emnlp emnlp2010 emnlp2010-58 knowledge-graph by maker-knowledge-mining

58 emnlp-2010-Holistic Sentiment Analysis Across Languages: Multilingual Supervised Latent Dirichlet Allocation


Source: pdf

Author: Jordan Boyd-Graber ; Philip Resnik

Abstract: In this paper, we develop multilingual supervised latent Dirichlet allocation (MLSLDA), a probabilistic generative model that allows insights gleaned from one language’s data to inform how the model captures properties of other languages. MLSLDA accomplishes this by jointly modeling two aspects of text: how multilingual concepts are clustered into thematically coherent topics and how topics associated with text connect to an observed regression variable (such as ratings on a sentiment scale). Concepts are represented in a general hierarchical framework that is flexible enough to express semantic ontologies, dictionaries, clustering constraints, and, as a special, degenerate case, conventional topic models. Both the topics and the regression are discovered via posterior inference from corpora. We show MLSLDA can build topics that are consistent across languages, discover sensible bilingual lexical correspondences, and leverage multilingual corpora to better predict sentiment. Sentiment analysis (Pang and Lee, 2008) offers the promise of automatically discerning how people feel about a product, person, organization, or issue based on what they write online, which is potentially of great value to businesses and other organizations. However, the vast majority of sentiment resources and algorithms are limited to a single language, usually English (Wilson, 2008; Baccianella and Sebastiani, 2010). Since no single language captures a majority of the content online, adopting such a limited approach in an increasingly global community risks missing important details and trends that might only be available when text in multiple languages is taken into account. 45 Philip Resnik Department of Linguistics and UMIACS University of Maryland College Park, MD re snik@umd .edu Up to this point, multiple languages have been addressed in sentiment analysis primarily by transferring knowledge from a resource-rich language to a less rich language (Banea et al., 2008), or by ignoring differences in languages via translation into English (Denecke, 2008). These approaches are limited to a view of sentiment that takes place through an English-centric lens, and they ignore the potential to share information between languages. Ideally, learning sentiment cues holistically, across languages, would result in a richer and more globally consistent picture. In this paper, we introduce Multilingual Supervised Latent Dirichlet Allocation (MLSLDA), a model for sentiment analysis on a multilingual corpus. MLSLDA discovers a consistent, unified picture of sentiment across multiple languages by learning “topics,” probabilistic partitions of the vocabulary that are consistent in terms of both meaning and relevance to observed sentiment. Our approach makes few assumptions about available resources, requiring neither parallel corpora nor machine translation. The rest of the paper proceeds as follows. In Section 1, we describe the probabilistic tools that we use to create consistent topics bridging across languages and the MLSLDA model. In Section 2, we present the inference process. We discuss our set of semantic bridges between languages in Section 3, and our experiments in Section 4 demonstrate that this approach functions as an effective multilingual topic model, discovers sentiment-biased topics, and uses multilingual corpora to make better sentiment predictions across languages. Sections 5 and 6 discuss related research and discusses future work, respectively. ProcMe IdTi,n Mgsas ofsa tchehu 2se0t1t0s, C UoSnAfe,r 9e-n1ce1 o Onc Etombepri 2ic0a1l0 M. ?ec th2o0d1s0 i Ans Nsaotcuiartaioln La fonrg Cuaogmep Purtoatcieosnsainlg L,in pgagueis ti 4c5s–5 , 1 Predictions from Multilingual Topics As its name suggests, MLSLDA is an extension of Latent Dirichlet allocation (LDA) (Blei et al., 2003), a modeling approach that takes a corpus of unannotated documents as input and produces two outputs, a set of “topics” and assignments of documents to topics. Both the topics and the assignments are probabilistic: a topic is represented as a probability distribution over words in the corpus, and each document is assigned a probability distribution over all the topics. Topic models built on the foundations of LDA are appealing for sentiment analysis because the learned topics can cluster together sentimentbearing words, and because topic distributions are a parsimonious way to represent a document.1 LDA has been used to discover latent structure in text (e.g. for discourse segmentation (Purver et al., 2006) and authorship (Rosen-Zvi et al., 2004)). MLSLDA extends the approach by ensuring that this latent structure the underlying topics is consistent across languages. We discuss multilingual topic modeling in Section 1. 1, and in Section 1.2 we show how this enables supervised regression regardless of a document’s language. — — 1.1 Capturing Semantic Correlations Topic models posit a straightforward generative process that creates an observed corpus. For each docu- ment d, some distribution θd over unobserved topics is chosen. Then, for each word position in the document, a topic z is selected. Finally, the word for that position is generated by selecting from the topic indexed by z. (Recall that in LDA, a “topic” is a distribution over words). In monolingual topic models, the topic distribution is usually drawn from a Dirichlet distribution. Using Dirichlet distributions makes it easy to specify sparse priors, and it also simplifies posterior inference because Dirichlet distributions are conjugate to multinomial distributions. However, drawing topics from Dirichlet distributions will not suffice if our vocabulary includes multiple languages. If we are working with English, German, and Chinese at the same time, a Dirichlet prior has no way to favor distributions z such that p(good|z), p(gut|z), and 1The latter property has also made LDA popular for information retrieval (Wei and Croft, 2006)). 46 p(h aˇo|z) all tend to be high at the same time, or low at hth ˇaeo same lti tmened. tMoo bree generally, et sheam structure oorf our model must encourage topics to be consistent across languages, and Dirichlet distributions cannot encode correlations between elements. One possible solution to this problem is to use the multivariate normal distribution, which can produce correlated multinomials (Blei and Lafferty, 2005), in place of the Dirichlet distribution. This has been done successfully in multilingual settings (Cohen and Smith, 2009). However, such models complicate inference by not being conjugate. Instead, we appeal to tree-based extensions of the Dirichlet distribution, which has been used to induce correlation in semantic ontologies (Boyd-Graber et al., 2007) and to encode clustering constraints (Andrzejewski et al., 2009). The key idea in this approach is to assume the vocabularies of all languages are organized according to some shared semantic structure that can be represented as a tree. For concreteness in this section, we will use WordNet (Miller, 1990) as the representation of this multilingual semantic bridge, since it is well known, offers convenient and intuitive terminology, and demonstrates the full flexibility of our approach. However, the model we describe generalizes to any tree-structured rep- resentation of multilingual knowledge; we discuss some alternatives in Section 3. WordNet organizes a vocabulary into a rooted, directed acyclic graph of nodes called synsets, short for “synonym sets.” A synset is a child of another synset if it satisfies a hyponomy relationship; each child “is a” more specific instantiation of its parent concept (thus, hyponomy is often called an “isa” relationship). For example, a “dog” is a “canine” is an “animal” is a “living thing,” etc. As an approximation, it is not unreasonable to assume that WordNet’s structure of meaning is language independent, i.e. the concept encoded by a synset can be realized using terms in different languages that share the same meaning. In practice, this organization has been used to create many alignments of international WordNets to the original English WordNet (Ordan and Wintner, 2007; Sagot and Fiˇ ser, 2008; Isahara et al., 2008). Using the structure of WordNet, we can now describe a generative process that produces a distribution over a multilingual vocabulary, which encourages correlations between words with similar meanings regardless of what language each word is in. For each synset h, we create a multilingual word distribution for that synset as follows: 1. Draw transition probabilities βh ∼ Dir (τh) 2. Draw stop probabilities ωh ∼ Dir∼ (κ Dhi)r 3. For each language l, draw emission probabilities for that synset φh,l ∼ Dir (πh,l) . For conciseness in the rest of the paper, we will refer to this generative process as multilingual Dirichlet hierarchy, or MULTDIRHIER(τ, κ, π) .2 Each observed token can be viewed as the end result of a sequence of visited synsets λ. At each node in the tree, the path can end at node iwith probability ωi,1, or it can continue to a child synset with probability ωi,0. If the path continues to another child synset, it visits child j with probability βi,j. If the path ends at a synset, it generates word k with probability φi,l,k.3 The probability of a word being emitted from a path with visited synsets r and final synset h in language lis therefore p(w, λ = r, h|l, β, ω, φ) = (iY,j)∈rβi,jωi,0(1 − ωh,1)φh,l,w. Note that the stop probability ωh (1) is independent of language, but the emission φh,l is dependent on the language. This is done to prevent the following scenario: while synset A is highly probable in a topic and words in language 1attached to that synset have high probability, words in language 2 have low probability. If this could happen for many synsets in a topic, an entire language would be effectively silenced, which would lead to inconsistent topics (e.g. 2Variables τh, πh,l, and κh are hyperparameters. Their mean is fixed, but their magnitude is sampled during inference (i.e. Pkτhτ,ih,k is constant, but τh,i is not). For the bushier bridges, (Pe.g. dictionary and flat), their mean is uniform. For GermaNet, we took frequencies from two balanced corpora of German and English: the British National Corpus (University of Oxford, 2006) and the Kern Corpus of the Digitales Wo¨rterbuch der Deutschen Sprache des 20. Jahrhunderts project (Geyken, 2007). We took these frequencies and propagated them through the multilingual hierarchy, following LDAWN’s (Boyd-Graber et al., 2007) formulation of information content (Resnik, 1995) as a Bayesian prior. The variance of the priors was initialized to be 1.0, but could be sampled during inference. 3Note that the language and word are taken as given, but the path through the semantic hierarchy is a latent random variable. 47 Topic 1 is about baseball in English and about travel in German). Separating path from emission helps ensure that topics are consistent across languages. Having defined topic distributions in a way that can preserve cross-language correspondences, we now use this distribution within a larger model that can discover cross-language patterns of use that predict sentiment. 1.2 The MLSLDA Model We will view sentiment analysis as a regression problem: given an input document, we want to predict a real-valued observation y that represents the sentiment of a document. Specifically, we build on supervised latent Dirichlet allocation (SLDA, (Blei and McAuliffe, 2007)), which makes predictions based on the topics expressed in a document; this can be thought of projecting the words in a document to low dimensional space of dimension equal to the number of topics. Blei et al. showed that using this latent topic structure can offer improved predictions over regressions based on words alone, and the approach fits well with our current goals, since word-level cues are unlikely to be identical across languages. In addition to text, SLDA has been successfully applied to other domains such as social networks (Chang and Blei, 2009) and image classification (Wang et al., 2009). The key innovation in this paper is to extend SLDA by creating topics that are globally consistent across languages, using the bridging approach above. We express our model in the form of a probabilistic generative latent-variable model that generates documents in multiple languages and assigns a realvalued score to each document. The score comes from a normal distribution whose sum is the dot product between a regression parameter η that encodes the influence of each topic on the observation and a variance σ2. With this model in hand, we use statistical inference to determine the distribution over latent variables that, given the model, best explains observed data. The generative model is as follows: 1. For each topic i= 1. . . K, draw a topic distribution {βi, ωi, φi} from MULTDIRHIER(τ, κ, π). 2. {Foβr each do}cuf mroemn tM Md = 1. . . M with language ld: (a) CDihro(oαse). a distribution over topics θd ∼ (b) For each word in the document n = 1. . . Nd, choose a topic assignment zd,n ∼ Mult (θd) and a path λd,n ending at word wd,n according to Equation 1using {βzd,n , ωzd,n , φzd,n }. 3. Choose a re?sponse variable from y Norm ?η> z¯, σ2?, where z¯ d ≡ N1 PnN=1 zd,n. ∼ Crucially, note that the topics are not independent of the sentiment task; the regression encourages terms with similar effects on the observation y to be in the same topic. The consistency of topics described above allows the same regression to be done for the entire corpus regardless of the language of the underlying document. 2 Inference Finding the model parameters most likely to explain the data is a problem of statistical inference. We employ stochastic EM (Diebolt and Ip, 1996), using a Gibbs sampler for the E-step to assign words to paths and topics. After randomly initializing the topics, we alternate between sampling the topic and path of a word (zd,n, λd,n) and finding the regression parameters η that maximize the likelihood. We jointly sample the topic and path conditioning on all of the other path and document assignments in the corpus, selecting a path and topic with probability p(zn = k, λn = r|z−n , λ−n, wn , η, σ, Θ) = p(yd|z, η, σ)p(λn = r|zn = k, λ−n, wn, τ, p(zn = k|z−n, α) . κ, π) (2) Each of these three terms reflects a different influence on the topics from the vocabulary structure, the document’s topics, and the response variable. In the next paragraphs, we will expand each of them to derive the full conditional topic distribution. As discussed in Section 1.1, the structure of the topic distribution encourages terms with the same meaning to be in the same topic, even across languages. During inference, we marginalize over possible multinomial distributions β, ω, and φ, using the observed transitions from ito j in topic k; Tk,i,j, stop counts in synset iin topic k, Ok,i,0; continue counts in synsets iin topic k, Ok,i,1 ; and emission counts in synset iin language lin topic k, Fk,i,l. The 48 Multilingual Topics Text Documents Sentiment Prediction Figure 1: Graphical model representing MLSLDA. Shaded nodes represent observations, plates denote replication, and lines show probabilistic dependencies. probability of taking a path r is then p(λn = r|zn = k, λ−n) = (iY,j)∈r PBj0Bk,ik,j,i,+j0 τ+i,j τi,jPs∈0O,1k,Oi,1k,+i,s ω+i ωi,s! |(iY,j)∈rP{zP} Tran{szitiPon Ok,rend,0 + ωrend Fk,rend,wn + πrend,}l Ps∈0,1Ok,rend,s+ ωrend,sPw0Frend,w0+ πrend,w0 |PEmi{szsiPon} (3) Equation 3 reflects the multilingual aspect of this model. The conditional topic distribution for SLDA (Blei and McAuliffe, 2007) replaces this term with the standard Multinomial-Dirichlet. However, we believe this is the first published SLDA-style model using MCMC inference, as prior work has used variational inference (Blei and McAuliffe, 2007; Chang and Blei, 2009; Wang et al., 2009). Because the observed response variable depends on the topic assignments of a document, the conditional topic distribution is shifted toward topics that explain the observed response. Topics that move the predicted response yˆd toward the true yd will be favored. We drop terms that are constant across all topics for the effect of the response variable, p(yd|z, η, σ) ∝ exp?σ12?yd−PPk0kN0Nd,dk,0kη0k0?Pkη0Nzkd,k0? |??PP{z?P?} . Other wPord{zs’ influence exp

