank all possible translation hypotheses in such a way that the best one has the highest score. A PBTS is learned from a parallel corpus in two independent steps. In a first step, the corpus is aligned at the word level, by using alignment tools such as Gi z a++ (Och and Ney, 2003) and some symmetrisation heuristics; phrases are then extracted by other heuristics (Koehn et al., 2003) and assigned numerical weights. In the second step, the parameters of the scoring function are estimated, typically through Minimum Error Rate training (Och, 2003). Translating a sentence amounts to finding the best scoring translation hypothesis in the search space. Because of the combinatorial nature of this problem, translation has to rely on heuristic search techniques such as greedy hill-climbing (Germann, 2003) or variants of best-first search like multi-stack decoding (Koehn, 2004). Moreover, to reduce the overall complexity of decoding, the search space is typically pruned using simple heuristics. For instance, the state-of-the-art phrase-based decoder Moses (Koehn et al., 2007) considers only a restricted number of translations for each source sequence2 and enforces a distortion limit3 over which phrases can be reordered. As a consequence, the best translation hypothesis returned by the decoder is not always the one with the highest score. 1.2 Typology of PBTS Errors Analyzing the errors of a SMT system is not an easy task, because of the number of models that are combined, the size of these models, and the high complexity of the various decision making processes. For a SMT system, three different kinds of errors can be distinguished (Germann et al., 2004; Auli et al., 2009): search errors, induction errors and model errors. The former corresponds to cases where the hypothesis with the best score is missed by the search procedure, either because of the use of an ap2the 3the option of Moses, defaulting to 20. dl option of Moses, whose default value is 7. tt l ProceMedITin,g Ms oasfs thaceh 2u0se1t0ts C,o UnSfAer,e n9c-e11 on O Ectmobpeir ic 2a0l1 M0.e ?tc ho2d0s10 in A Nsastouciraatlio Lnan fogru Cagoem Ppruotcaetisosninagl, L pinaggeusis 9t3ic3s–943, proximate search method or because of the restrictions of the search space. Induction errors correspond to cases where, given the model, the search space does not contain the reference. Finally, model errors correspond to cases where the hypothesis with the highest score is not the best translation according to the evaluation metric. Model errors encompass several types oferrors that occur during learning (Bottou and Bousquet, 2008)4. Approximation errors are errors caused by the use of a restricted and oversimplistic class of functions (here, finitestate transducers to model the generation of hypotheses and a linear scoring function to discriminate them) to model the translation process. Estimation errors correspond to the use of sub-optimal values for both the phrase pairs weights and the parameters of the scoring function. The reasons behind these errors are twofold: first, training only considers a finite sample of data; second, it relies on error prone alignments. As a result, some “good” phrases are extracted with a small weight, or, in the limit, are not extracted at all; and conversely that some “poor” phrases are inserted into the phrase table, sometimes with a really optimistic score. Sorting out and assessing the impact of these various causes of errors is of primary interest for SMT system developers: for lack of such diagnoses, it is difficult to figure out which components of the system require the most urgent attention. Diagnoses are however, given the tight intertwining among the various component of a system, very difficult to obtain: most evaluations are limited to the computation of global scores and usually do not imply any kind of failure analysis. 1.3 Contribution and organization To systematically assess the impact of the multiple heuristic decisions made during training and decoding, we propose, following (Dreyer et al., 2007; Auli et al., 2009), to work out oracle scores, that is to evaluate the best achievable performances of a PBTS. We aim at both studying the expressive power of PBTS and at providing tools for identifying and quantifying causes of failure. Under standard metrics such as BLEU (Papineni et al., 2002), oracle scores are difficult (if not impossible) to compute, but, by casting the computation of the oracle unigram recall and precision as an Integer Linear Programming (ILP) problem, we show that it is possible to efficiently compute accurate lower-bounds of the oracle BLEU-4 scores and report measurements performed on several standard benchmarks. The main contributions of this paper are twofold. We first introduce an ILP program able to efficiently find the best hypothesis a PBTS can achieve. This program can be easily extended to test various improvements to 4We omit here optimization errors. 934 phrase-base systems or to evaluate the impact of different parameter settings. Second, we present a number of complementary results illustrating the usage of our oracle decoder for identifying and analyzing PBTS errors. Our experimental results confirm the main conclusions of (Turchi et al., 2008), showing that extant PBTs have the potential to generate hypotheses having very high BLEU4 score and that their main bottleneck is their scoring function. The rest of this paper is organized as follows: in Section 2, we introduce and formalize the oracle decoding problem, and present a series of ILP problems of increasing complexity designed so as to deliver accurate lowerbounds of oracle score. This section closes with various extensions allowing to model supplementary constraints, most notably reordering constraints (Section 2.5). Our experiments are reported in Section 3, where we first introduce the training and test corpora, along with a description of our system building pipeline (Section 3. 1). We then discuss the baseline oracle BLEU scores (Section 3.2), analyze the non-reachable parts of the reference translations, and comment several complementary results which allow to identify causes of failures. Section 4 discuss our approach and findings with respect to the existing literature on error analysis and oracle decoding. We conclude and discuss further prospects in Section 5. 2 Oracle Decoder 2.1 The Oracle Decoding Problem Definition To get some insights on the errors of phrasebased systems and better understand their limits, we propose to consider the oracle decoding problem defined as follows: given a source sentence, its reference translation5 and a phrase table, what is the “best” translation hypothesis a system can generate? As usual, the quality of an hypothesis is evaluated by the similarity between the reference and the hypothesis. Note that in the oracle decoding problem, we are only assessing the ability of PBT systems to generate good candidate translations, irrespective of their ability to score them properly. We believe that studying this problem is interesting for various reasons. First, as described in Section 3.4, comparing the best hypothesis a system could have generated and the hypothesis it actually generates allows us to carry on both quantitative and qualitative failure analysis. The oracle decoding problem can also be used to assess the expressive power of phrase-based systems (Auli et al., 2009). Other applications include computing acceptable pseudo-references for discriminative training (Tillmann and Zhang, 2006; Liang et al., 2006; Arun and 5The oracle decoding problem can be extended to the case of multiple references. For the sake of simplicity, we only describe the case of a single reference. Koehn, 2007) or combining machine translation systems in a multi-source setting (Li and Khudanpur, 2009). We have also used oracle decoding to identify erroneous or difficult to translate references (Section 3.3). Evaluation Measure To fully define the oracle decoding problem, a measure of the similarity between a translation hypothesis and its reference translation has to be chosen. The most obvious choice is the BLEU-4 score (Papineni et al., 2002) used in most machine translation evaluations. However, using this metric in the oracle decoding problem raises several issues. First, BLEU-4 is a metric defined at the corpus level and is hard to interpret at the sentence level. More importantly, BLEU-4 is not decomposable6: as it relies on 4-grams statistics, the contribution of each phrase pair to the global score depends on the translation of the previous and following phrases and can not be evaluated in isolation. Because of its nondecomposability, maximizing BLEU-4 is hard; in particular, the phrase-level decomposability of the evaluation × metric is necessary in our approach. To circumvent this difficulty, we propose to evaluate the similarity between a translation hypothesis and a reference by the number of their common words. This amounts to evaluating translation quality in terms of unigram precision and recall, which are highly correlated with human judgements (Lavie et al., ). This measure is closely related to the BLEU-1 evaluation metric and the Meteor (Banerjee and Lavie, 2005) metric (when it is evaluated without considering near-matches and the distortion penalty). We also believe that hypotheses that maximize the unigram precision and recall at the sentence level yield corpus level BLEU-4 scores close the maximal achievable. Indeed, in the setting we will introduce in the next section, BLEU-1 and BLEU-4 are highly correlated: as all correct words of the hypothesis will be compelled to be at their correct position, any hypothesis with a high 1-gram precision is also bound to have a high 2-gram precision, etc. 2.2 Formalizing the Oracle Decoding Problem The oracle decoding problem has already been considered in the case of word-based models, in which all translation units are bound to contain only one word. The problem can then be solved by a bipartite graph matching algorithm (Leusch et al., 2008): given a n m binary matarligxo describing possible t 2r0an08sl)a:ti goinv elinn aks n b×emtw beeinna source words and target words7, this algorithm finds the subset of links maximizing the number of words of the reference that have been translated, while ensuring that each word 6Neither at the sentence (Chiang et al., 2008), nor at the phrase level. 7The (i, j) entry of the matrix is 1if the ith word of the source can be translated by the jth word of the reference, 0 otherwise. 935 is translated only once. Generalizing this approach to phrase-based systems amounts to solving the following problem: given a set of possible translation links between potential phrases of the source and of the target, find the subset of links so that the unigram precision and recall are the highest possible. The corresponding oracle hypothesis can then be easily generated by selecting the target phrases that are aligned with one source phrase, disregarding the others. In addition, to mimic the way OOVs are usually handled, we match identical OOV tokens appearing both in the source and target sentences. In this approach, the unigram precision is always one (every word generated in the oracle hypothesis matches exactly one word in the reference). As a consequence, to find the oracle hypothesis, we just have to maximize the recall, that is the number of words appearing both in the hypothesis and in the reference. Considering phrases instead of isolated words has a major impact on the computational complexity: in this new setting, the optimal segmentations in phrases of both the source and of the target have to be worked out in addition to links selection. Moreover, constraints have to be taken into account so as to enforce a proper segmentation of the source and target sentences. These constraints make it impossible to use the approach of (Leusch et al., 2008) and concur in making the oracle decoding problem for phrase-based models more complex than it is for word-based models: it can be proven, using arguments borrowed from (De Nero and Klein, 2008), that this problem is NP-hard even for the simple unigram precision measure. 2.3 An Integer Program for Oracle Decoding To solve the combinatorial problem introduced in the previous section, we propose to cast it into an Integer Linear Programming (ILP) problem, for which many generic solvers exist. ILP has already been used in SMT to find the optimal translation for word-based (Germann et al., 2001) and to study the complexity of learning phrase alignments (De Nero and Klein, 2008) models. Following the latter reference, we introduce the following variables: fi,j (resp. ek,l) is a binary indicator variable that is true when the phrase contains all spans from betweenword position i to j (resp. k to l) of the source (resp. target) sentence. We also introduce a binary variable, denoted ai,j,k,l, to describe a possible link between source phrase fi,j and target phrase ek,l. These variables are built from the entries of the phrase table according to selection strategies introduced in Section 2.4. In the following, index variables are so that: 0 ≤ i< j ≤ n, in the source sentence and 0 ≤ k < l ≤ m, in the target sentence, where n (resp. m) is the length of the source (resp. target) sentence. Solving the oracle decoding problem then amounts to optimizing the following objective function: mi,j,akx,li,Xj,k,lai,j,k,l· (l − k), (1) under the constraints: X ∀x ∈ J1,mK : ek,l ≤ 1 (2) = (3) 1∀,kn,lK : Xai,j,k,l = fk,l (4) ∀i,j : Xai,j,k,l (5) k,l s.tX. Xk≤x≤l ∀∀xy ∈∈ J11,,mnKK : X i,j s.tX. Xi≤y≤j fi,j 1 Xi,j = ei,j Xk,l The objective function (1) corresponds to the number of target words that are generated. The first set of constraints (2) ensures that each word in the reference e ap- pears in no more than one phrase. Maximizing the objective under these constraints amounts to maximizing the unigram recall. The second set of constraints (3) ensures that each word in the source f is translated exactly once, which guarantees that the search space of the ILP problem is the same as the search space of a phrase-based system. Constraints (4) bind the fk,l and ai,j,k,l variables, ensuring that whenever a link ai,j,k,l is active, the corresponding phrase fk,l is also active. Constraints (5) play a similar role for the reference. The Relaxed Problem Even though it accurately models the search space of a phrase-based decoder, this programs is not really useful as is: due to out-ofvocabulary words or missing entries in the phrase table, the constraint that all source words should be translated yields infeasible problems8. We propose to relax this problem and allow some source words to remain untranslated. This is done by replacing constraints (3) by: ∀y ∈ J1,nK : X i,j s.tX. Xi≤y≤j fi,j ≤ 1 To better ref∀lyec ∈t th J1e, bneKh :avior of phrase-based decoders, which attempt to translate all source words, we also need to modify the objective function as follows: X i,Xj,k,l ai,j,k,l · (l − k) +Xfi,j · (j − i) Xi,j (6) The second term in this new objective ensures that optimal solutions translate as many source words as possible. 8An ILP problem is said to be infeasible when tion violates at least one constraint. every possible solu- 936 The Relaxed-Distortion Problem A last caveat with the Relaxed optimization program is caused by frequently occurring source tokens, such as function words or punctuation signs, which can often align with more than one target word. For lack of taking distortion information into account in our objective function, all these alignments are deemed equivalent, even if some of them are clearly more satisfactory than others. This situation is illustrated on Figure 1. le chat et the cat and le the chien dog Figure 1: Equivalent alignments between “le” and “the”. The dashed lines corresponds to a less interpretable solution. To overcome this difficulty, we propose a last change to the objective function: X i,Xj,k,l ai,j,k,l · (l − k) +Xfi,j · (j − i) X ai,j,k,l|k − i| Xi,j −α (7) i Xk ,l X,j, Compared to the objective function of the relaxed problem (6), we introduce here a supplementary penalty factor which favors monotonous alignments. For each phrase pair, the higher the difference between source and target positions, the higher this penalty. If α is small enough, this extra term allows us to select, among all the optimal alignments of the re l axed problem, the one with the lowest distortion. In our experiments, we set α to min {n, m} to ensure that the penalty factor is always smminall{enr, ,tmha}n tthoe e rneswuarred t fhoart aligning atwltyo single iwso ardlwsa. 