emnlp emnlp2010 emnlp2010-42 knowledge-graph by maker-knowledge-mining

42 emnlp-2010-Efficient Incremental Decoding for Tree-to-String Translation


Source: pdf

Author: Liang Huang ; Haitao Mi

Abstract: Syntax-based translation models should in principle be efficient with polynomially-sized search space, but in practice they are often embarassingly slow, partly due to the cost of language model integration. In this paper we borrow from phrase-based decoding the idea to generate a translation incrementally left-to-right, and show that for tree-to-string models, with a clever encoding of derivation history, this method runs in averagecase polynomial-time in theory, and lineartime with beam search in practice (whereas phrase-based decoding is exponential-time in theory and quadratic-time in practice). Experiments show that, with comparable translation quality, our tree-to-string system (in Python) can run more than 30 times faster than the phrase-based system Moses (in C++).

Reference: text


Summary: the most important sentenses genereted by tfidf model

sentIndex sentText sentNum sentScore

1 edu s Abstract Syntax-based translation models should in principle be efficient with polynomially-sized search space, but in practice they are often embarassingly slow, partly due to the cost of language model integration. [sent-3, score-0.224]

2 Experiments show that, with comparable translation quality, our tree-to-string system (in Python) can run more than 30 times faster than the phrase-based system Moses (in C++). [sent-5, score-0.146]

3 In practice, the decoder has to employ beam search to make it tractable (Koehn, 2004). [sent-9, score-0.357]

4 However, even beam search runs in quadratic-time in general (see Sec. [sent-10, score-0.304]

5 2), unless a small distortion limit (say, d=5) further restricts the possible set of reorderings to those local ones by ruling out any long-distance reorderings that have a “jump” 273 Institute of Computing Technology Chinese Academy of Sciences P. [sent-11, score-0.233]

6 cn ct Tablet1pr:he[am-stoei-nbsrtaeisnudglt]Tipemxonpelytchnoe monptriylaexityonqfuploairnudercatirnc ermn- tal tree-to-string decoding compared with phrase-based. [sent-15, score-0.215]

7 tc ho2d0s10 in A Nsastoucira tlio Lnan fogru Cagoem Ppruotcaetisosninagl, L pinag eusis 2t7ic3s–283, of enhancing phrase-based decoding with syntaxaware reordering (Galley and Manning, 2008), we are more interested in the other direction, i. [sent-28, score-0.284]

8 However, this algorithm even with the beam search still runs in quadratic-time in prac- tice. [sent-33, score-0.304]

9 , 2007); • • furthermore, on the same tree-to-string system, incremental decoding is slightly faster than the standard cube pruning method at the same level of translation quality; this is also the first linear-time incremental decoder that performs global reordering. [sent-39, score-1.394]

10 We will first briefly review phrase-based decoding in this section, which inspires our incremental algorithm in the next section. [sent-40, score-0.456]

11 The complexity of this dynamic programming algorithm for g-gram decoding is O(2nn2 |V |g−1) where n is the sentence length and |V | is t|hVe | English vocabulary ssieznet (Huang agtnhd Chiang, 2007). [sent-49, score-0.291]

12 12345 Figure 1: Beam search in phrase-based decoding expands the hypotheses in the current bin (#2) into longer ones. [sent-50, score-0.335]

13 Beam Search in Practice To make the exponential algorithm practical, beam search is the standard approximate search method (Koehn, 2004). [sent-53, score-0.3]

14 The complexity becomes O(n2b) because there are a total of O(nb) items in all bins, and to expand each item we need to scan the whole coverage vector, which costs O(n). [sent-55, score-0.228]

15 This quadratic complexity is still too slow in practice and we often set a small distortion limit of dmax (say, 5) so that no jumps longer than dmax are allowed. [sent-56, score-0.46]

16 3 Incremental Decoding for Tree-to-String Translation We will first briefly review tree-to-string translation paradigm and then develop an incremental decoding algorithm for it inspired by phrase-based decoding. [sent-58, score-0.556]

17 A parser first parses the source language input into a 1-best tree T, and the decoder then searches for the best derivation (a se275 (a) B `ush´ ı [yˇ u Sh¯ al´ ong ]1 [jˇ ux´ ıng le hu` ıt´ an ]2 ⇓ 1-best parser (b)NP@1IP@ǫVP@2 B `ush´ ı PP@2. [sent-63, score-0.262]

18 3 y uˇ r1 Sh¯ al´ ong j ˇux ´ıng le hu` ıt´ an ⇓ (d) Bush held NhPu@ı`t2´a. [sent-69, score-0.279]

19 quence of translation steps) d∗ that converts source tree T into a target-language string. [sent-76, score-0.174]