Reference: text


Summary: the most important sentenses genereted by tfidf model

sentIndex sentText sentNum sentScore

1 Abstract In this paper, we develop multilingual supervised latent Dirichlet allocation (MLSLDA), a probabilistic generative model that allows insights gleaned from one language’s data to inform how the model captures properties of other languages. [sent-3, score-0.401]

2 MLSLDA accomplishes this by jointly modeling two aspects of text: how multilingual concepts are clustered into thematically coherent topics and how topics associated with text connect to an observed regression variable (such as ratings on a sentiment scale). [sent-4, score-1.397]

3 Concepts are represented in a general hierarchical framework that is flexible enough to express semantic ontologies, dictionaries, clustering constraints, and, as a special, degenerate case, conventional topic models. [sent-5, score-0.364]

4 Both the topics and the regression are discovered via posterior inference from corpora. [sent-6, score-0.516]

5 We show MLSLDA can build topics that are consistent across languages, discover sensible bilingual lexical correspondences, and leverage multilingual corpora to better predict sentiment. [sent-7, score-0.705]

6 However, the vast majority of sentiment resources and algorithms are limited to a single language, usually English (Wilson, 2008; Baccianella and Sebastiani, 2010). [sent-9, score-0.349]

7 edu Up to this point, multiple languages have been addressed in sentiment analysis primarily by transferring knowledge from a resource-rich language to a less rich language (Banea et al. [sent-12, score-0.449]

8 These approaches are limited to a view of sentiment that takes place through an English-centric lens, and they ignore the potential to share information between languages. [sent-14, score-0.349]

9 Ideally, learning sentiment cues holistically, across languages, would result in a richer and more globally consistent picture. [sent-15, score-0.446]

10 In this paper, we introduce Multilingual Supervised Latent Dirichlet Allocation (MLSLDA), a model for sentiment analysis on a multilingual corpus. [sent-16, score-0.611]

11 MLSLDA discovers a consistent, unified picture of sentiment across multiple languages by learning “topics,” probabilistic partitions of the vocabulary that are consistent in terms of both meaning and relevance to observed sentiment. [sent-17, score-0.625]

12 In Section 1, we describe the probabilistic tools that we use to create consistent topics bridging across languages and the MLSLDA model. [sent-20, score-0.528]

13 Both the topics and the assignments are probabilistic: a topic is represented as a probability distribution over words in the corpus, and each document is assigned a probability distribution over all the topics. [sent-28, score-0.737]

14 Topic models built on the foundations of LDA are appealing for sentiment analysis because the learned topics can cluster together sentimentbearing words, and because topic distributions are a parsimonious way to represent a document. [sent-29, score-0.953]

15 MLSLDA extends the approach by ensuring that this latent structure the underlying topics is consistent across languages. [sent-35, score-0.459]

16 For each docu- ment d, some distribution θd over unobserved topics is chosen. [sent-41, score-0.334]

17 In monolingual topic models, the topic distribution is usually drawn from a Dirichlet distribution. [sent-45, score-0.557]

18 However, drawing topics from Dirichlet distributions will not suffice if our vocabulary includes multiple languages. [sent-47, score-0.403]

19 tMoo bree generally, et sheam structure oorf our model must encourage topics to be consistent across languages, and Dirichlet distributions cannot encode correlations between elements. [sent-50, score-0.483]

20 ” A synset is a child of another synset if it satisfies a hyponomy relationship; each child “is a” more specific instantiation of its parent concept (thus, hyponomy is often called an “isa” relationship). [sent-61, score-0.56]

21 Using the structure of WordNet, we can now describe a generative process that produces a distribution over a multilingual vocabulary, which encourages correlations between words with similar meanings regardless of what language each word is in. [sent-68, score-0.325]

22 For each synset h, we create a multilingual word distribution for that synset as follows: 1. [sent-69, score-0.715]

23 At each node in the tree, the path can end at node iwith probability ωi,1, or it can continue to a child synset with probability ωi,0. [sent-75, score-0.331]

24 3 The probability of a word being emitted from a path with visited synsets r and final synset h in language lis therefore p(w, λ = r, h|l, β, ω, φ) = (iY,j)∈rβi,jωi,0(1 − ωh,1)φh,l,w. [sent-78, score-0.408]

25 This is done to prevent the following scenario: while synset A is highly probable in a topic and words in language 1attached to that synset have high probability, words in language 2 have low probability. [sent-80, score-0.669]

26 If this could happen for many synsets in a topic, an entire language would be effectively silenced, which would lead to inconsistent topics (e. [sent-81, score-0.416]

27 Separating path from emission helps ensure that topics are consistent across languages. [sent-98, score-0.523]

28 Having defined topic distributions in a way that can preserve cross-language correspondences, we now use this distribution within a larger model that can discover cross-language patterns of use that predict sentiment. [sent-99, score-0.375]

29 2 The MLSLDA Model We will view sentiment analysis as a regression problem: given an input document, we want to predict a real-valued observation y that represents the sentiment of a document. [sent-101, score-0.852]

30 Specifically, we build on supervised latent Dirichlet allocation (SLDA, (Blei and McAuliffe, 2007)), which makes predictions based on the topics expressed in a document; this can be thought of projecting the words in a document to low dimensional space of dimension equal to the number of topics. [sent-102, score-0.529]

31 showed that using this latent topic structure can offer improved predictions over regressions based on words alone, and the approach fits well with our current goals, since word-level cues are unlikely to be identical across languages. [sent-104, score-0.387]

32 The key innovation in this paper is to extend SLDA by creating topics that are globally consistent across languages, using the bridging approach above. [sent-107, score-0.428]

33 The score comes from a normal distribution whose sum is the dot product between a regression parameter η that encodes the influence of each topic on the observation and a variance σ2. [sent-109, score-0.432]

34 a distribution over topics θd ∼ (b) For each word in the document n = 1. [sent-121, score-0.423]

35 Nd, choose a topic assignment zd,n ∼ Mult (θd) and a path λd,n ending at word wd,n according to Equation 1using {βzd,n , ωzd,n , φzd,n }. [sent-124, score-0.331]

36 ∼ Crucially, note that the topics are not independent of the sentiment task; the regression encourages terms with similar effects on the observation y to be in the same topic. [sent-130, score-0.806]

37 The consistency of topics described above allows the same regression to be done for the entire corpus regardless of the language of the underlying document. [sent-131, score-0.457]

38 After randomly initializing the topics, we alternate between sampling the topic and path of a word (zd,n, λd,n) and finding the regression parameters η that maximize the likelihood. [sent-134, score-0.485]

39 We jointly sample the topic and path conditioning on all of the other path and document assignments in the corpus, selecting a path and topic with probability p(zn = k, λn = r|z−n , λ−n, wn , η, σ, Θ) = p(yd|z, η, σ)p(λn = r|zn = k, λ−n, wn, τ, p(zn = k|z−n, α) . [sent-135, score-0.871]

40 κ, π) (2) Each of these three terms reflects a different influence on the topics from the vocabulary structure, the document’s topics, and the response variable. [sent-136, score-0.407]

41 1, the structure of the topic distribution encourages terms with the same meaning to be in the same topic, even across languages. [sent-139, score-0.329]

42 Because the observed response variable depends on the topic assignments of a document, the conditional topic distribution is shifted toward topics that explain the observed response. [sent-148, score-0.948]

43 We drop terms that are constant across all topics for the effect of the response variable, p(yd|z, η, σ) ∝ exp? [sent-150, score-0.412]

44 Finally, there is the effect of the topics already assigned to a document; the conditional distribution favors topics already assigned in a document, p(zn= k|z−n,α) =PkT0dT,kd,k+0 α+k αk0. [sent-161, score-0.637]

45 Multiplying together Equations 3, 4, and 5 allows us to sample a topic using the conditional distribution from Equation 2, based on the topic and path of the other words in all languages. [sent-163, score-0.609]

46 After sampling the path and topic for each word in a document, we then find new regression parameters η that maximize the likelihood conditioned on the current state of the sampler. [sent-164, score-0.485]

47 This is simply a least squares regression using the topic assignments z¯d to predict yd. [sent-165, score-0.437]

48 Prediction on documents for which we don’t have an observed yd is equivalent to marginalizing over yd and sampling topics for the document from Equations 3 and 5. [sent-166, score-0.637]

49 The prediction for yd is then the dot product of η and the empirical topic distribution ¯z d. [sent-167, score-0.402]

50 Flat First, we can consider a degenerate mapping that is nearly equivalent to running SLDA independently across multiple languages, relating topics only based on the impact on the response variable. [sent-177, score-0.501]

51 n0f2ragwunsch (a) GermaNet (b) Dictionary Figure 2: Two methods for constructing multilingual distributions over words. [sent-207, score-0.316]