2.4 Selecting Indicator Variables In the approach introduced in the previous sections, the oracle decoding problem is solved by selecting, among a set of possible translation links, the ones that yield the solution with the highest unigram recall. We propose two strategies to build this set of possible translation links. In the first one, denoted exact match, an indicator ai,j,k,l is created if there is an entry (f, e) so that f spans from word position ito j in the source and e from word position k to l in the target. In this strategy, the ILP program considers exactly the same ruleset as conventional phrase-based decoders. We also consider an alternative strategy, which could help us to identify errors made during the phrase extraction process. In this strategy, denoted inside match, an indicator ai,j,k,l is created when the following three criteria are met: i) f spans from position ito j of the source; ii) a substring of e, denoted e, spans from position k to l of the reference; iii) (f, e¯) is not an entry of the phrase table. The resulting set of indicator variables thus contains, at least, all the variables used in the exact match strategy. In addition, we license here the use of phrases containing words that do not occur in the reference. In fact, using such solutions can yield higher BLEU scores when the reward for additional correct matches exceeds the cost incurred by wrong predictions. These cases are symptoms of situations where the extraction heuristic failed to extract potentially useful subphrases. 2.5 Oracle Decoding with Reordering Constraints The ILP problem introduced in the previous section can be extended in several ways to describe and test various improvements to phrase-based systems or to evaluate the impact of different parameter settings. This flexibility mainly stems from the possibility offered by our framework to express arbitrary constraints over variables. In this section, we illustrate these possibilities by describing how reordering constraints can easily be considered. As a first example, the Moses decoder uses a distortion limit to constrain the set of possible reorderings. This constraint “enforces (...) that the last word of a phrase chosen for translation cannot be more than d9 words from the leftmost untranslated word in the source” (Lopez, 2009) and is expressed as: ∀aijkl , ai0j0k0l0 s.t. k > k0, aijkl · ai0j0k0l0 · |j − i0 + 1| ≤ d, The maximum distortion limit strategy (Lopez, 2009) is also easily expressed and take the following form (assuming this constraint is parameterized by d): ∀l < m − 1, ai,j,k,l·ai0,j0,l+1,l0 · |i0 − j − 1| 71is%t e6hs.a distortion greater that Moses default distortion limit. alignment decisions enabled by the use of larger training corpora and phrase table. To evaluate the impact ofthe second heuristic, we computed the number of phrases discarded by Moses (be- cause of the default ttl limit) but used in the oracle hypotheses. In the English to French NEWSCO setting, they account for 34.11% of the total number of phrases used in the oracle hypotheses. When the oracle decoder is constrained to use the same phrase table as Moses, its BLEU-4 score drops to 42.78. This shows that filtering the phrase table prior to decoding discards many useful phrase pairs and is seriously limiting the best achievable performance, a conclusion shared with (Auli et al., 2009). Search Errors Search errors can be identified by comparing the score of the best hypothesis found by Moses and the score of the oracle hypothesis. If the score of the oracle hypothesis is higher, then there has been a search error; on the contrary, there has been an estimation error when the score of the oracle hypothesis is lower than the score of the best hypothesis found by Moses. 940 Based on the comparison of the score of Moses hypotheses and of oracle hypotheses for the English to French NEWSCO setting, our preliminary conclusion is that the number of search errors is quite limited: only about 5% of the hypotheses of our oracle decoder are actually getting a better score than Moses solutions. Again, this shows that the scoring function (model error) is one of the main bottleneck of current PBTS. Comparing these hypotheses is nonetheless quite revealing: while Moses mostly selects phrase pairs with high translation scores and generates monotonous alignments, our ILP decoder uses larger reorderings and less probable phrases to achieve better solutions: on average, the reordering score of oracle solutions is −5.74, compared to −76.78 fscoro rMeo osfe osr outputs. iGonivsen is −the5 weight assigned through MERT training to the distortion score, no wonder that these hypotheses are severely penalized. The Impact of Phrase Length The observed outputs do not only depend on decisions made during the search, but also on decisions made during training. One such decision is the specification of maximal length for the source and target phrases. In our framework, evaluating the impact of this decision is simple: it suffices to change the definition of indicator variables so as to consider only alignments between phrases of a given length. In the English-French NEWSCO setting, the most restrictive choice, when only alignments between single words are authorized, yields an oracle BLEU-4 of 48.68; however, authorizing phrases up to length 2 allows to achieve an oracle value of 66.57, very close to the score achieved when considering all extracted phrases (67.77). This is corroborated with a further analysis of our oracle alignments, which use phrases whose average source length is 1.21 words (respectively 1.31 for target words). If many studies have already acknowledged the predomi- nance of “small” phrases in actual translations, our oracle scores suggest that, for this language pair, increasing the phrase length limit beyond 2 or 3 might be a waste of computational resources. 4 Related Work To the best of our knowledge, there are only a few works that try to study the expressive power ofphrase-based machine translation systems or to provide tools for analyzing potential causes of failure. The approach described in (Auli et al., 2009) is very similar to ours: in this study, the authors propose to find and analyze the limits of machine translation systems by studying the reference reachability. A reference is reachable for a given system if it can be exactly generated by this system. Reference reachability is assessed using Moses in forced decoding mode: during search, all hypotheses that deviate from the reference are simply discarded. Even though the main goal of this study was to compare the search space of phrase-based and hierarchical systems, it also provides some insights on the impact of various search parameters in Moses, delivering conclusions that are consistent with our main results. As described in Section 1.2, these authors also propose a typology of the errors of a statistical translation systems, but do not attempt to provide methods for identifying them. The authors of (Turchi et al., 2008) study the learn- ing capabilities of Moses by extensively analyzing learning curves representing the translation performances as a function of the number of examples, and by corrupting the model parameters. Even though their focus is more on assessing the scoring function, they reach conclusions similar to ours: the current bottleneck of translation performances is not the representation power of the PBTS but rather in their scoring functions. Oracle decoding is useful to compute reachable pseudo-references in the context of discriminative training. This is the main motivation of (Tillmann and Zhang, 2006), where the authors compute high BLEU hypotheses by running a conventional decoder so as to maximize a per-sentence approximation of BLEU-4, under a simple (local) reordering model. Oracle decoding has also been used to assess the limitations induced by various reordering constraints in (Dreyer et al., 2007). To this end, the authors propose to use a beam-search based oracle decoder, which computes lower bounds of the best achievable BLEU-4 using dynamic programming techniques over finite-state (for so-called local and IBM constraints) or hierarchically structured (for ITG constraints) sets of hypotheses. Even 941 though the numbers reported in this study are not directly comparable with ours17, it seems that our decoder is not only conceptually much simpler, but also achieves much more optimistic lower-bounds of the oracle BLEU score. The approach described in (Li and Khudanpur, 2009) employs a similar technique, which is to guide a heuristic search in an hypergraph representing possible translation hypotheses with n-gram counts matches, which amounts to decoding with a n-gram model trained on the sole reference translation. Additional tricks are presented in this article to speed-up decoding. Computing oracle BLEU scores is also the subject of (Zens and Ney, 2005; Leusch et al., 2008), yet with a different emphasis. These studies are concerned with finding the best hypotheses in a word graph or in a consensus network, a problem that has various implications for multi-pass decoding and/or system combination techniques. The former reference describes an exponential approximate algorithm, while the latter proves the NPcompleteness of this problem and discuss various heuristic approaches. Our problem is somewhat more complex and using their techniques would require us to built word graphs containing all the translations induced by arbitrary segmentations and permutations of the source sentence. 5 Conclusions In this paper, we have presented a methodology for analyzing the errors of PBTS, based on the computation of an approximation of the BLEU-4 oracle score. We have shown that this approximation could be computed fairly accurately and efficiently using Integer Linear Programming techniques. Our main result is a confirmation of the fact that extant PBTS systems are expressive enough to achieve very high translation performance with respect to conventional quality measurements. The main efforts should therefore strive to improve on the way phrases and hypotheses are scored during training. This gives further support to attempts aimed at designing context-dependent scoring functions as in (Stroppa et al., 2007; Gimpel and Smith, 2008), or at attempts to perform discriminative training of feature-rich models. (Bangalore et al., 2007). We have shown that the examination of difficult-totranslate sentences was an effective way to detect errors or inconsistencies in the reference translations, making our approach a potential aid for controlling the quality or assessing the difficulty of test data. Our experiments have also highlighted the impact of various parameters. Various extensions of the baseline ILP program have been suggested and/or evaluated. In particular, the ILP formalism lends itself well to expressing various constraints that are typically used in conventional PBTS. In 17The best BLEU-4 oracle they achieve on Europarl German to English is approximately 48; but they considered a smaller version of the training corpus and the WMT’06 test set. our future work, we aim at using this ILP framework to systematically assess various search configurations. We plan to explore how replacing non-reachable references with high-score pseudo-references can improve discrim- inative training of PBTS. We are also concerned by determining how tight is our approximation of the BLEU4 score is: to this end, we intend to compute the best BLEU-4 score within the n-best solutions of the oracle decoding problem. Acknowledgments Warm thanks to Houda Bouamor for helping us with the annotation tool. This work has been partly financed by OSEO, the French State Agency for Innovation, under the Quaero program. References Tobias Achterberg. 2007. Constraint Integer Programming. Ph.D. thesis, Technische Universit a¨t Berlin. http : / / opus .kobv .de /tuberl in/vol ltexte / 2 0 0 7 / 16 11/ . Abhishek Arun and Philipp Koehn. 2007. Online learning methods for discriminative training of phrase based statistical machine translation. In Proc. of MT Summit XI, Copenhagen, Denmark. Michael Auli, Adam Lopez, Hieu Hoang, and Philipp Koehn. 2009. A systematic analysis of translation model search spaces. In Proc. of WMT, pages 224–232, Athens, Greece. Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proc. of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan. Srinivas Bangalore, Patrick Haffner, and Stephan Kanthak. 2007. Statistical machine translation through global lexical selection and sentence reconstruction. In Proc. of ACL, pages 152–159, Prague, Czech Republic. L e´on Bottou and Olivier Bousquet. 2008. The tradeoffs oflarge scale learning. In Proc. of NIPS, pages 161–168, Vancouver, B.C., Canada. Chris Callison-Burch, Philipp Koehn, Christof Monz, and Josh Schroeder. 2009. Findings of the 2009 Workshop on Statistical Machine Translation. In Proc. of WMT, pages 1–28, Athens, Greece. David Chiang, Steve DeNeefe, Yee Seng Chan, and Hwee Tou Ng. 2008. Decomposability of translation metrics for improved evaluation and efficient algorithms. In Proc. of ECML, pages 610–619, Honolulu, Hawaii. John De Nero and Dan Klein. 2008. The complexity of phrase alignment problems. In Proc. of ACL: HLT, Short Papers, pages 25–28, Columbus, Ohio. Markus Dreyer, Keith B. Hall, and Sanjeev P. Khudanpur. 2007. Comparing reordering constraints for smt using efficient bleu oracle computation. In NAACL-HLT/AMTA Workshop on Syntax and Structure in Statistical Translation, pages 103– 110, Rochester, New York. 942 Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. 2001 . Fast decoding and optimal decoding for machine translation. In Proc. of ACL, pages 228–235, Toulouse, France. Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. 2004. Fast and optimal decoding for machine translation. Artificial Intelligence, 154(1-2): 127– 143. Ulrich Germann. 2003. Greedy decoding for statistical machine translation in almost linear time. In Proc. of NAACL, pages 1–8, Edmonton, Canada. Kevin Gimpel and Noah A. Smith. 2008. Rich source-side context for statistical machine translation. In Proc. of WMT, pages 9–17, Columbus, Ohio. Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proc. of NAACL, pages 48–54, Edmonton, Canada. Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris CallisonBurch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In Proc. of ACL, demonstration session. Philipp Koehn. 2004. Pharaoh: A beam search decoder for phrase-based statistical machine translation models. In Proc. of AMTA, pages 115–124, Washington DC. Shankar Kumar and William Byrne. 2005. Local phrase reordering models for statistical machine translation. In Proc. of HLT, pages 161–168, Vancouver, Canada. Alon Lavie, Kenji Sagae, and Shyamsundar Jayaraman. The significance of recall in automatic metrics for MT evaluation. In In Proc. of AMTA, pages 134–143, Washington DC. Gregor Leusch, Evgeny Matusov, and Hermann Ney. 2008. Complexity of finding the BLEU-optimal hypothesis in a confusion network. In Proc. of EMNLP, pages 839–847, Honolulu, Hawaii. Zhifei Li and Sanjeev Khudanpur. 2009. Efficient extraction of oracle-best translations from hypergraphs. In Proc. of NAACL, pages 9–12, Boulder, Colorado. Percy Liang, Alexandre Bouchard-C oˆt´ e, Dan Klein, and Ben Taskar. 2006. An end-to-end discriminative approach to machine translation. In Proc. of ACL, pages 761–768, Sydney, Australia. Adam Lopez. 2009. Translation as weighted deduction. In Proc. of EACL, pages 532–540, Athens, Greece. Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models. Comput. Linguist. , 29(1): 19–5 1. Franz Josef Och. 2003. Minimum error rate training in statistical machine translation. In Proc. of ACL, pages 160–167, Sapporo, Japan. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-jing Zhu. 2002. Bleu: A method for automatic evaluation of machine translation. Technical report, Philadelphia, Pennsylvania. D. Roth and W. Yih. 2005. Integer linear programming inference for conditional random fields. In Proc. of ICML, pages 737–744, Bonn, Germany. Nicolas Stroppa, Antal van den Bosch, and Andy Way. 2007. Exploiting source similarity for smt using context-informed features. In Andy Way and Barbara Proc. of TMI, pages Christoph Tillmann 231–240, Sk¨ ovde, and Tong Zhang. Gawronska, editors, Sweden. 2006. A discriminative global training algorithm for statistical mt. In Proc. of ACL, 721–728, Sydney, Australia. Turchi, Tijl De Bie, and Nello pages Marco Cristianini. 2008. Learn- ing performance of a machine translation system: a statistical and computational analysis. In Proc. of WMT, pages Columbus, Ohio. 35–43, Richard Zens and Hermann Ney. 2005. Word graphs for statistical machine translation. In Proc. of the ACL Workshop on Building and Using Parallel Texts, pages 191–198, Ann Arbor, Michigan. 943