20 Here X@η denotes a tree node of label X at tree address η (Shieber et al. [sent-80, score-0.234]

21 (The root node has address ǫ, and the first child of node η has address η. [sent-82, score-0.172]

22 ) Then rule r2 grabs the B` ush ı´ subtree and transliterate it into the English word in theory in practice phrase*O(2nn2· |V |g−1)O(n2b) tree-to-strO(nc · |V |4(g−1))O(ncb2) this work* O(nk log2(cr) · |V |g−1) O(ncb) Table 2: Summary of time complexities of various algorithms. [sent-84, score-0.279]

23 b is the beam width, V is the English vocabulary, and c is the number of translation rules per node. [sent-85, score-0.327]

24 As a special case, phrase-based decoding with distortion limit dmax is O(nbdmax) . [sent-86, score-0.428]

25 In this framework, decoding without language model (−LM decoding) is simply a linear-time depth-first LsMearc dhe cwodithin gm)em iso siziamtipolyn (Huang re-tt al. [sent-91, score-0.215]

26 , 2006), since a tree of n words is also of size O(n) and we visit every node only once. [sent-92, score-0.16]

27 For example, a bigram +LM item for node VP@2 might be a b) (VP@2 held⋆ Sharon). [sent-94, score-0.148]

28 This is also the case with other syntax-based models like Hiero or GHKM: language model integration overhead is the most significant factor that causes syntax-based decoding to be slow (Chiang, 2007). [sent-95, score-0.25]

29 In theory +LM decoding is O(nc|V |4(g−1) ), where V dtheenoortyes + English vocabulary (Huang, 2007). [sent-96, score-0.251]

30 In practice we have to resort to beam search again: at each node we would only allow top-b +LM items. [sent-97, score-0.379]

31 With beam search, tree-to-string decoding with an integrated language model runs in time O(ncb2), where b is the size of the beam at each node, and c is (maximum) number of translation rules matched at each node (Huang, 2007). [sent-98, score-0.882]

32 The key intuition is to adapt the coverage-vector idea from phrase-based decoding to tree-to-string decoding. [sent-102, score-0.215]

33 Since tree-to-string decoding is a top-down depth-first search, we can simulate this recursion with a stack of active rules, i. [sent-108, score-0.411]

34 At the root node IP@ǫ, we choose rule r1, and push its English-side to the stack, with variables replaced by matched tree nodes, here x1 for NP@1 and x2 for VP@2. [sent-112, score-0.291]

35 NP@1 VP@2], where the dot indicates the next symbol to process in the English word-order. [sent-114, score-0.163]

36 Since node NP@1 is the first in the English word-order, we expand it first, and push rule r2 rooted at NP to the stack: ? [sent-115, score-0.263]

37 Since the symbol right after the dot in the top rule is a word, we immediately grab it, and append it to the current hypothesis, which results in the new stack [? [sent-119, score-0.454]

38 Now the top rule on the stack has finished (dot is at the end), so we trigger a “pop” operation which pops the top rule and advances the dot in the second-totop rule, denoting that NP@1 is now completed: [NP@1 VP@2]. [sent-122, score-0.547]

39 ] , ρ i : w Figure 5: Deductive system for the incremental tree-to-string decoding algorithm. [sent-235, score-0.456]

40 rveaer r(oi)o]tEed(r a)t replaces each variable xi on the English side of the rule with the descendant node η. [sent-238, score-0.181]

41 277 The next step is to expand and push its English-side VP@2, and we use rule r3 “VP → held x2 with x1” oanntdo tuhseh stack, again dweit h“ vPar →iab hleelsd replaced by matched nodes: [NP@1 VP@2] ? [sent-241, score-0.415]

42 2] Note that this is a reordering rule, and the stack always follows the English word order because we generate hypothesis incrementally left-to-right. [sent-247, score-0.268]

43 Each item hs, ρi consists of a stack s and a hypothesis ρ. [sent-250, score-0.288]

44 mSim hsil,ar ρ ito c phrase-based only the last g−1 words of dynamic programming, ρ are part of the signature foonrl decoding gw−it1h g-gram fL ρM ar. [sent-251, score-0.241]

45 , rules with dot positions indicting progress, in the style of Earley (1970). [sent-254, score-0.142]

46 We call the last (rightmost) rule on the stack the top rule, which is the rule being processed currently. [sent-255, score-0.386]

47 The symbol after the dot in the top rule is called the next symbol, since it is the symbol to expand or process next. [sent-256, score-0.352]

48 3 Polynomial Time Complexity Unlike phrase-based models, we show here that incremental decoding runs in average-case polynomial-time for tree-to-string systems. [sent-259, score-0.51]