52 4 Experiments We evaluate MLSLDA on three criteria: how well it can discover consistent topics across languages for matching parallel documents, how well it can discover sentiment-correlated word lists from nonaligned text, and how well it can predict sentiment. [sent-214, score-0.677]

53 50 (as there is no associated response variable for Europarl documents); this experiment is to demonstrate the effectiveness of the multilingual aspect of the model. [sent-220, score-0.346]

54 To test whether the topics learned by the model are consistent across languages, we represent each document using the probability distribution θd over topic assignments. [sent-221, score-0.767]

55 The translation of the document is somewhere in that set; the higher the normalized rank (the percentage of documents with a rank lower than the translation of the document), the better the underlying topic model connects languages. [sent-224, score-0.417]

56 We compare three bridges against what is to our knowledge the only other topic model for unaligned text, Multilingual Topics for Unaligned Text (BoydGraber and Blei, 2009). [sent-225, score-0.376]

57 8 Average Parallel Document Rank Figure 3: Average rank of paired translation document recovered from the multilingual topic model. [sent-233, score-0.598]

58 95) below the translated document once enough topics were available. [sent-238, score-0.392]

59 Although GermaNet is richer, its coverage is incomplete; the dictionary structure had a much larger vocabulary and could build a more complete multilingual topics. [sent-239, score-0.393]

60 Using comparable input information, this more flexible model performed better on the matching task than the existing multilingual topic model available for unaligned text. [sent-240, score-0.605]

61 2 Qualitative Sentiment-Correlated Topics One of the key tasks in sentiment analysis has been the collection of lists of words that convey sentiment (Wilson, 2008; Riloff et al. [sent-243, score-0.698]

62 51 a WordNet-like resource is used as the bridge, the resulting topics are distributions over synsets, not just over words. [sent-249, score-0.357]

63 , 2009), as it has documents in multiple languages (English, Chinese, and German) with numerical assessments of sentiment (number of stars assigned to the review). [sent-251, score-0.53]

64 For example; in the GermanEnglish corpus, “food” and “children” topics are not associated with a consistent sentiment signal, while “religion” is associated with a more negative sentiment. [sent-256, score-0.698]

65 In contrast, in the German-Chinese corpus, the “religion/society” topic is more neutral, and the gender-oriented topic is viewed more negatively. [sent-257, score-0.53]

66 For example, in one of the negative sentiment topics, the German word “gut” (good) is present. [sent-263, score-0.349]

67 Because topics are distributions over words, they can encode the presence of negations like “kein” (no) and “nicht” (not), but not collocations like “nicht gut. [sent-264, score-0.412]

68 We do not report the results for sentiment prediction for this corpus because the baseline of predicting a positive review is so strong; most algorithms do extremely well by always predicting a positive review, ours included. [sent-266, score-0.434]

69 Notice that theme-related topics have regression parameter near zero, topics discussing the number of pages have negative regression parameters, topics with “good,” “great,” “hˇao” (good) and “u¨berzeugt” (convinced) have positive regression parameters. [sent-270, score-1.371]

70 For the German-Chinese corpus, note the presence of “gut” (good) in one of the negative sentiment topics, showing the difficulty of learning collocations. [sent-271, score-0.349]

71 5000 film reviews (Pang and Lee, 2005) to create a multilingual film review The results for predicting sentiment in German documents with 25 topics are presented in Table 1. [sent-284, score-1.236]

72 The slightly better performance using GermaNet and a dictionary as topic priors can be viewed as basic feature selection, removing proper names from the vocabulary to corpus. [sent-287, score-0.414]

73 Note that even the degenerate flat bridge across languages provides useful information. [sent-297, score-0.402]

74 For each bridge, performance improves dramatically, showing that MLSLDA is successfully able to incorporate information learned from both languages to build a single, coherent picture of how sentiment is expressed in both languages. [sent-300, score-0.449]

75 With the GermaNet bridge, performance is better than both the degenerate and dictionary based bridges, showing that the model is sharing information both through the multilingual topics and the regression parameters. [sent-301, score-0.893]

76 Performance on English prediction is comparable to previously published results on this dataset (Blei and McAuliffe, 2007); with enough data, a monolingual model is no longer helped by adding additional multilingual data. [sent-302, score-0.336]

77 Other multilingual topic models require parallel text, either at the document (Ni et al. [sent-305, score-0.652]

78 Similarly, other multilingual sentiment approaches also require parallel text, often supplied via automatic translation; after the translated text is available, either monolingual analysis (Denecke, 2008) or co-training is applied (Wan, 2009). [sent-308, score-0.697]

79 Rather than viewing one language through the lens of another language, MLSLDA views all languages through the lens of the topics present in a document. [sent-310, score-0.487]

80 It allows a language agnostic decision about sentiment to be made, but it restricts the expressiveness of the model in terms of sentiment in two ways. [sent-312, score-0.698]

81 First, it throws away information important to sentiment analysis like syntactic constructions (Greene and Resnik, 2009) and document structure (McDonald et al. [sent-313, score-0.438]

82 Less critically, assuming that sentiment is normally distributed is not true of all real-world corpora; review corpora often have a skew toward positive reviews. [sent-316, score-0.392]

83 Other probabilistic models for sentiment classification view sentiment as a word level feature. [sent-319, score-0.698]

84 Some models use sentiment word lists, either given or 53 learned from a corpus, as a prior to seed topics so that they attract other sentiment bearing words (Mei et al. [sent-320, score-1.001]

85 Other approaches view sentiment or perspective as a perturbation of a log-linear topic model (Lin et al. [sent-322, score-0.596]

86 Such techniques could be combined with the multilingual approach presented here by using distributions over words that not only bridge different languages but also encode additional information. [sent-324, score-0.506]

87 For example, the vocabulary hierarchies could be structured to encourage topics that encourage correlation among similar sentiment-bearing words (e. [sent-325, score-0.407]

88 Future work could also more rigorously validate that the multilingual topics discovered by MLSLDA are sentiment-bearing via human judgments. [sent-329, score-0.598]

89 In contrast, MLSLDA draws on techniques that view sentiment as a regression problem based on the topics used in a document, as in supervised latent Dirichlet allocation (SLDA) (Blei and McAuliffe, 2007) or in finer-grained parts of a document (Titov and McDonald, 2008). [sent-330, score-1.002]

90 6 Conclusions MLSLDA is a “holistic” statistical model for multilingual corpora that does not require parallel text or expensive multilingual resources. [sent-332, score-0.578]

91 More generally, MLSLDA provides a formalism that can be used to incorporate the many insights of topic modeling-driven sentiment analysis to multilingual corpora by tying together word distributions across languages. [sent-334, score-0.963]

92 MLSLDA can also contribute to the development of word list-based sentiment systems: the topics discovered by MLSLDA can serve as a first-pass means of sentiment-based word lists for languages that might lack annotated resources. [sent-335, score-0.785]

93 When the multilingual bridge is an explicit representation of sense such as WordNet, part of the generative process is an explicit assignment of every word to sense (the path latent variable λ); this is discovered during inference. [sent-337, score-0.586]

94 How sentiment prediction impacts the implicit WSD is left to future work. [sent-339, score-0.391]

95 Better capturing local syntax and meaningful collocations would also improve the model’s ability to predict sentiment and model multilingual topics, as would providing a better mechanism for representing words not included in our bridges. [sent-340, score-0.666]

96 0: An enhanced lexical resource for sentiment analysis and opinion mining. [sent-355, score-0.349]

97 Topic sentiment mixture: modeling facets and opinions in weblogs. [sent-484, score-0.349]

98 Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. [sent-511, score-0.349]

99 A joint model of text and aspect ratings for sentiment summarization. [sent-558, score-0.349]

100 Medlda: maximum margin supervised topic models for regression and classification. [sent-614, score-0.401]


similar papers computed by tfidf model

tfidf for this paper:

wordName wordTfidf (topN-words)

[('mlslda', 0.378), ('sentiment', 0.349), ('topics', 0.303), ('multilingual', 0.262), ('topic', 0.247), ('germanet', 0.23), ('synset', 0.211), ('german', 0.159), ('regression', 0.154), ('blei', 0.119), ('synsets', 0.113), ('languages', 0.1), ('dirichlet', 0.1), ('film', 0.099), ('bridge', 0.09), ('document', 0.089), ('degenerate', 0.089), ('dictionary', 0.085), ('mcauliffe', 0.085), ('path', 0.084), ('wordnet', 0.083), ('yd', 0.082), ('documents', 0.081), ('slda', 0.076), ('flat', 0.072), ('bridges', 0.07), ('latent', 0.059), ('unaligned', 0.059), ('response', 0.058), ('collocations', 0.055), ('zn', 0.055), ('distributions', 0.054), ('parallel', 0.054), ('across', 0.051), ('gut', 0.049), ('muto', 0.049), ('stemmed', 0.049), ('wordnets', 0.049), ('allocation', 0.048), ('connections', 0.047), ('vocabulary', 0.046), ('lda', 0.046), ('consistent', 0.046), ('paths', 0.045), ('discover', 0.043), ('review', 0.043), ('lens', 0.042), ('baccianella', 0.042), ('prediction', 0.042), ('pang', 0.041), ('emission', 0.039), ('matching', 0.037), ('viewed', 0.036), ('child', 0.036), ('assignments', 0.036), ('discovered', 0.033), ('boulton', 0.033), ('denecke', 0.033), ('diebolt', 0.033), ('germanenglish', 0.033), ('hyponomy', 0.033), ('isahara', 0.033), ('kunze', 0.033), ('multdirhier', 0.033), ('ordan', 0.033), ('potts', 0.033), ('rend', 0.033), ('sentimentcorrelated', 0.033), ('sentiwordnet', 0.033), ('sprache', 0.033), ('vetter', 0.033), ('discovers', 0.033), ('generative', 0.032), ('monolingual', 0.032), ('distribution', 0.031), ('umiacs', 0.031), ('predictions', 0.03), ('griffiths', 0.03), ('took', 0.03), ('xing', 0.029), ('encourage', 0.029), ('umd', 0.029), ('porter', 0.029), ('chang', 0.029), ('loper', 0.028), ('sebastiani', 0.028), ('nicht', 0.028), ('bridging', 0.028), ('andrzejewski', 0.028), ('whitelaw', 0.028), ('sagot', 0.028), ('wunsch', 0.028), ('iin', 0.028), ('semantic', 0.028), ('dir', 0.027), ('inference', 0.026), ('david', 0.026), ('chinese', 0.026), ('variable', 0.026), ('guessing', 0.025)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.99999893 58 emnlp-2010-Holistic Sentiment Analysis Across Languages: Multilingual Supervised Latent Dirichlet Allocation