5 0.096934408 50 emnlp-2010-Facilitating Translation Using Source Language Paraphrase Lattices

Author: Jinhua Du ; Jie Jiang ; Andy Way

Abstract: For resource-limited language pairs, coverage of the test set by the parallel corpus is an important factor that affects translation quality in two respects: 1) out of vocabulary words; 2) the same information in an input sentence can be expressed in different ways, while current phrase-based SMT systems cannot automatically select an alternative way to transfer the same information. Therefore, given limited data, in order to facilitate translation from the input side, this paper proposes a novel method to reduce the translation difficulty using source-side lattice-based paraphrases. We utilise the original phrases from the input sentence and the corresponding paraphrases to build a lattice with estimated weights for each edge to improve translation quality. Compared to the baseline system, our method achieves relative improvements of 7.07%, 6.78% and 3.63% in terms of BLEU score on small, medium and large- scale English-to-Chinese translation tasks respectively. The results show that the proposed method is effective not only for resourcelimited language pairs, but also for resourcesufficient pairs to some extent.

6 0.095681027 63 emnlp-2010-Improving Translation via Targeted Paraphrasing

7 0.094167039 89 emnlp-2010-PEM: A Paraphrase Evaluation Metric Exploiting Parallel Texts

8 0.089121021 86 emnlp-2010-Non-Isomorphic Forest Pair Translation

9 0.088735737 64 emnlp-2010-Incorporating Content Structure into Text Analysis Applications

10 0.084564038 57 emnlp-2010-Hierarchical Phrase-Based Translation Grammars Extracted from Alignment Posterior Probabilities

11 0.07710284 116 emnlp-2010-Using Universal Linguistic Knowledge to Guide Grammar Induction

12 0.074831799 72 emnlp-2010-Learning First-Order Horn Clauses from Web Text

13 0.070248157 106 emnlp-2010-Top-Down Nearly-Context-Sensitive Parsing

14 0.070003428 102 emnlp-2010-Summarizing Contrastive Viewpoints in Opinionated Text

15 0.067820273 98 emnlp-2010-Soft Syntactic Constraints for Hierarchical Phrase-Based Translation Using Latent Syntactic Distributions

16 0.057271466 36 emnlp-2010-Discriminative Word Alignment with a Function Word Reordering Model

17 0.056979209 39 emnlp-2010-EMNLP 044

18 0.053400185 113 emnlp-2010-Unsupervised Induction of Tree Substitution Grammars for Dependency Parsing

19 0.051169854 17 emnlp-2010-An Efficient Algorithm for Unsupervised Word Segmentation with Branching Entropy and MDL

20 0.050008189 114 emnlp-2010-Unsupervised Parse Selection for HPSG


similar papers computed by lsi model

lsi for this paper:

topicId topicWeight

[(0, 0.225), (1, -0.051), (2, -0.026), (3, -0.007), (4, 0.119), (5, 0.088), (6, 0.013), (7, 0.011), (8, 0.047), (9, -0.125), (10, -0.069), (11, -0.006), (12, 0.042), (13, -0.022), (14, -0.042), (15, 0.072), (16, 0.105), (17, -0.276), (18, -0.139), (19, 0.215), (20, 0.139), (21, 0.031), (22, -0.105), (23, -0.053), (24, -0.092), (25, 0.119), (26, 0.024), (27, -0.026), (28, 0.089), (29, 0.059), (30, 0.034), (31, -0.1), (32, -0.023), (33, -0.031), (34, -0.04), (35, -0.057), (36, -0.057), (37, 0.032), (38, 0.048), (39, -0.049), (40, 0.014), (41, 0.133), (42, 0.014), (43, -0.012), (44, 0.076), (45, -0.135), (46, 0.042), (47, -0.019), (48, -0.201), (49, 0.022)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.92000461 105 emnlp-2010-Title Generation with Quasi-Synchronous Grammar

Author: Kristian Woodsend ; Yansong Feng ; Mirella Lapata

Abstract: The task of selecting information and rendering it appropriately appears in multiple contexts in summarization. In this paper we present a model that simultaneously optimizes selection and rendering preferences. The model operates over a phrase-based representation of the source document which we obtain by merging PCFG parse trees and dependency graphs. Selection preferences for individual phrases are learned discriminatively, while a quasi-synchronous grammar (Smith and Eisner, 2006) captures rendering preferences such as paraphrases and compressions. Based on an integer linear programming formulation, the model learns to generate summaries that satisfy both types of preferences, while ensuring that length, topic coverage and grammar constraints are met. Experiments on headline and image caption generation show that our method obtains state-of-the-art performance using essentially the same model for both tasks without any major modifications.

2 0.58189195 82 emnlp-2010-Multi-Document Summarization Using A* Search and Discriminative Learning

Author: Ahmet Aker ; Trevor Cohn ; Robert Gaizauskas

Abstract: In this paper we address two key challenges for extractive multi-document summarization: the search problem of finding the best scoring summary and the training problem of learning the best model parameters. We propose an A* search algorithm to find the best extractive summary up to a given length, which is both optimal and efficient to run. Further, we propose a discriminative training algorithm which directly maximises the quality ofthe best summary, rather than assuming a sentence-level decomposition as in earlier work. Our approach leads to significantly better results than earlier techniques across a number of evaluation metrics.

3 0.47689438 72 emnlp-2010-Learning First-Order Horn Clauses from Web Text

Author: Stefan Schoenmackers ; Jesse Davis ; Oren Etzioni ; Daniel Weld

Abstract: input. Even the entire Web corpus does not explicitly answer all questions, yet inference can uncover many implicit answers. But where do inference rules come from? This paper investigates the problem of learning inference rules from Web text in an unsupervised, domain-independent manner. The SHERLOCK system, described herein, is a first-order learner that acquires over 30,000 Horn clauses from Web text. SHERLOCK embodies several innovations, including a novel rule scoring function based on Statistical Relevance (Salmon et al., 1971) which is effective on ambiguous, noisy and incomplete Web extractions. Our experiments show that inference over the learned rules discovers three times as many facts (at precision 0.8) as the TEXTRUNNER system which merely extracts facts explicitly stated in Web text.

4 0.4666501 102 emnlp-2010-Summarizing Contrastive Viewpoints in Opinionated Text

Author: Michael Paul ; ChengXiang Zhai ; Roxana Girju

Abstract: This paper presents a two-stage approach to summarizing multiple contrastive viewpoints in opinionated text. In the first stage, we use an unsupervised probabilistic approach to model and extract multiple viewpoints in text. We experiment with a variety of lexical and syntactic features, yielding significant performance gains over bag-of-words feature sets. In the second stage, we introduce Comparative LexRank, a novel random walk formulation to score sentences and pairs of sentences from opposite viewpoints based on both their representativeness of the collection as well as their contrastiveness with each other. Exper- imental results show that the proposed approach can generate informative summaries of viewpoints in opinionated text.

5 0.41038576 89 emnlp-2010-PEM: A Paraphrase Evaluation Metric Exploiting Parallel Texts

Author: Chang Liu ; Daniel Dahlmeier ; Hwee Tou Ng

Abstract: We present PEM, the first fully automatic metric to evaluate the quality of paraphrases, and consequently, that of paraphrase generation systems. Our metric is based on three criteria: adequacy, fluency, and lexical dissimilarity. The key component in our metric is a robust and shallow semantic similarity measure based on pivot language N-grams that allows us to approximate adequacy independently of lexical similarity. Human evaluation shows that PEM achieves high correlation with human judgments.