49 The time complexity depends (in part) on the number of all possible stacks for a tree of depth d. [sent-263, score-0.234]

50 A stack is a list of rules covering a path from the root node to one of the leaf nodes in the following form: R1 R2 z}|{ z}|{ Rs z}|{ [z. [sent-264, score-0.309]

51 {], where η1 = ǫ is the root node and ηs is a leaf node, with stack depth s ≤ d. [sent-288, score-0.369]

52 Furthermore, each rule in the stack is actually a dotted-rule, i. [sent-291, score-0.291]

53 , it is associated with a dot position ranging from 0 to r, where r is the arity of the rule (length of English side of the rule). [sent-293, score-0.236]

54 We do average-case analysis below because the tree depth (height) for a sentence of n words is a random variable: in the worst-case it can be linear in n (degenerated into a linear-chain), but we assume this adversarial situation does not happen frequently, and the average tree depth is O(log n). [sent-299, score-0.322]

55 Assume for each n, the depth of a parse tree of n words, notated dn, distributes normally with logarithmic mean and variance, i. [sent-301, score-0.161]

56 , dn ∼ N(µn, σn2), where µn = O(logn) and σn2 = O(log n), then the average-case complexity of the algorithm is h(n) = k, thus polynomial in n. [sent-303, score-0.228]

57 So we have Edn∼N(µn,σ2/2) [exp(dn log(cr))] = exp (µ′ + σ′2/2) = = = ≤ exp exp exp exp = exp nk log2(cr). [sent-308, score-0.389]

58 4 Linear-time Beam Search Though polynomial complexity is a desirable property in theory, the degree of the polynomial, O(log cr) might still be too high in practice, depending on the translation grammar. [sent-313, score-0.197]

59 To make it lineartime, we apply the beam search idea from phrase- based again. [sent-314, score-0.25]

60 Initially that number is zero, and in a prediction step which expands node η using rule r, the number increments by |C(r) |, the size of the Chinese-side treelet of r. [sent-319, score-0.225]

61 Scanning and completion do not make progress in this definition since there is no new tree node covered. [sent-321, score-0.212]

62 Each item can expand to c new items, so the overall complexity of this beam search is O(ncb), which is linear in sentence length. [sent-324, score-0.405]

63 (2006) is closest in spirit to ours: they also design an incremental decoding algorithm, but for the hierarchical phrase-based system (Chiang, 2007) instead. [sent-326, score-0.456]

64 due to the difference in the underlying translation models, their algorithm runs in O(n2b) time with beam search in practice while ours is linear. [sent-328, score-0.447]

65 As mentioned in Section 1, while we focus on enhancing syntax-based decoding with phrase-based ideas, other authors have explored the reverse, but also interesting, direction of enhancing phrase-based decoding with syntax-aware reordering. [sent-336, score-0.484]

66 While this approach is certainly better than pure phrase-based reordering, it remains quadratic in run-time with beam search. [sent-338, score-0.2]

67 It is also important to note that cube pruning and incremental decoding are not mutually exclusive, rather, they could potentially be combined to further speed up decoding. [sent-340, score-0.932]

68 Multipass coarse-to-fine decoding is another popular idea (Venugopal et al. [sent-342, score-0.215]

69 In particular, Dyer and Resnik (2010) uses a two-pass approach, where their first-pass, −LM decoding is also incremental tahnedi polynomial-time (in ctohed style oalfs Earley (1970) algorithm), but their second-pass, +LM decoding is still bottom-up CKY with cube pruning. [sent-344, score-1.008]

70 5 Experiments To test the merits of our incremental decoder we conduct large-scale experiments on a state-of-the-art tree-to-string system, and compare it with the standard phrase-based system ofMoses. [sent-345, score-0.374]

71 Furturemore we 280 also compare our incremental decoder with the standard cube pruning approach on the same tree-tostring decoder. [sent-346, score-0.792]

72 At decoding time, we again parse the input sentences into trees, and convert them into translation forest by rule patternmatching (Mi et al. [sent-353, score-0.41]

73 3 in order to prove the theorem that tree depth (as a random variable) is normally-distributed with O(log n) mean and variance. [sent-360, score-0.192]

74 Qualitatively, we verified that for most n, tree depth d(n) does look like a normal distribution. [sent-361, score-0.193]

75 5 log n, while tree height variance is bounded by 5. [sent-363, score-0.197]

76 2 Comparison with Cube pruning We implemented our incremental decoding algorithm in Python, and test its performance on the development set. [sent-366, score-0.563]

77 We first compare it with the standard cube pruning approach (also implemented in Python) on the same tree-to-string system. [sent-367, score-0.444]

78 The scatter plot in (a) confirms that our incremental decoding scales linearly with sentence length, while cube pruning super-linearly (b = 50 for both). [sent-369, score-0.9]