Author: Jordan Boyd-Graber ; Philip Resnik

Abstract: In this paper, we develop multilingual supervised latent Dirichlet allocation (MLSLDA), a probabilistic generative model that allows insights gleaned from one language’s data to inform how the model captures properties of other languages. MLSLDA accomplishes this by jointly modeling two aspects of text: how multilingual concepts are clustered into thematically coherent topics and how topics associated with text connect to an observed regression variable (such as ratings on a sentiment scale). Concepts are represented in a general hierarchical framework that is flexible enough to express semantic ontologies, dictionaries, clustering constraints, and, as a special, degenerate case, conventional topic models. Both the topics and the regression are discovered via posterior inference from corpora. We show MLSLDA can build topics that are consistent across languages, discover sensible bilingual lexical correspondences, and leverage multilingual corpora to better predict sentiment. Sentiment analysis (Pang and Lee, 2008) offers the promise of automatically discerning how people feel about a product, person, organization, or issue based on what they write online, which is potentially of great value to businesses and other organizations. However, the vast majority of sentiment resources and algorithms are limited to a single language, usually English (Wilson, 2008; Baccianella and Sebastiani, 2010). Since no single language captures a majority of the content online, adopting such a limited approach in an increasingly global community risks missing important details and trends that might only be available when text in multiple languages is taken into account. 45 Philip Resnik Department of Linguistics and UMIACS University of Maryland College Park, MD re snik@umd .edu Up to this point, multiple languages have been addressed in sentiment analysis primarily by transferring knowledge from a resource-rich language to a less rich language (Banea et al., 2008), or by ignoring differences in languages via translation into English (Denecke, 2008). These approaches are limited to a view of sentiment that takes place through an English-centric lens, and they ignore the potential to share information between languages. Ideally, learning sentiment cues holistically, across languages, would result in a richer and more globally consistent picture. In this paper, we introduce Multilingual Supervised Latent Dirichlet Allocation (MLSLDA), a model for sentiment analysis on a multilingual corpus. MLSLDA discovers a consistent, unified picture of sentiment across multiple languages by learning “topics,” probabilistic partitions of the vocabulary that are consistent in terms of both meaning and relevance to observed sentiment. Our approach makes few assumptions about available resources, requiring neither parallel corpora nor machine translation. The rest of the paper proceeds as follows. In Section 1, we describe the probabilistic tools that we use to create consistent topics bridging across languages and the MLSLDA model. In Section 2, we present the inference process. We discuss our set of semantic bridges between languages in Section 3, and our experiments in Section 4 demonstrate that this approach functions as an effective multilingual topic model, discovers sentiment-biased topics, and uses multilingual corpora to make better sentiment predictions across languages. Sections 5 and 6 discuss related research and discusses future work, respectively. ProcMe IdTi,n Mgsas ofsa tchehu 2se0t1t0s, C UoSnAfe,r 9e-n1ce1 o Onc Etombepri 2ic0a1l0 M. ?ec th2o0d1s0 i Ans Nsaotcuiartaioln La fonrg Cuaogmep Purtoatcieosnsainlg L,in pgagueis ti 4c5s–5 , 1 Predictions from Multilingual Topics As its name suggests, MLSLDA is an extension of Latent Dirichlet allocation (LDA) (Blei et al., 2003), a modeling approach that takes a corpus of unannotated documents as input and produces two outputs, a set of “topics” and assignments of documents to topics. Both the topics and the assignments are probabilistic: a topic is represented as a probability distribution over words in the corpus, and each document is assigned a probability distribution over all the topics. Topic models built on the foundations of LDA are appealing for sentiment analysis because the learned topics can cluster together sentimentbearing words, and because topic distributions are a parsimonious way to represent a document.1 LDA has been used to discover latent structure in text (e.g. for discourse segmentation (Purver et al., 2006) and authorship (Rosen-Zvi et al., 2004)). MLSLDA extends the approach by ensuring that this latent structure the underlying topics is consistent across languages. We discuss multilingual topic modeling in Section 1. 1, and in Section 1.2 we show how this enables supervised regression regardless of a document’s language. — — 1.1 Capturing Semantic Correlations Topic models posit a straightforward generative process that creates an observed corpus. For each docu- ment d, some distribution θd over unobserved topics is chosen. Then, for each word position in the document, a topic z is selected. Finally, the word for that position is generated by selecting from the topic indexed by z. (Recall that in LDA, a “topic” is a distribution over words). In monolingual topic models, the topic distribution is usually drawn from a Dirichlet distribution. Using Dirichlet distributions makes it easy to specify sparse priors, and it also simplifies posterior inference because Dirichlet distributions are conjugate to multinomial distributions. However, drawing topics from Dirichlet distributions will not suffice if our vocabulary includes multiple languages. If we are working with English, German, and Chinese at the same time, a Dirichlet prior has no way to favor distributions z such that p(good|z), p(gut|z), and 1The latter property has also made LDA popular for information retrieval (Wei and Croft, 2006)). 46 p(h aˇo|z) all tend to be high at the same time, or low at hth ˇaeo same lti tmened. tMoo bree generally, et sheam structure oorf our model must encourage topics to be consistent across languages, and Dirichlet distributions cannot encode correlations between elements. One possible solution to this problem is to use the multivariate normal distribution, which can produce correlated multinomials (Blei and Lafferty, 2005), in place of the Dirichlet distribution. This has been done successfully in multilingual settings (Cohen and Smith, 2009). However, such models complicate inference by not being conjugate. Instead, we appeal to tree-based extensions of the Dirichlet distribution, which has been used to induce correlation in semantic ontologies (Boyd-Graber et al., 2007) and to encode clustering constraints (Andrzejewski et al., 2009). The key idea in this approach is to assume the vocabularies of all languages are organized according to some shared semantic structure that can be represented as a tree. For concreteness in this section, we will use WordNet (Miller, 1990) as the representation of this multilingual semantic bridge, since it is well known, offers convenient and intuitive terminology, and demonstrates the full flexibility of our approach. However, the model we describe generalizes to any tree-structured rep- resentation of multilingual knowledge; we discuss some alternatives in Section 3. WordNet organizes a vocabulary into a rooted, directed acyclic graph of nodes called synsets, short for “synonym sets.” A synset is a child of another synset if it satisfies a hyponomy relationship; each child “is a” more specific instantiation of its parent concept (thus, hyponomy is often called an “isa” relationship). For example, a “dog” is a “canine” is an “animal” is a “living thing,” etc. As an approximation, it is not unreasonable to assume that WordNet’s structure of meaning is language independent, i.e. the concept encoded by a synset can be realized using terms in different languages that share the same meaning. In practice, this organization has been used to create many alignments of international WordNets to the original English WordNet (Ordan and Wintner, 2007; Sagot and Fiˇ ser, 2008; Isahara et al., 2008). Using the structure of WordNet, we can now describe a generative process that produces a distribution over a multilingual vocabulary, which encourages correlations between words with similar meanings regardless of what language each word is in. For each synset h, we create a multilingual word distribution for that synset as follows: 1. Draw transition probabilities βh ∼ Dir (τh) 2. Draw stop probabilities ωh ∼ Dir∼ (κ Dhi)r 3. For each language l, draw emission probabilities for that synset φh,l ∼ Dir (πh,l) . For conciseness in the rest of the paper, we will refer to this generative process as multilingual Dirichlet hierarchy, or MULTDIRHIER(τ, κ, π) .2 Each observed token can be viewed as the end result of a sequence of visited synsets λ. At each node in the tree, the path can end at node iwith probability ωi,1, or it can continue to a child synset with probability ωi,0. If the path continues to another child synset, it visits child j with probability βi,j. If the path ends at a synset, it generates word k with probability φi,l,k.3 The probability of a word being emitted from a path with visited synsets r and final synset h in language lis therefore p(w, λ = r, h|l, β, ω, φ) = (iY,j)∈rβi,jωi,0(1 − ωh,1)φh,l,w. Note that the stop probability ωh (1) is independent of language, but the emission φh,l is dependent on the language. This is done to prevent the following scenario: while synset A is highly probable in a topic and words in language 1attached to that synset have high probability, words in language 2 have low probability. If this could happen for many synsets in a topic, an entire language would be effectively silenced, which would lead to inconsistent topics (e.g. 2Variables τh, πh,l, and κh are hyperparameters. Their mean is fixed, but their magnitude is sampled during inference (i.e. Pkτhτ,ih,k is constant, but τh,i is not). For the bushier bridges, (Pe.g. dictionary and flat), their mean is uniform. For GermaNet, we took frequencies from two balanced corpora of German and English: the British National Corpus (University of Oxford, 2006) and the Kern Corpus of the Digitales Wo¨rterbuch der Deutschen Sprache des 20. Jahrhunderts project (Geyken, 2007). We took these frequencies and propagated them through the multilingual hierarchy, following LDAWN’s (Boyd-Graber et al., 2007) formulation of information content (Resnik, 1995) as a Bayesian prior. The variance of the priors was initialized to be 1.0, but could be sampled during inference. 3Note that the language and word are taken as given, but the path through the semantic hierarchy is a latent random variable. 47 Topic 1 is about baseball in English and about travel in German). Separating path from emission helps ensure that topics are consistent across languages. Having defined topic distributions in a way that can preserve cross-language correspondences, we now use this distribution within a larger model that can discover cross-language patterns of use that predict sentiment. 1.2 The MLSLDA Model We will view sentiment analysis as a regression problem: given an input document, we want to predict a real-valued observation y that represents the sentiment of a document. Specifically, we build on supervised latent Dirichlet allocation (SLDA, (Blei and McAuliffe, 2007)), which makes predictions based on the topics expressed in a document; this can be thought of projecting the words in a document to low dimensional space of dimension equal to the number of topics. Blei et al. showed that using this latent topic structure can offer improved predictions over regressions based on words alone, and the approach fits well with our current goals, since word-level cues are unlikely to be identical across languages. In addition to text, SLDA has been successfully applied to other domains such as social networks (Chang and Blei, 2009) and image classification (Wang et al., 2009). The key innovation in this paper is to extend SLDA by creating topics that are globally consistent across languages, using the bridging approach above. We express our model in the form of a probabilistic generative latent-variable model that generates documents in multiple languages and assigns a realvalued score to each document. The score comes from a normal distribution whose sum is the dot product between a regression parameter η that encodes the influence of each topic on the observation and a variance σ2. With this model in hand, we use statistical inference to determine the distribution over latent variables that, given the model, best explains observed data. The generative model is as follows: 1. For each topic i= 1. . . K, draw a topic distribution {βi, ωi, φi} from MULTDIRHIER(τ, κ, π). 2. {Foβr each do}cuf mroemn tM Md = 1. . . M with language ld: (a) CDihro(oαse). a distribution over topics θd ∼ (b) For each word in the document n = 1. . . Nd, choose a topic assignment zd,n ∼ Mult (θd) and a path λd,n ending at word wd,n according to Equation 1using {βzd,n , ωzd,n , φzd,n }. 3. Choose a re?sponse variable from y Norm ?η> z¯, σ2?, where z¯ d ≡ N1 PnN=1 zd,n. ∼ Crucially, note that the topics are not independent of the sentiment task; the regression encourages terms with similar effects on the observation y to be in the same topic. The consistency of topics described above allows the same regression to be done for the entire corpus regardless of the language of the underlying document. 2 Inference Finding the model parameters most likely to explain the data is a problem of statistical inference. We employ stochastic EM (Diebolt and Ip, 1996), using a Gibbs sampler for the E-step to assign words to paths and topics. After randomly initializing the topics, we alternate between sampling the topic and path of a word (zd,n, λd,n) and finding the regression parameters η that maximize the likelihood. We jointly sample the topic and path conditioning on all of the other path and document assignments in the corpus, selecting a path and topic with probability p(zn = k, λn = r|z−n , λ−n, wn , η, σ, Θ) = p(yd|z, η, σ)p(λn = r|zn = k, λ−n, wn, τ, p(zn = k|z−n, α) . κ, π) (2) Each of these three terms reflects a different influence on the topics from the vocabulary structure, the document’s topics, and the response variable. In the next paragraphs, we will expand each of them to derive the full conditional topic distribution. As discussed in Section 1.1, the structure of the topic distribution encourages terms with the same meaning to be in the same topic, even across languages. During inference, we marginalize over possible multinomial distributions β, ω, and φ, using the observed transitions from ito j in topic k; Tk,i,j, stop counts in synset iin topic k, Ok,i,0; continue counts in synsets iin topic k, Ok,i,1 ; and emission counts in synset iin language lin topic k, Fk,i,l. The 48 Multilingual Topics Text Documents Sentiment Prediction Figure 1: Graphical model representing MLSLDA. Shaded nodes represent observations, plates denote replication, and lines show probabilistic dependencies. probability of taking a path r is then p(λn = r|zn = k, λ−n) = (iY,j)∈r PBj0Bk,ik,j,i,+j0 τ+i,j τi,jPs∈0O,1k,Oi,1k,+i,s ω+i ωi,s! |(iY,j)∈rP{zP} Tran{szitiPon Ok,rend,0 + ωrend Fk,rend,wn + πrend,}l Ps∈0,1Ok,rend,s+ ωrend,sPw0Frend,w0+ πrend,w0 |PEmi{szsiPon} (3) Equation 3 reflects the multilingual aspect of this model. The conditional topic distribution for SLDA (Blei and McAuliffe, 2007) replaces this term with the standard Multinomial-Dirichlet. However, we believe this is the first published SLDA-style model using MCMC inference, as prior work has used variational inference (Blei and McAuliffe, 2007; Chang and Blei, 2009; Wang et al., 2009). Because the observed response variable depends on the topic assignments of a document, the conditional topic distribution is shifted toward topics that explain the observed response. Topics that move the predicted response yˆd toward the true yd will be favored. We drop terms that are constant across all topics for the effect of the response variable, p(yd|z, η, σ) ∝ exp?σ12?yd−PPk0kN0Nd,dk,0kη0k0?Pkη0Nzkd,k0? |??PP{z?P?} . Other wPord{zs’ influence exp