6 0.36566547 47 emnlp-2010-Example-Based Paraphrasing for Improved Phrase-Based Statistical Machine Translation

7 0.3648442 116 emnlp-2010-Using Universal Linguistic Knowledge to Guide Grammar Induction

8 0.32377782 18 emnlp-2010-Assessing Phrase-Based Translation Models with Oracle Decoding

9 0.31803948 50 emnlp-2010-Facilitating Translation Using Source Language Paraphrase Lattices

10 0.3155075 64 emnlp-2010-Incorporating Content Structure into Text Analysis Applications

11 0.30714747 113 emnlp-2010-Unsupervised Induction of Tree Substitution Grammars for Dependency Parsing

12 0.30370891 98 emnlp-2010-Soft Syntactic Constraints for Hierarchical Phrase-Based Translation Using Latent Syntactic Distributions

13 0.30043548 86 emnlp-2010-Non-Isomorphic Forest Pair Translation

14 0.28126836 63 emnlp-2010-Improving Translation via Targeted Paraphrasing

15 0.27674204 57 emnlp-2010-Hierarchical Phrase-Based Translation Grammars Extracted from Alignment Posterior Probabilities

16 0.26150429 13 emnlp-2010-A Simple Domain-Independent Probabilistic Approach to Generation

17 0.25170368 106 emnlp-2010-Top-Down Nearly-Context-Sensitive Parsing

18 0.24731684 118 emnlp-2010-Utilizing Extra-Sentential Context for Parsing

19 0.23935023 17 emnlp-2010-An Efficient Algorithm for Unsupervised Word Segmentation with Branching Entropy and MDL

20 0.23426926 76 emnlp-2010-Maximum Entropy Based Phrase Reordering for Hierarchical Phrase-Based Translation


similar papers computed by lda model

lda for this paper:

topicId topicWeight

[(3, 0.019), (10, 0.021), (12, 0.042), (19, 0.252), (29, 0.11), (30, 0.045), (32, 0.011), (52, 0.043), (56, 0.117), (62, 0.039), (66, 0.082), (72, 0.039), (76, 0.036), (77, 0.02), (79, 0.01), (87, 0.025)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.77498013 105 emnlp-2010-Title Generation with Quasi-Synchronous Grammar

Author: Kristian Woodsend ; Yansong Feng ; Mirella Lapata

Abstract: The task of selecting information and rendering it appropriately appears in multiple contexts in summarization. In this paper we present a model that simultaneously optimizes selection and rendering preferences. The model operates over a phrase-based representation of the source document which we obtain by merging PCFG parse trees and dependency graphs. Selection preferences for individual phrases are learned discriminatively, while a quasi-synchronous grammar (Smith and Eisner, 2006) captures rendering preferences such as paraphrases and compressions. Based on an integer linear programming formulation, the model learns to generate summaries that satisfy both types of preferences, while ensuring that length, topic coverage and grammar constraints are met. Experiments on headline and image caption generation show that our method obtains state-of-the-art performance using essentially the same model for both tasks without any major modifications.

2 0.57247001 82 emnlp-2010-Multi-Document Summarization Using A* Search and Discriminative Learning

Author: Ahmet Aker ; Trevor Cohn ; Robert Gaizauskas

Abstract: In this paper we address two key challenges for extractive multi-document summarization: the search problem of finding the best scoring summary and the training problem of learning the best model parameters. We propose an A* search algorithm to find the best extractive summary up to a given length, which is both optimal and efficient to run. Further, we propose a discriminative training algorithm which directly maximises the quality ofthe best summary, rather than assuming a sentence-level decomposition as in earlier work. Our approach leads to significantly better results than earlier techniques across a number of evaluation metrics.

3 0.56827986 18 emnlp-2010-Assessing Phrase-Based Translation Models with Oracle Decoding

Author: Guillaume Wisniewski ; Alexandre Allauzen ; Francois Yvon

Abstract: Extant Statistical Machine Translation (SMT) systems are very complex softwares, which embed multiple layers of heuristics and embark very large numbers of numerical parameters. As a result, it is difficult to analyze output translations and there is a real need for tools that could help developers to better understand the various causes of errors. In this study, we make a step in that direction and present an attempt to evaluate the quality of the phrase-based translation model. In order to identify those translation errors that stem from deficiencies in the phrase table (PT), we propose to compute the oracle BLEU-4 score, that is the best score that a system based on this PT can achieve on a reference corpus. By casting the computation of the oracle BLEU-1 as an Integer Linear Programming (ILP) problem, we show that it is possible to efficiently compute accurate lower-bounds of this score, and report measures performed on several standard benchmarks. Various other applications of these oracle decoding techniques are also reported and discussed. 1 Phrase-Based Machine Translation 1.1 Principle A Phrase-Based Translation System (PBTS) consists of a ruleset and a scoring function (Lopez, 2009). The ruleset, represented in the phrase table, is a set of phrase1pairs {(f, e) }, each pair expressing that the source phrase f can ,bee) r}e,w earicthten p (atirra enxslparteedss)i inngto t a target phrase e. Trarsaens flation hypotheses are generated by iteratively rewriting portions of the source sentence as prescribed by the ruleset, until each source word has been consumed by exactly one rule. The order of target words in an hypothesis is uniquely determined by the order in which the rewrite operation are performed. The search space ofthe translation model corresponds to the set of all possible sequences of 1Following the usage in statistical machine translation literature, use “phrase” to denote a subsequence of consecutive words. we 933 rules applications. The scoring function aims to rank all possible translation hypotheses in such a way that the best one has the highest score. A PBTS is learned from a parallel corpus in two independent steps. In a first step, the corpus is aligned at the word level, by using alignment tools such as Gi z a++ (Och and Ney, 2003) and some symmetrisation heuristics; phrases are then extracted by other heuristics (Koehn et al., 2003) and assigned numerical weights. In the second step, the parameters of the scoring function are estimated, typically through Minimum Error Rate training (Och, 2003). Translating a sentence amounts to finding the best scoring translation hypothesis in the search space. Because of the combinatorial nature of this problem, translation has to rely on heuristic search techniques such as greedy hill-climbing (Germann, 2003) or variants of best-first search like multi-stack decoding (Koehn, 2004). Moreover, to reduce the overall complexity of decoding, the search space is typically pruned using simple heuristics. For instance, the state-of-the-art phrase-based decoder Moses (Koehn et al., 2007) considers only a restricted number of translations for each source sequence2 and enforces a distortion limit3 over which phrases can be reordered. As a consequence, the best translation hypothesis returned by the decoder is not always the one with the highest score. 1.2 Typology of PBTS Errors Analyzing the errors of a SMT system is not an easy task, because of the number of models that are combined, the size of these models, and the high complexity of the various decision making processes. For a SMT system, three different kinds of errors can be distinguished (Germann et al., 2004; Auli et al., 2009): search errors, induction errors and model errors. The former corresponds to cases where the hypothesis with the best score is missed by the search procedure, either because of the use of an ap2the 3the option of Moses, defaulting to 20. dl option of Moses, whose default value is 7. tt l ProceMedITin,g Ms oasfs thaceh 2u0se1t0ts C,o UnSfAer,e n9c-e11 on O Ectmobpeir ic 2a0l1 M0.e ?tc ho2d0s10 in A Nsastouciraatlio Lnan fogru Cagoem Ppruotcaetisosninagl, L pinaggeusis 9t3ic3s–943, proximate search method or because of the restrictions of the search space. Induction errors correspond to cases where, given the model, the search space does not contain the reference. Finally, model errors correspond to cases where the hypothesis with the highest score is not the best translation according to the evaluation metric. Model errors encompass several types oferrors that occur during learning (Bottou and Bousquet, 2008)4. Approximation errors are errors caused by the use of a restricted and oversimplistic class of functions (here, finitestate transducers to model the generation of hypotheses and a linear scoring function to discriminate them) to model the translation process. Estimation errors correspond to the use of sub-optimal values for both the phrase pairs weights and the parameters of the scoring function. The reasons behind these errors are twofold: first, training only considers a finite sample of data; second, it relies on error prone alignments. As a result, some “good” phrases are extracted with a small weight, or, in the limit, are not extracted at all; and conversely that some “poor” phrases are inserted into the phrase table, sometimes with a really optimistic score. Sorting out and assessing the impact of these various causes of errors is of primary interest for SMT system developers: for lack of such diagnoses, it is difficult to figure out which components of the system require the most urgent attention. Diagnoses are however, given the tight intertwining among the various component of a system, very difficult to obtain: most evaluations are limited to the computation of global scores and usually do not imply any kind of failure analysis. 1.3 Contribution and organization To systematically assess the impact of the multiple heuristic decisions made during training and decoding, we propose, following (Dreyer et al., 2007; Auli et al., 2009), to work out oracle scores, that is to evaluate the best achievable performances of a PBTS. We aim at both studying the expressive power of PBTS and at providing tools for identifying and quantifying causes of failure. Under standard metrics such as BLEU (Papineni et al., 2002), oracle scores are difficult (if not impossible) to compute, but, by casting the computation of the oracle unigram recall and precision as an Integer Linear Programming (ILP) problem, we show that it is possible to efficiently compute accurate lower-bounds of the oracle BLEU-4 scores and report measurements performed on several standard benchmarks. The main contributions of this paper are twofold. We first introduce an ILP program able to efficiently find the best hypothesis a PBTS can achieve. This program can be easily extended to test various improvements to 4We omit here optimization errors. 934 phrase-base systems or to evaluate the impact of different parameter settings. Second, we present a number of complementary results illustrating the usage of our oracle decoder for identifying and analyzing PBTS errors. Our experimental results confirm the main conclusions of (Turchi et al., 2008), showing that extant PBTs have the potential to generate hypotheses having very high BLEU4 score and that their main bottleneck is their scoring function. The rest of this paper is organized as follows: in Section 2, we introduce and formalize the oracle decoding problem, and present a series of ILP problems of increasing complexity designed so as to deliver accurate lowerbounds of oracle score. This section closes with various extensions allowing to model supplementary constraints, most notably reordering constraints (Section 2.5). Our experiments are reported in Section 3, where we first introduce the training and test corpora, along with a description of our system building pipeline (Section 3. 1). We then discuss the baseline oracle BLEU scores (Section 3.2), analyze the non-reachable parts of the reference translations, and comment several complementary results which allow to identify causes of failures. Section 4 discuss our approach and findings with respect to the existing literature on error analysis and oracle decoding. We conclude and discuss further prospects in Section 5. 2 Oracle Decoder 2.1 The Oracle Decoding Problem Definition To get some insights on the errors of phrasebased systems and better understand their limits, we propose to consider the oracle decoding problem defined as follows: given a source sentence, its reference translation5 and a phrase table, what is the “best” translation hypothesis a system can generate? As usual, the quality of an hypothesis is evaluated by the similarity between the reference and the hypothesis. Note that in the oracle decoding problem, we are only assessing the ability of PBT systems to generate good candidate translations, irrespective of their ability to score them properly. We believe that studying this problem is interesting for various reasons. First, as described in Section 3.4, comparing the best hypothesis a system could have generated and the hypothesis it actually generates allows us to carry on both quantitative and qualitative failure analysis. The oracle decoding problem can also be used to assess the expressive power of phrase-based systems (Auli et al., 2009). Other applications include computing acceptable pseudo-references for discriminative training (Tillmann and Zhang, 2006; Liang et al., 2006; Arun and 5The oracle decoding problem can be extended to the case of multiple references. For the sake of simplicity, we only describe the case of a single reference. Koehn, 2007) or combining machine translation systems in a multi-source setting (Li and Khudanpur, 2009). We have also used oracle decoding to identify erroneous or difficult to translate references (Section 3.3). Evaluation Measure To fully define the oracle decoding problem, a measure of the similarity between a translation hypothesis and its reference translation has to be chosen. The most obvious choice is the BLEU-4 score (Papineni et al., 2002) used in most machine translation evaluations. However, using this metric in the oracle decoding problem raises several issues. First, BLEU-4 is a metric defined at the corpus level and is hard to interpret at the sentence level. More importantly, BLEU-4 is not decomposable6: as it relies on 4-grams statistics, the contribution of each phrase pair to the global score depends on the translation of the previous and following phrases and can not be evaluated in isolation. Because of its nondecomposability, maximizing BLEU-4 is hard; in particular, the phrase-level decomposability of the evaluation × metric is necessary in our approach. To circumvent this difficulty, we propose to evaluate the similarity between a translation hypothesis and a reference by the number of their common words. This amounts to evaluating translation quality in terms of unigram precision and recall, which are highly correlated with human judgements (Lavie et al., ). This measure is closely related to the BLEU-1 evaluation metric and the Meteor (Banerjee and Lavie, 2005) metric (when it is evaluated without considering near-matches and the distortion penalty). We also believe that hypotheses that maximize the unigram precision and recall at the sentence level yield corpus level BLEU-4 scores close the maximal achievable. Indeed, in the setting we will introduce in the next section, BLEU-1 and BLEU-4 are highly correlated: as all correct words of the hypothesis will be compelled to be at their correct position, any hypothesis with a high 1-gram precision is also bound to have a high 2-gram precision, etc. 2.2 Formalizing the Oracle Decoding Problem The oracle decoding problem has already been considered in the case of word-based models, in which all translation units are bound to contain only one word. The problem can then be solved by a bipartite graph matching algorithm (Leusch et al., 2008): given a n m binary matarligxo describing possible t 2r0an08sl)a:ti goinv elinn aks n b×emtw beeinna source words and target words7, this algorithm finds the subset of links maximizing the number of words of the reference that have been translated, while ensuring that each word 6Neither at the sentence (Chiang et al., 2008), nor at the phrase level. 