2 0.26933557 64 emnlp-2010-Incorporating Content Structure into Text Analysis Applications

Author: Christina Sauper ; Aria Haghighi ; Regina Barzilay

Abstract: In this paper, we investigate how modeling content structure can benefit text analysis applications such as extractive summarization and sentiment analysis. This follows the linguistic intuition that rich contextual information should be useful in these tasks. We present a framework which combines a supervised text analysis application with the induction of latent content structure. Both of these elements are learned jointly using the EM algorithm. The induced content structure is learned from a large unannotated corpus and biased by the underlying text analysis task. We demonstrate that exploiting content structure yields significant improvements over approaches that rely only on local context.1

3 0.23095496 100 emnlp-2010-Staying Informed: Supervised and Semi-Supervised Multi-View Topical Analysis of Ideological Perspective

Author: Amr Ahmed ; Eric Xing

Abstract: With the proliferation of user-generated articles over the web, it becomes imperative to develop automated methods that are aware of the ideological-bias implicit in a document collection. While there exist methods that can classify the ideological bias of a given document, little has been done toward understanding the nature of this bias on a topical-level. In this paper we address the problem ofmodeling ideological perspective on a topical level using a factored topic model. We develop efficient inference algorithms using Collapsed Gibbs sampling for posterior inference, and give various evaluations and illustrations of the utility of our model on various document collections with promising results. Finally we give a Metropolis-Hasting inference algorithm for a semi-supervised extension with decent results.

4 0.20720686 6 emnlp-2010-A Latent Variable Model for Geographic Lexical Variation

Author: Jacob Eisenstein ; Brendan O'Connor ; Noah A. Smith ; Eric P. Xing

Abstract: The rapid growth of geotagged social media raises new computational possibilities for investigating geographic linguistic variation. In this paper, we present a multi-level generative model that reasons jointly about latent topics and geographical regions. High-level topics such as “sports” or “entertainment” are rendered differently in each geographic region, revealing topic-specific regional distinctions. Applied to a new dataset of geotagged microblogs, our model recovers coherent topics and their regional variants, while identifying geographic areas of linguistic consistency. The model also enables prediction of an author’s geographic location from raw text, outperforming both text regression and supervised topic models.

5 0.14410406 48 emnlp-2010-Exploiting Conversation Structure in Unsupervised Topic Segmentation for Emails

Author: Shafiq Joty ; Giuseppe Carenini ; Gabriel Murray ; Raymond T. Ng

Abstract: This work concerns automatic topic segmentation of email conversations. We present a corpus of email threads manually annotated with topics, and evaluate annotator reliability. To our knowledge, this is the first such email corpus. We show how the existing topic segmentation models (i.e., Lexical Chain Segmenter (LCSeg) and Latent Dirichlet Allocation (LDA)) which are solely based on lexical information, can be applied to emails. By pointing out where these methods fail and what any desired model should consider, we propose two novel extensions of the models that not only use lexical information but also exploit finer level conversation structure in a principled way. Empirical evaluation shows that LCSeg is a better model than LDA for segmenting an email thread into topical clusters and incorporating conversation structure into these models improves the performance significantly.

6 0.1369215 109 emnlp-2010-Translingual Document Representations from Discriminative Projections

7 0.13314106 33 emnlp-2010-Cross Language Text Classification by Model Translation and Semi-Supervised Learning

8 0.13001221 83 emnlp-2010-Multi-Level Structured Models for Document-Level Sentiment Classification

9 0.11563743 70 emnlp-2010-Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid

10 0.10206504 91 emnlp-2010-Practical Linguistic Steganography Using Contextual Synonym Substitution and Vertex Colour Coding

11 0.099817567 45 emnlp-2010-Evaluating Models of Latent Document Semantics in the Presence of OCR Errors

12 0.099303707 23 emnlp-2010-Automatic Keyphrase Extraction via Topic Decomposition

13 0.096843064 81 emnlp-2010-Modeling Perspective Using Adaptor Grammars

14 0.096775264 34 emnlp-2010-Crouching Dirichlet, Hidden Markov Model: Unsupervised POS Tagging with Context Local Tag Generation

15 0.086648703 120 emnlp-2010-What's with the Attitude? Identifying Sentences with Attitude in Online Discussions

16 0.084817946 85 emnlp-2010-Negative Training Data Can be Harmful to Text Classification

17 0.078725666 97 emnlp-2010-Simple Type-Level Unsupervised POS Tagging

18 0.077330515 77 emnlp-2010-Measuring Distributional Similarity in Context

19 0.077179261 84 emnlp-2010-NLP on Spoken Documents Without ASR

20 0.073166832 116 emnlp-2010-Using Universal Linguistic Knowledge to Guide Grammar Induction


similar papers computed by lsi model

lsi for this paper:

topicId topicWeight

[(0, 0.266), (1, 0.191), (2, -0.301), (3, -0.247), (4, 0.247), (5, 0.008), (6, 0.022), (7, -0.132), (8, -0.015), (9, -0.157), (10, 0.028), (11, 0.011), (12, -0.119), (13, 0.077), (14, 0.005), (15, 0.102), (16, -0.05), (17, 0.084), (18, 0.069), (19, -0.06), (20, 0.038), (21, -0.007), (22, -0.018), (23, 0.036), (24, -0.046), (25, -0.04), (26, -0.09), (27, 0.059), (28, -0.04), (29, -0.054), (30, -0.124), (31, 0.069), (32, 0.094), (33, 0.058), (34, -0.092), (35, 0.024), (36, -0.014), (37, -0.004), (38, -0.022), (39, 0.024), (40, -0.03), (41, 0.041), (42, -0.091), (43, -0.001), (44, -0.057), (45, -0.023), (46, 0.017), (47, -0.035), (48, 0.092), (49, 0.009)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.97501987 58 emnlp-2010-Holistic Sentiment Analysis Across Languages: Multilingual Supervised Latent Dirichlet Allocation