7The (i, j) entry of the matrix is 1if the ith word of the source can be translated by the jth word of the reference, 0 otherwise. 935 is translated only once. Generalizing this approach to phrase-based systems amounts to solving the following problem: given a set of possible translation links between potential phrases of the source and of the target, find the subset of links so that the unigram precision and recall are the highest possible. The corresponding oracle hypothesis can then be easily generated by selecting the target phrases that are aligned with one source phrase, disregarding the others. In addition, to mimic the way OOVs are usually handled, we match identical OOV tokens appearing both in the source and target sentences. In this approach, the unigram precision is always one (every word generated in the oracle hypothesis matches exactly one word in the reference). As a consequence, to find the oracle hypothesis, we just have to maximize the recall, that is the number of words appearing both in the hypothesis and in the reference. Considering phrases instead of isolated words has a major impact on the computational complexity: in this new setting, the optimal segmentations in phrases of both the source and of the target have to be worked out in addition to links selection. Moreover, constraints have to be taken into account so as to enforce a proper segmentation of the source and target sentences. These constraints make it impossible to use the approach of (Leusch et al., 2008) and concur in making the oracle decoding problem for phrase-based models more complex than it is for word-based models: it can be proven, using arguments borrowed from (De Nero and Klein, 2008), that this problem is NP-hard even for the simple unigram precision measure. 2.3 An Integer Program for Oracle Decoding To solve the combinatorial problem introduced in the previous section, we propose to cast it into an Integer Linear Programming (ILP) problem, for which many generic solvers exist. ILP has already been used in SMT to find the optimal translation for word-based (Germann et al., 2001) and to study the complexity of learning phrase alignments (De Nero and Klein, 2008) models. Following the latter reference, we introduce the following variables: fi,j (resp. ek,l) is a binary indicator variable that is true when the phrase contains all spans from betweenword position i to j (resp. k to l) of the source (resp. target) sentence. We also introduce a binary variable, denoted ai,j,k,l, to describe a possible link between source phrase fi,j and target phrase ek,l. These variables are built from the entries of the phrase table according to selection strategies introduced in Section 2.4. In the following, index variables are so that: 0 ≤ i< j ≤ n, in the source sentence and 0 ≤ k < l ≤ m, in the target sentence, where n (resp. m) is the length of the source (resp. target) sentence. Solving the oracle decoding problem then amounts to optimizing the following objective function: mi,j,akx,li,Xj,k,lai,j,k,l· (l − k), (1) under the constraints: X ∀x ∈ J1,mK : ek,l ≤ 1 (2) = (3) 1∀,kn,lK : Xai,j,k,l = fk,l (4) ∀i,j : Xai,j,k,l (5) k,l s.tX. Xk≤x≤l ∀∀xy ∈∈ J11,,mnKK : X i,j s.tX. Xi≤y≤j fi,j 1 Xi,j = ei,j Xk,l The objective function (1) corresponds to the number of target words that are generated. The first set of constraints (2) ensures that each word in the reference e ap- pears in no more than one phrase. Maximizing the objective under these constraints amounts to maximizing the unigram recall. The second set of constraints (3) ensures that each word in the source f is translated exactly once, which guarantees that the search space of the ILP problem is the same as the search space of a phrase-based system. Constraints (4) bind the fk,l and ai,j,k,l variables, ensuring that whenever a link ai,j,k,l is active, the corresponding phrase fk,l is also active. Constraints (5) play a similar role for the reference. The Relaxed Problem Even though it accurately models the search space of a phrase-based decoder, this programs is not really useful as is: due to out-ofvocabulary words or missing entries in the phrase table, the constraint that all source words should be translated yields infeasible problems8. We propose to relax this problem and allow some source words to remain untranslated. This is done by replacing constraints (3) by: ∀y ∈ J1,nK : X i,j s.tX. Xi≤y≤j fi,j ≤ 1 To better ref∀lyec ∈t th J1e, bneKh :avior of phrase-based decoders, which attempt to translate all source words, we also need to modify the objective function as follows: X i,Xj,k,l ai,j,k,l · (l − k) +Xfi,j · (j − i) Xi,j (6) The second term in this new objective ensures that optimal solutions translate as many source words as possible. 8An ILP problem is said to be infeasible when tion violates at least one constraint. every possible solu- 936 The Relaxed-Distortion Problem A last caveat with the Relaxed optimization program is caused by frequently occurring source tokens, such as function words or punctuation signs, which can often align with more than one target word. For lack of taking distortion information into account in our objective function, all these alignments are deemed equivalent, even if some of them are clearly more satisfactory than others. This situation is illustrated on Figure 1. le chat et the cat and le the chien dog Figure 1: Equivalent alignments between “le” and “the”. The dashed lines corresponds to a less interpretable solution. To overcome this difficulty, we propose a last change to the objective function: X i,Xj,k,l ai,j,k,l · (l − k) +Xfi,j · (j − i) X ai,j,k,l|k − i| Xi,j −α (7) i Xk ,l X,j, Compared to the objective function of the relaxed problem (6), we introduce here a supplementary penalty factor which favors monotonous alignments. For each phrase pair, the higher the difference between source and target positions, the higher this penalty. If α is small enough, this extra term allows us to select, among all the optimal alignments of the re l axed problem, the one with the lowest distortion. In our experiments, we set α to min {n, m} to ensure that the penalty factor is always smminall{enr, ,tmha}n tthoe e rneswuarred t fhoart aligning atwltyo single iwso ardlwsa. 2.4 Selecting Indicator Variables In the approach introduced in the previous sections, the oracle decoding problem is solved by selecting, among a set of possible translation links, the ones that yield the solution with the highest unigram recall. We propose two strategies to build this set of possible translation links. In the first one, denoted exact match, an indicator ai,j,k,l is created if there is an entry (f, e) so that f spans from word position ito j in the source and e from word position k to l in the target. In this strategy, the ILP program considers exactly the same ruleset as conventional phrase-based decoders. We also consider an alternative strategy, which could help us to identify errors made during the phrase extraction process. In this strategy, denoted inside match, an indicator ai,j,k,l is created when the following three criteria are met: i) f spans from position ito j of the source; ii) a substring of e, denoted e, spans from position k to l of the reference; iii) (f, e¯) is not an entry of the phrase table. The resulting set of indicator variables thus contains, at least, all the variables used in the exact match strategy. In addition, we license here the use of phrases containing words that do not occur in the reference. In fact, using such solutions can yield higher BLEU scores when the reward for additional correct matches exceeds the cost incurred by wrong predictions. These cases are symptoms of situations where the extraction heuristic failed to extract potentially useful subphrases. 2.5 Oracle Decoding with Reordering Constraints The ILP problem introduced in the previous section can be extended in several ways to describe and test various improvements to phrase-based systems or to evaluate the impact of different parameter settings. This flexibility mainly stems from the possibility offered by our framework to express arbitrary constraints over variables. In this section, we illustrate these possibilities by describing how reordering constraints can easily be considered. As a first example, the Moses decoder uses a distortion limit to constrain the set of possible reorderings. This constraint “enforces (...) that the last word of a phrase chosen for translation cannot be more than d9 words from the leftmost untranslated word in the source” (Lopez, 2009) and is expressed as: ∀aijkl , ai0j0k0l0 s.t. k > k0, aijkl · ai0j0k0l0 · |j − i0 + 1| ≤ d, The maximum distortion limit strategy (Lopez, 2009) is also easily expressed and take the following form (assuming this constraint is parameterized by d): ∀l < m − 1, ai,j,k,l·ai0,j0,l+1,l0 · |i0 − j − 1| 71is%t e6hs.a distortion greater that Moses default distortion limit. alignment decisions enabled by the use of larger training corpora and phrase table. To evaluate the impact ofthe second heuristic, we computed the number of phrases discarded by Moses (be- cause of the default ttl limit) but used in the oracle hypotheses. In the English to French NEWSCO setting, they account for 34.11% of the total number of phrases used in the oracle hypotheses. When the oracle decoder is constrained to use the same phrase table as Moses, its BLEU-4 score drops to 42.78. This shows that filtering the phrase table prior to decoding discards many useful phrase pairs and is seriously limiting the best achievable performance, a conclusion shared with (Auli et al., 2009). Search Errors Search errors can be identified by comparing the score of the best hypothesis found by Moses and the score of the oracle hypothesis. If the score of the oracle hypothesis is higher, then there has been a search error; on the contrary, there has been an estimation error when the score of the oracle hypothesis is lower than the score of the best hypothesis found by Moses. 940 Based on the comparison of the score of Moses hypotheses and of oracle hypotheses for the English to French NEWSCO setting, our preliminary conclusion is that the number of search errors is quite limited: only about 5% of the hypotheses of our oracle decoder are actually getting a better score than Moses solutions. Again, this shows that the scoring function (model error) is one of the main bottleneck of current PBTS. Comparing these hypotheses is nonetheless quite revealing: while Moses mostly selects phrase pairs with high translation scores and generates monotonous alignments, our ILP decoder uses larger reorderings and less probable phrases to achieve better solutions: on average, the reordering score of oracle solutions is −5.74, compared to −76.78 fscoro rMeo osfe osr outputs. iGonivsen is −the5 weight assigned through MERT training to the distortion score, no wonder that these hypotheses are severely penalized. The Impact of Phrase Length The observed outputs do not only depend on decisions made during the search, but also on decisions made during training. One such decision is the specification of maximal length for the source and target phrases. In our framework, evaluating the impact of this decision is simple: it suffices to change the definition of indicator variables so as to consider only alignments between phrases of a given length. In the English-French NEWSCO setting, the most restrictive choice, when only alignments between single words are authorized, yields an oracle BLEU-4 of 48.68; however, authorizing phrases up to length 2 allows to achieve an oracle value of 66.57, very close to the score achieved when considering all extracted phrases (67.77). This is corroborated with a further analysis of our oracle alignments, which use phrases whose average source length is 1.21 words (respectively 1.31 for target words). If many studies have already acknowledged the predomi- nance of “small” phrases in actual translations, our oracle scores suggest that, for this language pair, increasing the phrase length limit beyond 2 or 3 might be a waste of computational resources. 