Author: Jordan Boyd-Graber ; Philip Resnik

Abstract: In this paper, we develop multilingual supervised latent Dirichlet allocation (MLSLDA), a probabilistic generative model that allows insights gleaned from one language’s data to inform how the model captures properties of other languages. MLSLDA accomplishes this by jointly modeling two aspects of text: how multilingual concepts are clustered into thematically coherent topics and how topics associated with text connect to an observed regression variable (such as ratings on a sentiment scale). Concepts are represented in a general hierarchical framework that is flexible enough to express semantic ontologies, dictionaries, clustering constraints, and, as a special, degenerate case, conventional topic models. Both the topics and the regression are discovered via posterior inference from corpora. We show MLSLDA can build topics that are consistent across languages, discover sensible bilingual lexical correspondences, and leverage multilingual corpora to better predict sentiment. Sentiment analysis (Pang and Lee, 2008) offers the promise of automatically discerning how people feel about a product, person, organization, or issue based on what they write online, which is potentially of great value to businesses and other organizations. However, the vast majority of sentiment resources and algorithms are limited to a single language, usually English (Wilson, 2008; Baccianella and Sebastiani, 2010). Since no single language captures a majority of the content online, adopting such a limited approach in an increasingly global community risks missing important details and trends that might only be available when text in multiple languages is taken into account. 45 Philip Resnik Department of Linguistics and UMIACS University of Maryland College Park, MD re snik@umd .edu Up to this point, multiple languages have been addressed in sentiment analysis primarily by transferring knowledge from a resource-rich language to a less rich language (Banea et al., 2008), or by ignoring differences in languages via translation into English (Denecke, 2008). These approaches are limited to a view of sentiment that takes place through an English-centric lens, and they ignore the potential to share information between languages. Ideally, learning sentiment cues holistically, across languages, would result in a richer and more globally consistent picture. In this paper, we introduce Multilingual Supervised Latent Dirichlet Allocation (MLSLDA), a model for sentiment analysis on a multilingual corpus. MLSLDA discovers a consistent, unified picture of sentiment across multiple languages by learning “topics,” probabilistic partitions of the vocabulary that are consistent in terms of both meaning and relevance to observed sentiment. Our approach makes few assumptions about available resources, requiring neither parallel corpora nor machine translation. The rest of the paper proceeds as follows. In Section 1, we describe the probabilistic tools that we use to create consistent topics bridging across languages and the MLSLDA model. In Section 2, we present the inference process. We discuss our set of semantic bridges between languages in Section 3, and our experiments in Section 4 demonstrate that this approach functions as an effective multilingual topic model, discovers sentiment-biased topics, and uses multilingual corpora to make better sentiment predictions across languages. Sections 5 and 6 discuss related research and discusses future work, respectively. ProcMe IdTi,n Mgsas ofsa tchehu 2se0t1t0s, C UoSnAfe,r 9e-n1ce1 o Onc Etombepri 2ic0a1l0 M. ?ec th2o0d1s0 i Ans Nsaotcuiartaioln La fonrg Cuaogmep Purtoatcieosnsainlg L,in pgagueis ti 4c5s–5 , 1 Predictions from Multilingual Topics As its name suggests, MLSLDA is an extension of Latent Dirichlet allocation (LDA) (Blei et al., 2003), a modeling approach that takes a corpus of unannotated documents as input and produces two outputs, a set of “topics” and assignments of documents to topics. Both the topics and the assignments are probabilistic: a topic is represented as a probability distribution over words in the corpus, and each document is assigned a probability distribution over all the topics. Topic models built on the foundations of LDA are appealing for sentiment analysis because the learned topics can cluster together sentimentbearing words, and because topic distributions are a parsimonious way to represent a document.1 LDA has been used to discover latent structure in text (e.g. for discourse segmentation (Purver et al., 2006) and authorship (Rosen-Zvi et al., 2004)). MLSLDA extends the approach by ensuring that this latent structure the underlying topics is consistent across languages. We discuss multilingual topic modeling in Section 1. 1, and in Section 1.2 we show how this enables supervised regression regardless of a document’s language. — — 1.1 Capturing Semantic Correlations Topic models posit a straightforward generative process that creates an observed corpus. For each docu- ment d, some distribution θd over unobserved topics is chosen. Then, for each word position in the document, a topic z is selected. Finally, the word for that position is generated by selecting from the topic indexed by z. (Recall that in LDA, a “topic” is a distribution over words). In monolingual topic models, the topic distribution is usually drawn from a Dirichlet distribution. Using Dirichlet distributions makes it easy to specify sparse priors, and it also simplifies posterior inference because Dirichlet distributions are conjugate to multinomial distributions. However, drawing topics from Dirichlet distributions will not suffice if our vocabulary includes multiple languages. If we are working with English, German, and Chinese at the same time, a Dirichlet prior has no way to favor distributions z such that p(good|z), p(gut|z), and 1The latter property has also made LDA popular for information retrieval (Wei and Croft, 2006)). 46 p(h aˇo|z) all tend to be high at the same time, or low at hth ˇaeo same lti tmened. tMoo bree generally, et sheam structure oorf our model must encourage topics to be consistent across languages, and Dirichlet distributions cannot encode correlations between elements. One possible solution to this problem is to use the multivariate normal distribution, which can produce correlated multinomials (Blei and Lafferty, 2005), in place of the Dirichlet distribution. This has been done successfully in multilingual settings (Cohen and Smith, 2009). However, such models complicate inference by not being conjugate. Instead, we appeal to tree-based extensions of the Dirichlet distribution, which has been used to induce correlation in semantic ontologies (Boyd-Graber et al., 2007) and to encode clustering constraints (Andrzejewski et al., 2009). The key idea in this approach is to assume the vocabularies of all languages are organized according to some shared semantic structure that can be represented as a tree. For concreteness in this section, we will use WordNet (Miller, 1990) as the representation of this multilingual semantic bridge, since it is well known, offers convenient and intuitive terminology, and demonstrates the full flexibility of our approach. However, the model we describe generalizes to any tree-structured rep- resentation of multilingual knowledge; we discuss some alternatives in Section 3. WordNet organizes a vocabulary into a rooted, directed acyclic graph of nodes called synsets, short for “synonym sets.” A synset is a child of another synset if it satisfies a hyponomy relationship; each child “is a” more specific instantiation of its parent concept (thus, hyponomy is often called an “isa” relationship). For example, a “dog” is a “canine” is an “animal” is a “living thing,” etc. As an approximation, it is not unreasonable to assume that WordNet’s structure of meaning is language independent, i.e. the concept encoded by a synset can be realized using terms in different languages that share the same meaning. In practice, this organization has been used to create many alignments of international WordNets to the original English WordNet (Ordan and Wintner, 2007; Sagot and Fiˇ ser, 2008; Isahara et al., 2008). Using the structure of WordNet, we can now describe a generative process that produces a distribution over a multilingual vocabulary, which encourages correlations between words with similar meanings regardless of what language each word is in. For each synset h, we create a multilingual word distribution for that synset as follows: 1. Draw transition probabilities βh ∼ Dir (τh) 2. Draw stop probabilities ωh ∼ Dir∼ (κ Dhi)r 3. For each language l, draw emission probabilities for that synset φh,l ∼ Dir (πh,l) . For conciseness in the rest of the paper, we will refer to this generative process as multilingual Dirichlet hierarchy, or MULTDIRHIER(τ, κ, π) .2 Each observed token can be viewed as the end result of a sequence of visited synsets λ. At each node in the tree, the path can end at node iwith probability ωi,1, or it can continue to a child synset with probability ωi,0. If the path continues to another child synset, it visits child j with probability βi,j. If the path ends at a synset, it generates word k with probability φi,l,k.3 The probability of a word being emitted from a path with visited synsets r and final synset h in language lis therefore p(w, λ = r, h|l, β, ω, φ) = (iY,j)∈rβi,jωi,0(1 − ωh,1)φh,l,w. Note that the stop probability ωh (1) is independent of language, but the emission φh,l is dependent on the language. This is done to prevent the following scenario: while synset A is highly probable in a topic and words in language 1attached to that synset have high probability, words in language 2 have low probability. If this could happen for many synsets in a topic, an entire language would be effectively silenced, which would lead to inconsistent topics (e.g. 2Variables τh, πh,l, and κh are hyperparameters. Their mean is fixed, but their magnitude is sampled during inference (i.e. Pkτhτ,ih,k is constant, but τh,i is not). For the bushier bridges, (Pe.g. dictionary and flat), their mean is uniform. For GermaNet, we took frequencies from two balanced corpora of German and English: the British National Corpus (University of Oxford, 2006) and the Kern Corpus of the Digitales Wo¨rterbuch der Deutschen Sprache des 20. Jahrhunderts project (Geyken, 2007). We took these frequencies and propagated them through the multilingual hierarchy, following LDAWN’s (Boyd-Graber et al., 2007) formulation of information content (Resnik, 1995) as a Bayesian prior. The variance of the priors was initialized to be 1.0, but could be sampled during inference. 3Note that the language and word are taken as given, but the path through the semantic hierarchy is a latent random variable. 47 Topic 1 is about baseball in English and about travel in German). Separating path from emission helps ensure that topics are consistent across languages. Having defined topic distributions in a way that can preserve cross-language correspondences, we now use this distribution within a larger model that can discover cross-language patterns of use that predict sentiment. 1.2 The MLSLDA Model We will view sentiment analysis as a regression problem: given an input document, we want to predict a real-valued observation y that represents the sentiment of a document. Specifically, we build on supervised latent Dirichlet allocation (SLDA, (Blei and McAuliffe, 2007)), which makes predictions based on the topics expressed in a document; this can be thought of projecting the words in a document to low dimensional space of dimension equal to the number of topics. Blei et al. showed that using this latent topic structure can offer improved predictions over regressions based on words alone, and the approach fits well with our current goals, since word-level cues are unlikely to be identical across languages. In addition to text, SLDA has been successfully applied to other domains such as social networks (Chang and Blei, 2009) and image classification (Wang et al., 2009). The key innovation in this paper is to extend SLDA by creating topics that are globally consistent across languages, using the bridging approach above. We express our model in the form of a probabilistic generative latent-variable model that generates documents in multiple languages and assigns a realvalued score to each document. The score comes from a normal distribution whose sum is the dot product between a regression parameter η that encodes the influence of each topic on the observation and a variance σ2. With this model in hand, we use statistical inference to determine the distribution over latent variables that, given the model, best explains observed data. The generative model is as follows: 1. For each topic i= 1. . . K, draw a topic distribution {βi, ωi, φi} from MULTDIRHIER(τ, κ, π). 2. {Foβr each do}cuf mroemn tM Md = 1. . . M with language ld: (a) CDihro(oαse). a distribution over topics θd ∼ (b) For each word in the document n = 1. . . Nd, choose a topic assignment zd,n ∼ Mult (θd) and a path λd,n ending at word wd,n according to Equation 1using {βzd,n , ωzd,n , φzd,n }. 3. Choose a re?sponse variable from y Norm ?η> z¯, σ2?, where z¯ d ≡ N1 PnN=1 zd,n. ∼ Crucially, note that the topics are not independent of the sentiment task; the regression encourages terms with similar effects on the observation y to be in the same topic. The consistency of topics described above allows the same regression to be done for the entire corpus regardless of the language of the underlying document. 2 Inference Finding the model parameters most likely to explain the data is a problem of statistical inference. We employ stochastic EM (Diebolt and Ip, 1996), using a Gibbs sampler for the E-step to assign words to paths and topics. After randomly initializing the topics, we alternate between sampling the topic and path of a word (zd,n, λd,n) and finding the regression parameters η that maximize the likelihood. We jointly sample the topic and path conditioning on all of the other path and document assignments in the corpus, selecting a path and topic with probability p(zn = k, λn = r|z−n , λ−n, wn , η, σ, Θ) = p(yd|z, η, σ)p(λn = r|zn = k, λ−n, wn, τ, p(zn = k|z−n, α) . κ, π) (2) Each of these three terms reflects a different influence on the topics from the vocabulary structure, the document’s topics, and the response variable. In the next paragraphs, we will expand each of them to derive the full conditional topic distribution. As discussed in Section 1.1, the structure of the topic distribution encourages terms with the same meaning to be in the same topic, even across languages. During inference, we marginalize over possible multinomial distributions β, ω, and φ, using the observed transitions from ito j in topic k; Tk,i,j, stop counts in synset iin topic k, Ok,i,0; continue counts in synsets iin topic k, Ok,i,1 ; and emission counts in synset iin language lin topic k, Fk,i,l. The 48 Multilingual Topics Text Documents Sentiment Prediction Figure 1: Graphical model representing MLSLDA. Shaded nodes represent observations, plates denote replication, and lines show probabilistic dependencies. probability of taking a path r is then p(λn = r|zn = k, λ−n) = (iY,j)∈r PBj0Bk,ik,j,i,+j0 τ+i,j τi,jPs∈0O,1k,Oi,1k,+i,s ω+i ωi,s! |(iY,j)∈rP{zP} Tran{szitiPon Ok,rend,0 + ωrend Fk,rend,wn + πrend,}l Ps∈0,1Ok,rend,s+ ωrend,sPw0Frend,w0+ πrend,w0 |PEmi{szsiPon} (3) Equation 3 reflects the multilingual aspect of this model. The conditional topic distribution for SLDA (Blei and McAuliffe, 2007) replaces this term with the standard Multinomial-Dirichlet. However, we believe this is the first published SLDA-style model using MCMC inference, as prior work has used variational inference (Blei and McAuliffe, 2007; Chang and Blei, 2009; Wang et al., 2009). Because the observed response variable depends on the topic assignments of a document, the conditional topic distribution is shifted toward topics that explain the observed response. Topics that move the predicted response yˆd toward the true yd will be favored. We drop terms that are constant across all topics for the effect of the response variable, p(yd|z, η, σ) ∝ exp?σ12?yd−PPk0kN0Nd,dk,0kη0k0?Pkη0Nzkd,k0? |??PP{z?P?} . Other wPord{zs’ influence exp

2 0.83916062 100 emnlp-2010-Staying Informed: Supervised and Semi-Supervised Multi-View Topical Analysis of Ideological Perspective

Author: Amr Ahmed ; Eric Xing

Abstract: With the proliferation of user-generated articles over the web, it becomes imperative to develop automated methods that are aware of the ideological-bias implicit in a document collection. While there exist methods that can classify the ideological bias of a given document, little has been done toward understanding the nature of this bias on a topical-level. In this paper we address the problem ofmodeling ideological perspective on a topical level using a factored topic model. We develop efficient inference algorithms using Collapsed Gibbs sampling for posterior inference, and give various evaluations and illustrations of the utility of our model on various document collections with promising results. Finally we give a Metropolis-Hasting inference algorithm for a semi-supervised extension with decent results.

3 0.75644082 6 emnlp-2010-A Latent Variable Model for Geographic Lexical Variation

Author: Jacob Eisenstein ; Brendan O'Connor ; Noah A. Smith ; Eric P. Xing

Abstract: The rapid growth of geotagged social media raises new computational possibilities for investigating geographic linguistic variation. In this paper, we present a multi-level generative model that reasons jointly about latent topics and geographical regions. High-level topics such as “sports” or “entertainment” are rendered differently in each geographic region, revealing topic-specific regional distinctions. Applied to a new dataset of geotagged microblogs, our model recovers coherent topics and their regional variants, while identifying geographic areas of linguistic consistency. The model also enables prediction of an author’s geographic location from raw text, outperforming both text regression and supervised topic models.

4 0.68603742 64 emnlp-2010-Incorporating Content Structure into Text Analysis Applications

Author: Christina Sauper ; Aria Haghighi ; Regina Barzilay

Abstract: In this paper, we investigate how modeling content structure can benefit text analysis applications such as extractive summarization and sentiment analysis. This follows the linguistic intuition that rich contextual information should be useful in these tasks. We present a framework which combines a supervised text analysis application with the induction of latent content structure. Both of these elements are learned jointly using the EM algorithm. The induced content structure is learned from a large unannotated corpus and biased by the underlying text analysis task. We demonstrate that exploiting content structure yields significant improvements over approaches that rely only on local context.1

5 0.59972817 23 emnlp-2010-Automatic Keyphrase Extraction via Topic Decomposition

Author: Zhiyuan Liu ; Wenyi Huang ; Yabin Zheng ; Maosong Sun

Abstract: Existing graph-based ranking methods for keyphrase extraction compute a single importance score for each word via a single random walk. Motivated by the fact that both documents and words can be represented by a mixture of semantic topics, we propose to decompose traditional random walk into multiple random walks specific to various topics. We thus build a Topical PageRank (TPR) on word graph to measure word importance with respect to different topics. After that, given the topic distribution of the document, we further calculate the ranking scores of words and extract the top ranked ones as keyphrases. Experimental results show that TPR outperforms state-of-the-art keyphrase extraction methods on two datasets under various evaluation metrics.

6 0.58186954 48 emnlp-2010-Exploiting Conversation Structure in Unsupervised Topic Segmentation for Emails

7 0.55661386 109 emnlp-2010-Translingual Document Representations from Discriminative Projections

8 0.53544009 45 emnlp-2010-Evaluating Models of Latent Document Semantics in the Presence of OCR Errors

9 0.53033108 83 emnlp-2010-Multi-Level Structured Models for Document-Level Sentiment Classification

10 0.39945996 81 emnlp-2010-Modeling Perspective Using Adaptor Grammars

11 0.38839692 91 emnlp-2010-Practical Linguistic Steganography Using Contextual Synonym Substitution and Vertex Colour Coding

12 0.3720459 120 emnlp-2010-What's with the Attitude? Identifying Sentences with Attitude in Online Discussions

13 0.36283821 84 emnlp-2010-NLP on Spoken Documents Without ASR

14 0.35360345 33 emnlp-2010-Cross Language Text Classification by Model Translation and Semi-Supervised Learning

15 0.34182307 34 emnlp-2010-Crouching Dirichlet, Hidden Markov Model: Unsupervised POS Tagging with Context Local Tag Generation

16 0.30207357 102 emnlp-2010-Summarizing Contrastive Viewpoints in Opinionated Text

17 0.28889385 70 emnlp-2010-Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid

18 0.28643402 77 emnlp-2010-Measuring Distributional Similarity in Context

19 0.27727559 85 emnlp-2010-Negative Training Data Can be Harmful to Text Classification

20 0.26951492 123 emnlp-2010-Word-Based Dialect Identification with Georeferenced Rules


similar papers computed by lda model

lda for this paper:

topicId topicWeight

[(12, 0.031), (26, 0.023), (29, 0.102), (30, 0.064), (32, 0.02), (52, 0.032), (56, 0.129), (62, 0.016), (66, 0.15), (72, 0.033), (76, 0.032), (77, 0.014), (79, 0.02), (83, 0.191), (87, 0.021), (89, 0.026)]

similar papers list:

simIndex simValue paperId paperTitle

1 0.90264565 113 emnlp-2010-Unsupervised Induction of Tree Substitution Grammars for Dependency Parsing

Author: Phil Blunsom ; Trevor Cohn

Abstract: Inducing a grammar directly from text is one of the oldest and most challenging tasks in Computational Linguistics. Significant progress has been made for inducing dependency grammars, however the models employed are overly simplistic, particularly in comparison to supervised parsing models. In this paper we present an approach to dependency grammar induction using tree substitution grammar which is capable of learning large dependency fragments and thereby better modelling the text. We define a hierarchical non-parametric Pitman-Yor Process prior which biases towards a small grammar with simple productions. This approach significantly improves the state-of-the-art, when measured by head attachment accuracy.

same-paper 2 0.87383276 58 emnlp-2010-Holistic Sentiment Analysis Across Languages: Multilingual Supervised Latent Dirichlet Allocation

Author: Jordan Boyd-Graber ; Philip Resnik

Abstract: In this paper, we develop multilingual supervised latent Dirichlet allocation (MLSLDA), a probabilistic generative model that allows insights gleaned from one language’s data to inform how the model captures properties of other languages. MLSLDA accomplishes this by jointly modeling two aspects of text: how multilingual concepts are clustered into thematically coherent topics and how topics associated with text connect to an observed regression variable (such as ratings on a sentiment scale). Concepts are represented in a general hierarchical framework that is flexible enough to express semantic ontologies, dictionaries, clustering constraints, and, as a special, degenerate case, conventional topic models. Both the topics and the regression are discovered via posterior inference from corpora. We show MLSLDA can build topics that are consistent across languages, discover sensible bilingual lexical correspondences, and leverage multilingual corpora to better predict sentiment. Sentiment analysis (Pang and Lee, 2008) offers the promise of automatically discerning how people feel about a product, person, organization, or issue based on what they write online, which is potentially of great value to businesses and other organizations. However, the vast majority of sentiment resources and algorithms are limited to a single language, usually English (Wilson, 2008; Baccianella and Sebastiani, 2010). Since no single language captures a majority of the content online, adopting such a limited approach in an increasingly global community risks missing important details and trends that might only be available when text in multiple languages is taken into account. 45 Philip Resnik Department of Linguistics and UMIACS University of Maryland College Park, MD re snik@umd .edu Up to this point, multiple languages have been addressed in sentiment analysis primarily by transferring knowledge from a resource-rich language to a less rich language (Banea et al., 2008), or by ignoring differences in languages via translation into English (Denecke, 2008). These approaches are limited to a view of sentiment that takes place through an English-centric lens, and they ignore the potential to share information between languages. Ideally, learning sentiment cues holistically, across languages, would result in a richer and more globally consistent picture. In this paper, we introduce Multilingual Supervised Latent Dirichlet Allocation (MLSLDA), a model for sentiment analysis on a multilingual corpus. MLSLDA discovers a consistent, unified picture of sentiment across multiple languages by learning “topics,” probabilistic partitions of the vocabulary that are consistent in terms of both meaning and relevance to observed sentiment. Our approach makes few assumptions about available resources, requiring neither parallel corpora nor machine translation. The rest of the paper proceeds as follows. In Section 1, we describe the probabilistic tools that we use to create consistent topics bridging across languages and the MLSLDA model. In Section 2, we present the inference process. We discuss our set of semantic bridges between languages in Section 3, and our experiments in Section 4 demonstrate that this approach functions as an effective multilingual topic model, discovers sentiment-biased topics, and uses multilingual corpora to make better sentiment predictions across languages. Sections 5 and 6 discuss related research and discusses future work, respectively. ProcMe IdTi,n Mgsas ofsa tchehu 2se0t1t0s, C UoSnAfe,r 9e-n1ce1 o Onc Etombepri 2ic0a1l0 M. ?ec th2o0d1s0 i Ans Nsaotcuiartaioln La fonrg Cuaogmep Purtoatcieosnsainlg L,in pgagueis ti 4c5s–5 , 1 Predictions from Multilingual Topics As its name suggests, MLSLDA is an extension of Latent Dirichlet allocation (LDA) (Blei et al., 2003), a modeling approach that takes a corpus of unannotated documents as input and produces two outputs, a set of “topics” and assignments of documents to topics. Both the topics and the assignments are probabilistic: a topic is represented as a probability distribution over words in the corpus, and each document is assigned a probability distribution over all the topics. Topic models built on the foundations of LDA are appealing for sentiment analysis because the learned topics can cluster together sentimentbearing words, and because topic distributions are a parsimonious way to represent a document.1 LDA has been used to discover latent structure in text (e.g. for discourse segmentation (Purver et al., 2006) and authorship (Rosen-Zvi et al., 2004)). MLSLDA extends the approach by ensuring that this latent structure the underlying topics is consistent across languages. We discuss multilingual topic modeling in Section 1. 1, and in Section 1.2 we show how this enables supervised regression regardless of a document’s language. — — 1.1 Capturing Semantic Correlations Topic models posit a straightforward generative process that creates an observed corpus. For each docu- ment d, some distribution θd over unobserved topics is chosen. Then, for each word position in the document, a topic z is selected. Finally, the word for that position is generated by selecting from the topic indexed by z. (Recall that in LDA, a “topic” is a distribution over words). In monolingual topic models, the topic distribution is usually drawn from a Dirichlet distribution. Using Dirichlet distributions makes it easy to specify sparse priors, and it also simplifies posterior inference because Dirichlet distributions are conjugate to multinomial distributions. However, drawing topics from Dirichlet distributions will not suffice if our vocabulary includes multiple languages. If we are working with English, German, and Chinese at the same time, a Dirichlet prior has no way to favor distributions z such that p(good|z), p(gut|z), and 1The latter property has also made LDA popular for information retrieval (Wei and Croft, 2006)). 46 p(h aˇo|z) all tend to be high at the same time, or low at hth ˇaeo same lti tmened. tMoo bree generally, et sheam structure oorf our model must encourage topics to be consistent across languages, and Dirichlet distributions cannot encode correlations between elements. One possible solution to this problem is to use the multivariate normal distribution, which can produce correlated multinomials (Blei and Lafferty, 2005), in place of the Dirichlet distribution. This has been done successfully in multilingual settings (Cohen and Smith, 2009). However, such models complicate inference by not being conjugate. Instead, we appeal to tree-based extensions of the Dirichlet distribution, which has been used to induce correlation in semantic ontologies (Boyd-Graber et al., 2007) and to encode clustering constraints (Andrzejewski et al., 2009). The key idea in this approach is to assume the vocabularies of all languages are organized according to some shared semantic structure that can be represented as a tree. For concreteness in this section, we will use WordNet (Miller, 1990) as the representation of this multilingual semantic bridge, since it is well known, offers convenient and intuitive terminology, and demonstrates the full flexibility of our approach. However, the model we describe generalizes to any tree-structured rep- resentation of multilingual knowledge; we discuss some alternatives in Section 3. WordNet organizes a vocabulary into a rooted, directed acyclic graph of nodes called synsets, short for “synonym sets.” A synset is a child of another synset if it satisfies a hyponomy relationship; each child “is a” more specific instantiation of its parent concept (thus, hyponomy is often called an “isa” relationship). For example, a “dog” is a “canine” is an “animal” is a “living thing,” etc. As an approximation, it is not unreasonable to assume that WordNet’s structure of meaning is language independent, i.e. the concept encoded by a synset can be realized using terms in different languages that share the same meaning. In practice, this organization has been used to create many alignments of international WordNets to the original English WordNet (Ordan and Wintner, 2007; Sagot and Fiˇ ser, 2008; Isahara et al., 2008). Using the structure of WordNet, we can now describe a generative process that produces a distribution over a multilingual vocabulary, which encourages correlations between words with similar meanings regardless of what language each word is in. For each synset h, we create a multilingual word distribution for that synset as follows: 1. Draw transition probabilities βh ∼ Dir (τh) 2. Draw stop probabilities ωh ∼ Dir∼ (κ Dhi)r 3. For each language l, draw emission probabilities for that synset φh,l ∼ Dir (πh,l) . For conciseness in the rest of the paper, we will refer to this generative process as multilingual Dirichlet hierarchy, or MULTDIRHIER(τ, κ, π) .2 Each observed token can be viewed as the end result of a sequence of visited synsets λ. At each node in the tree, the path can end at node iwith probability ωi,1, or it can continue to a child synset with probability ωi,0. If the path continues to another child synset, it visits child j with probability βi,j. If the path ends at a synset, it generates word k with probability φi,l,k.3 The probability of a word being emitted from a path with visited synsets r and final synset h in language lis therefore p(w, λ = r, h|l, β, ω, φ) = (iY,j)∈rβi,jωi,0(1 − ωh,1)φh,l,w. Note that the stop probability ωh (1) is independent of language, but the emission φh,l is dependent on the language. This is done to prevent the following scenario: while synset A is highly probable in a topic and words in language 1attached to that synset have high probability, words in language 2 have low probability. If this could happen for many synsets in a topic, an entire language would be effectively silenced, which would lead to inconsistent topics (e.g. 2Variables τh, πh,l, and κh are hyperparameters. Their mean is fixed, but their magnitude is sampled during inference (i.e. Pkτhτ,ih,k is constant, but τh,i is not). For the bushier bridges, (Pe.g. dictionary and flat), their mean is uniform. For GermaNet, we took frequencies from two balanced corpora of German and English: the British National Corpus (University of Oxford, 2006) and the Kern Corpus of the Digitales Wo¨rterbuch der Deutschen Sprache des 20. Jahrhunderts project (Geyken, 2007). We took these frequencies and propagated them through the multilingual hierarchy, following LDAWN’s (Boyd-Graber et al., 2007) formulation of information content (Resnik, 1995) as a Bayesian prior. The variance of the priors was initialized to be 1.0, but could be sampled during inference. 3Note that the language and word are taken as given, but the path through the semantic hierarchy is a latent random variable. 47 Topic 1 is about baseball in English and about travel in German). Separating path from emission helps ensure that topics are consistent across languages. Having defined topic distributions in a way that can preserve cross-language correspondences, we now use this distribution within a larger model that can discover cross-language patterns of use that predict sentiment. 1.2 The MLSLDA Model We will view sentiment analysis as a regression problem: given an input document, we want to predict a real-valued observation y that represents the sentiment of a document. Specifically, we build on supervised latent Dirichlet allocation (SLDA, (Blei and McAuliffe, 2007)), which makes predictions based on the topics expressed in a document; this can be thought of projecting the words in a document to low dimensional space of dimension equal to the number of topics. Blei et al. showed that using this latent topic structure can offer improved predictions over regressions based on words alone, and the approach fits well with our current goals, since word-level cues are unlikely to be identical across languages. In addition to text, SLDA has been successfully applied to other domains such as social networks (Chang and Blei, 2009) and image classification (Wang et al., 2009). The key innovation in this paper is to extend SLDA by creating topics that are globally consistent across languages, using the bridging approach above. We express our model in the form of a probabilistic generative latent-variable model that generates documents in multiple languages and assigns a realvalued score to each document. The score comes from a normal distribution whose sum is the dot product between a regression parameter η that encodes the influence of each topic on the observation and a variance σ2. With this model in hand, we use statistical inference to determine the distribution over latent variables that, given the model, best explains observed data. The generative model is as follows: 1. For each topic i= 1. . . K, draw a topic distribution {βi, ωi, φi} from MULTDIRHIER(τ, κ, π). 2. {Foβr each do}cuf mroemn tM Md = 1. . . M with language ld: (a) CDihro(oαse). a distribution over topics θd ∼ (b) For each word in the document n = 1. . . Nd, choose a topic assignment zd,n ∼ Mult (θd) and a path λd,n ending at word wd,n according to Equation 1using {βzd,n , ωzd,n , φzd,n }. 3. Choose a re?sponse variable from y Norm ?η> z¯, σ2?, where z¯ d ≡ N1 PnN=1 zd,n. ∼ Crucially, note that the topics are not independent of the sentiment task; the regression encourages terms with similar effects on the observation y to be in the same topic. The consistency of topics described above allows the same regression to be done for the entire corpus regardless of the language of the underlying document. 2 Inference Finding the model parameters most likely to explain the data is a problem of statistical inference. We employ stochastic EM (Diebolt and Ip, 1996), using a Gibbs sampler for the E-step to assign words to paths and topics. After randomly initializing the topics, we alternate between sampling the topic and path of a word (zd,n, λd,n) and finding the regression parameters η that maximize the likelihood. We jointly sample the topic and path conditioning on all of the other path and document assignments in the corpus, selecting a path and topic with probability p(zn = k, λn = r|z−n , λ−n, wn , η, σ, Θ) = p(yd|z, η, σ)p(λn = r|zn = k, λ−n, wn, τ, p(zn = k|z−n, α) . κ, π) (2) Each of these three terms reflects a different influence on the topics from the vocabulary structure, the document’s topics, and the response variable. In the next paragraphs, we will expand each of them to derive the full conditional topic distribution. As discussed in Section 1.1, the structure of the topic distribution encourages terms with the same meaning to be in the same topic, even across languages. During inference, we marginalize over possible multinomial distributions β, ω, and φ, using the observed transitions from ito j in topic k; Tk,i,j, stop counts in synset iin topic k, Ok,i,0; continue counts in synsets iin topic k, Ok,i,1 ; and emission counts in synset iin language lin topic k, Fk,i,l. The 48 Multilingual Topics Text Documents Sentiment Prediction Figure 1: Graphical model representing MLSLDA. Shaded nodes represent observations, plates denote replication, and lines show probabilistic dependencies. probability of taking a path r is then p(λn = r|zn = k, λ−n) = (iY,j)∈r PBj0Bk,ik,j,i,+j0 τ+i,j τi,jPs∈0O,1k,Oi,1k,+i,s ω+i ωi,s! |(iY,j)∈rP{zP} Tran{szitiPon Ok,rend,0 + ωrend Fk,rend,wn + πrend,}l Ps∈0,1Ok,rend,s+ ωrend,sPw0Frend,w0+ πrend,w0 |PEmi{szsiPon} (3) Equation 3 reflects the multilingual aspect of this model. The conditional topic distribution for SLDA (Blei and McAuliffe, 2007) replaces this term with the standard Multinomial-Dirichlet. However, we believe this is the first published SLDA-style model using MCMC inference, as prior work has used variational inference (Blei and McAuliffe, 2007; Chang and Blei, 2009; Wang et al., 2009). Because the observed response variable depends on the topic assignments of a document, the conditional topic distribution is shifted toward topics that explain the observed response. Topics that move the predicted response yˆd toward the true yd will be favored. We drop terms that are constant across all topics for the effect of the response variable, p(yd|z, η, σ) ∝ exp?σ12?yd−PPk0kN0Nd,dk,0kη0k0?Pkη0Nzkd,k0? |??PP{z?P?} . Other wPord{zs’ influence exp