4 Related Work To the best of our knowledge, there are only a few works that try to study the expressive power ofphrase-based machine translation systems or to provide tools for analyzing potential causes of failure. The approach described in (Auli et al., 2009) is very similar to ours: in this study, the authors propose to find and analyze the limits of machine translation systems by studying the reference reachability. A reference is reachable for a given system if it can be exactly generated by this system. Reference reachability is assessed using Moses in forced decoding mode: during search, all hypotheses that deviate from the reference are simply discarded. Even though the main goal of this study was to compare the search space of phrase-based and hierarchical systems, it also provides some insights on the impact of various search parameters in Moses, delivering conclusions that are consistent with our main results. As described in Section 1.2, these authors also propose a typology of the errors of a statistical translation systems, but do not attempt to provide methods for identifying them. The authors of (Turchi et al., 2008) study the learn- ing capabilities of Moses by extensively analyzing learning curves representing the translation performances as a function of the number of examples, and by corrupting the model parameters. Even though their focus is more on assessing the scoring function, they reach conclusions similar to ours: the current bottleneck of translation performances is not the representation power of the PBTS but rather in their scoring functions. Oracle decoding is useful to compute reachable pseudo-references in the context of discriminative training. This is the main motivation of (Tillmann and Zhang, 2006), where the authors compute high BLEU hypotheses by running a conventional decoder so as to maximize a per-sentence approximation of BLEU-4, under a simple (local) reordering model. Oracle decoding has also been used to assess the limitations induced by various reordering constraints in (Dreyer et al., 2007). To this end, the authors propose to use a beam-search based oracle decoder, which computes lower bounds of the best achievable BLEU-4 using dynamic programming techniques over finite-state (for so-called local and IBM constraints) or hierarchically structured (for ITG constraints) sets of hypotheses. Even 941 though the numbers reported in this study are not directly comparable with ours17, it seems that our decoder is not only conceptually much simpler, but also achieves much more optimistic lower-bounds of the oracle BLEU score. The approach described in (Li and Khudanpur, 2009) employs a similar technique, which is to guide a heuristic search in an hypergraph representing possible translation hypotheses with n-gram counts matches, which amounts to decoding with a n-gram model trained on the sole reference translation. Additional tricks are presented in this article to speed-up decoding. Computing oracle BLEU scores is also the subject of (Zens and Ney, 2005; Leusch et al., 2008), yet with a different emphasis. These studies are concerned with finding the best hypotheses in a word graph or in a consensus network, a problem that has various implications for multi-pass decoding and/or system combination techniques. The former reference describes an exponential approximate algorithm, while the latter proves the NPcompleteness of this problem and discuss various heuristic approaches. Our problem is somewhat more complex and using their techniques would require us to built word graphs containing all the translations induced by arbitrary segmentations and permutations of the source sentence. 5 Conclusions In this paper, we have presented a methodology for analyzing the errors of PBTS, based on the computation of an approximation of the BLEU-4 oracle score. We have shown that this approximation could be computed fairly accurately and efficiently using Integer Linear Programming techniques. Our main result is a confirmation of the fact that extant PBTS systems are expressive enough to achieve very high translation performance with respect to conventional quality measurements. The main efforts should therefore strive to improve on the way phrases and hypotheses are scored during training. This gives further support to attempts aimed at designing context-dependent scoring functions as in (Stroppa et al., 2007; Gimpel and Smith, 2008), or at attempts to perform discriminative training of feature-rich models. (Bangalore et al., 2007). We have shown that the examination of difficult-totranslate sentences was an effective way to detect errors or inconsistencies in the reference translations, making our approach a potential aid for controlling the quality or assessing the difficulty of test data. Our experiments have also highlighted the impact of various parameters. Various extensions of the baseline ILP program have been suggested and/or evaluated. In particular, the ILP formalism lends itself well to expressing various constraints that are typically used in conventional PBTS. In 17The best BLEU-4 oracle they achieve on Europarl German to English is approximately 48; but they considered a smaller version of the training corpus and the WMT’06 test set. our future work, we aim at using this ILP framework to systematically assess various search configurations. We plan to explore how replacing non-reachable references with high-score pseudo-references can improve discrim- inative training of PBTS. We are also concerned by determining how tight is our approximation of the BLEU4 score is: to this end, we intend to compute the best BLEU-4 score within the n-best solutions of the oracle decoding problem. Acknowledgments Warm thanks to Houda Bouamor for helping us with the annotation tool. This work has been partly financed by OSEO, the French State Agency for Innovation, under the Quaero program. References Tobias Achterberg. 2007. Constraint Integer Programming. Ph.D. thesis, Technische Universit a¨t Berlin. http : / / opus .kobv .de /tuberl in/vol ltexte / 2 0 0 7 / 16 11/ . Abhishek Arun and Philipp Koehn. 2007. Online learning methods for discriminative training of phrase based statistical machine translation. In Proc. of MT Summit XI, Copenhagen, Denmark. Michael Auli, Adam Lopez, Hieu Hoang, and Philipp Koehn. 2009. A systematic analysis of translation model search spaces. In Proc. of WMT, pages 224–232, Athens, Greece. Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proc. of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan. Srinivas Bangalore, Patrick Haffner, and Stephan Kanthak. 2007. Statistical machine translation through global lexical selection and sentence reconstruction. In Proc. of ACL, pages 152–159, Prague, Czech Republic. L e´on Bottou and Olivier Bousquet. 2008. The tradeoffs oflarge scale learning. In Proc. of NIPS, pages 161–168, Vancouver, B.C., Canada. Chris Callison-Burch, Philipp Koehn, Christof Monz, and Josh Schroeder. 2009. Findings of the 2009 Workshop on Statistical Machine Translation. In Proc. of WMT, pages 1–28, Athens, Greece. David Chiang, Steve DeNeefe, Yee Seng Chan, and Hwee Tou Ng. 2008. Decomposability of translation metrics for improved evaluation and efficient algorithms. In Proc. of ECML, pages 610–619, Honolulu, Hawaii. John De Nero and Dan Klein. 2008. The complexity of phrase alignment problems. In Proc. of ACL: HLT, Short Papers, pages 25–28, Columbus, Ohio. Markus Dreyer, Keith B. Hall, and Sanjeev P. Khudanpur. 2007. Comparing reordering constraints for smt using efficient bleu oracle computation. In NAACL-HLT/AMTA Workshop on Syntax and Structure in Statistical Translation, pages 103– 110, Rochester, New York. 942 Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. 2001 . Fast decoding and optimal decoding for machine translation. In Proc. of ACL, pages 228–235, Toulouse, France. Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. 2004. Fast and optimal decoding for machine translation. Artificial Intelligence, 154(1-2): 127– 143. Ulrich Germann. 2003. Greedy decoding for statistical machine translation in almost linear time. In Proc. of NAACL, pages 1–8, Edmonton, Canada. Kevin Gimpel and Noah A. Smith. 2008. Rich source-side context for statistical machine translation. In Proc. of WMT, pages 9–17, Columbus, Ohio. Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proc. of NAACL, pages 48–54, Edmonton, Canada. Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris CallisonBurch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In Proc. of ACL, demonstration session. Philipp Koehn. 2004. Pharaoh: A beam search decoder for phrase-based statistical machine translation models. In Proc. of AMTA, pages 115–124, Washington DC. Shankar Kumar and William Byrne. 2005. Local phrase reordering models for statistical machine translation. In Proc. of HLT, pages 161–168, Vancouver, Canada. Alon Lavie, Kenji Sagae, and Shyamsundar Jayaraman. The significance of recall in automatic metrics for MT evaluation. In In Proc. of AMTA, pages 134–143, Washington DC. Gregor Leusch, Evgeny Matusov, and Hermann Ney. 2008. Complexity of finding the BLEU-optimal hypothesis in a confusion network. In Proc. of EMNLP, pages 839–847, Honolulu, Hawaii. Zhifei Li and Sanjeev Khudanpur. 2009. Efficient extraction of oracle-best translations from hypergraphs. In Proc. of NAACL, pages 9–12, Boulder, Colorado. Percy Liang, Alexandre Bouchard-C oˆt´ e, Dan Klein, and Ben Taskar. 2006. An end-to-end discriminative approach to machine translation. In Proc. of ACL, pages 761–768, Sydney, Australia. Adam Lopez. 2009. Translation as weighted deduction. In Proc. of EACL, pages 532–540, Athens, Greece. Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models. Comput. Linguist. , 29(1): 19–5 1. Franz Josef Och. 2003. Minimum error rate training in statistical machine translation. In Proc. of ACL, pages 160–167, Sapporo, Japan. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-jing Zhu. 2002. Bleu: A method for automatic evaluation of machine translation. Technical report, Philadelphia, Pennsylvania. D. Roth and W. Yih. 2005. Integer linear programming inference for conditional random fields. In Proc. of ICML, pages 737–744, Bonn, Germany. Nicolas Stroppa, Antal van den Bosch, and Andy Way. 2007. Exploiting source similarity for smt using context-informed features. In Andy Way and Barbara Proc. of TMI, pages Christoph Tillmann 231–240, Sk¨ ovde, and Tong Zhang. Gawronska, editors, Sweden. 2006. A discriminative global training algorithm for statistical mt. In Proc. of ACL, 721–728, Sydney, Australia. Turchi, Tijl De Bie, and Nello pages Marco Cristianini. 2008. Learn- ing performance of a machine translation system: a statistical and computational analysis. In Proc. of WMT, pages Columbus, Ohio. 35–43, Richard Zens and Hermann Ney. 2005. Word graphs for statistical machine translation. In Proc. of the ACL Workshop on Building and Using Parallel Texts, pages 191–198, Ann Arbor, Michigan. 943

4 0.5677368 102 emnlp-2010-Summarizing Contrastive Viewpoints in Opinionated Text

Author: Michael Paul ; ChengXiang Zhai ; Roxana Girju

Abstract: This paper presents a two-stage approach to summarizing multiple contrastive viewpoints in opinionated text. In the first stage, we use an unsupervised probabilistic approach to model and extract multiple viewpoints in text. We experiment with a variety of lexical and syntactic features, yielding significant performance gains over bag-of-words feature sets. In the second stage, we introduce Comparative LexRank, a novel random walk formulation to score sentences and pairs of sentences from opposite viewpoints based on both their representativeness of the collection as well as their contrastiveness with each other. Exper- imental results show that the proposed approach can generate informative summaries of viewpoints in opinionated text.

5 0.56426495 65 emnlp-2010-Inducing Probabilistic CCG Grammars from Logical Form with Higher-Order Unification

Author: Tom Kwiatkowksi ; Luke Zettlemoyer ; Sharon Goldwater ; Mark Steedman

Abstract: This paper addresses the problem of learning to map sentences to logical form, given training data consisting of natural language sentences paired with logical representations of their meaning. Previous approaches have been designed for particular natural languages or specific meaning representations; here we present a more general method. The approach induces a probabilistic CCG grammar that represents the meaning of individual words and defines how these meanings can be combined to analyze complete sentences. We use higher-order unification to define a hypothesis space containing all grammars consistent with the training data, and develop an online learning algorithm that efficiently searches this space while simultaneously estimating the parameters of a log-linear parsing model. Experiments demonstrate high accuracy on benchmark data sets in four languages with two different meaning representations.

6 0.56247216 98 emnlp-2010-Soft Syntactic Constraints for Hierarchical Phrase-Based Translation Using Latent Syntactic Distributions

7 0.56196731 107 emnlp-2010-Towards Conversation Entailment: An Empirical Investigation

8 0.55660921 78 emnlp-2010-Minimum Error Rate Training by Sampling the Translation Lattice

9 0.55616027 58 emnlp-2010-Holistic Sentiment Analysis Across Languages: Multilingual Supervised Latent Dirichlet Allocation

10 0.55537814 100 emnlp-2010-Staying Informed: Supervised and Semi-Supervised Multi-View Topical Analysis of Ideological Perspective

11 0.55329007 57 emnlp-2010-Hierarchical Phrase-Based Translation Grammars Extracted from Alignment Posterior Probabilities

12 0.55184102 89 emnlp-2010-PEM: A Paraphrase Evaluation Metric Exploiting Parallel Texts

13 0.549694 120 emnlp-2010-What's with the Attitude? Identifying Sentences with Attitude in Online Discussions

14 0.54955542 69 emnlp-2010-Joint Training and Decoding Using Virtual Nodes for Cascaded Segmentation and Tagging Tasks

15 0.54823923 116 emnlp-2010-Using Universal Linguistic Knowledge to Guide Grammar Induction

16 0.54736304 35 emnlp-2010-Discriminative Sample Selection for Statistical Machine Translation

17 0.54608333 64 emnlp-2010-Incorporating Content Structure into Text Analysis Applications

18 0.54510599 86 emnlp-2010-Non-Isomorphic Forest Pair Translation

19 0.54269612 6 emnlp-2010-A Latent Variable Model for Geographic Lexical Variation

20 0.54249215 103 emnlp-2010-Tense Sense Disambiguation: A New Syntactic Polysemy Task