3 0.86047649 22 emnlp-2010-Automatic Evaluation of Translation Quality for Distant Language Pairs

Author: Hideki Isozaki ; Tsutomu Hirao ; Kevin Duh ; Katsuhito Sudoh ; Hajime Tsukada

Abstract: Automatic evaluation of Machine Translation (MT) quality is essential to developing highquality MT systems. Various evaluation metrics have been proposed, and BLEU is now used as the de facto standard metric. However, when we consider translation between distant language pairs such as Japanese and English, most popular metrics (e.g., BLEU, NIST, PER, and TER) do not work well. It is well known that Japanese and English have completely different word orders, and special care must be paid to word order in translation. Otherwise, translations with wrong word order often lead to misunderstanding and incomprehensibility. For instance, SMT-based Japanese-to-English translators tend to translate ‘A because B’ as ‘B because A.’ Thus, word order is the most important problem for distant language translation. However, conventional evaluation metrics do not significantly penalize such word order mistakes. Therefore, locally optimizing these metrics leads to inadequate translations. In this paper, we propose an automatic evaluation metric based on rank correlation coefficients modified with precision. Our meta-evaluation of the NTCIR-7 PATMT JE task data shows that this metric outperforms conventional metrics.

4 0.74188787 120 emnlp-2010-What's with the Attitude? Identifying Sentences with Attitude in Online Discussions

Author: Ahmed Hassan ; Vahed Qazvinian ; Dragomir Radev

Abstract: Mining sentiment from user generated content is a very important task in Natural Language Processing. An example of such content is threaded discussions which act as a very important tool for communication and collaboration in the Web. Threaded discussions include e-mails, e-mail lists, bulletin boards, newsgroups, and Internet forums. Most of the work on sentiment analysis has been centered around finding the sentiment toward products or topics. In this work, we present a method to identify the attitude of participants in an online discussion toward one another. This would enable us to build a signed network representation of participant interaction where every edge has a sign that indicates whether the interaction is positive or negative. This is different from most of the research on social networks that has focused almost exclusively on positive links. The method is exper- imentally tested using a manually labeled set of discussion posts. The results show that the proposed method is capable of identifying attitudinal sentences, and their signs, with high accuracy and that it outperforms several other baselines.

5 0.73728579 105 emnlp-2010-Title Generation with Quasi-Synchronous Grammar

Author: Kristian Woodsend ; Yansong Feng ; Mirella Lapata

Abstract: The task of selecting information and rendering it appropriately appears in multiple contexts in summarization. In this paper we present a model that simultaneously optimizes selection and rendering preferences. The model operates over a phrase-based representation of the source document which we obtain by merging PCFG parse trees and dependency graphs. Selection preferences for individual phrases are learned discriminatively, while a quasi-synchronous grammar (Smith and Eisner, 2006) captures rendering preferences such as paraphrases and compressions. Based on an integer linear programming formulation, the model learns to generate summaries that satisfy both types of preferences, while ensuring that length, topic coverage and grammar constraints are met. Experiments on headline and image caption generation show that our method obtains state-of-the-art performance using essentially the same model for both tasks without any major modifications.

6 0.73158056 67 emnlp-2010-It Depends on the Translation: Unsupervised Dependency Parsing via Word Alignment

7 0.73142081 82 emnlp-2010-Multi-Document Summarization Using A* Search and Discriminative Learning

8 0.73124707 100 emnlp-2010-Staying Informed: Supervised and Semi-Supervised Multi-View Topical Analysis of Ideological Perspective

9 0.72881383 107 emnlp-2010-Towards Conversation Entailment: An Empirical Investigation

10 0.72778225 102 emnlp-2010-Summarizing Contrastive Viewpoints in Opinionated Text

11 0.72636551 49 emnlp-2010-Extracting Opinion Targets in a Single and Cross-Domain Setting with Conditional Random Fields

12 0.72059518 60 emnlp-2010-Improved Fully Unsupervised Parsing with Zoomed Learning

13 0.71930629 6 emnlp-2010-A Latent Variable Model for Geographic Lexical Variation

14 0.71928167 69 emnlp-2010-Joint Training and Decoding Using Virtual Nodes for Cascaded Segmentation and Tagging Tasks

15 0.71718299 35 emnlp-2010-Discriminative Sample Selection for Statistical Machine Translation

16 0.71437103 63 emnlp-2010-Improving Translation via Targeted Paraphrasing

17 0.71426606 65 emnlp-2010-Inducing Probabilistic CCG Grammars from Logical Form with Higher-Order Unification

18 0.71335346 78 emnlp-2010-Minimum Error Rate Training by Sampling the Translation Lattice

19 0.71254671 86 emnlp-2010-Non-Isomorphic Forest Pair Translation

20 0.71075851 18 emnlp-2010-Assessing Phrase-Based Translation Models with Oracle Decoding