79 The comparison in (b) shows that at the same level of translation quality, incremental decoding is slightly faster than cube pruning, especially at smaller beams. [sent-370, score-0.939]

80 Sentence Length (n) Figure 6: Mean and variance of tree depth vs. [sent-371, score-0.161]

81 ure 7(a) is a scatter plot of decoding times versus sentence length (using beam b = 50 for both systems), where we confirm that our incremental decoder scales linearly, while cube pruning has a slight tendency of superlinearity. [sent-376, score-1.207]

82 Figure 7(b) is a side-byside comparison of decoding speed versus translation quality (in BLEU scores), using various beam sizes for both systems (b=10–70 for cube pruning, and b=10–1 10 for incremental). [sent-377, score-0.884]

83 We can see that incremental decoding is slightly faster than cube pruning at the same levels of translation quality, and the difference is more pronounced at smaller beams: for number of (non-unique) pops from priority queues. [sent-378, score-1.092]

84 281 Sentence Length Figure 8: Comparison of our incremental tree-to-string decoder with Moses in terms of speed. [sent-379, score-0.348]

85 12 seconds, which is about 4 times as fast as cube pruning. [sent-383, score-0.337]

86 We stress again that cube pruning and incremental decoding are not mutually exclusive, and rather they could potentially be combined to further speed up decoding. [sent-384, score-0.932]

87 Figure 8 compares our incremental decoder system/decoder BLEU time Moses (optimal dmax=10)29. [sent-388, score-0.348]

88 77 Table 3: Final BLEU score and speed results on the test data (691 sentences), compared with Moses and cube pruning. [sent-398, score-0.369]

89 n C 2, sMisotesnets wwitihth t no hdeiostroerttiicoanl alinmailt(dmax = +∞) scale quadratically, and monotone decoding (dmax = 0) sqcuaaled linearly. [sent-403, score-0.215]

90 W aned use MnoEtoRnTe to tune the best weights for each distortion limit, and dmax = 10 performs the best on our dev set. [sent-404, score-0.181]

91 Our linear-time incremental decoder with the small beam of size b = 10 achieves a BLEU score of 29. [sent-406, score-0.548]

92 But our decoding (including source-language parsing) only takes 0. [sent-409, score-0.215]

93 With a larger beam of b = 50 our BLEU score increases to 29. [sent-411, score-0.2]

94 6 Conclusion We have presented an incremental dynamic programming algorithm for tree-to-string translation which resembles phrase-based based decoding. [sent-413, score-0.37]

95 This algorithm is the first incremental algorithm that runs in polynomial-time in theory, and linear-time in practice with beam search. [sent-414, score-0.538]

96 Large-scale experiments on a state-of-the-art tree-to-string decoder confirmed that, with a comparable (or better) translation quality, it can run more than 30 times faster than the phrase-based system of Moses, even though ours is in Python while Moses in C++. [sent-415, score-0.253]

97 We also showed that it is slightly faster (and scale better) than the popular cube pruning technique. [sent-416, score-0.49]

98 For future work we would like to apply this algorithm to forest-based translation and hierarchical system by pruning the first-pass −LM forest. [sent-417, score-0.207]

99 We would also combine cube pruning 282 with our incremental algorithm, and study its performance with higher-order language models. [sent-418, score-0.685]

100 Pharaoh: a beam search decoder for phrase-based statistical machine translation models. [sent-481, score-0.457]


similar papers computed by tfidf model

tfidf for this paper:

wordName wordTfidf (topN-words)

[('cube', 0.337), ('bush', 0.294), ('incremental', 0.241), ('held', 0.238), ('cr', 0.237), ('np', 0.231), ('decoding', 0.215), ('vp', 0.203), ('beam', 0.2), ('stack', 0.196), ('talks', 0.173), ('ip', 0.165), ('dn', 0.131), ('dmax', 0.122), ('dot', 0.115), ('decoder', 0.107), ('pruning', 0.107), ('sharon', 0.104), ('lm', 0.104), ('translation', 0.1), ('rule', 0.095), ('moses', 0.091), ('log', 0.088), ('depth', 0.087), ('node', 0.086), ('chiang', 0.083), ('tree', 0.074), ('reorderings', 0.071), ('huang', 0.07), ('edn', 0.066), ('python', 0.066), ('item', 0.062), ('lastg', 0.061), ('ush', 0.061), ('distortion', 0.059), ('exp', 0.058), ('bleu', 0.056), ('galley', 0.055), ('runs', 0.054), ('progress', 0.052), ('search', 0.05), ('polynomial', 0.05), ('symbol', 0.048), ('complexity', 0.047), ('faster', 0.046), ('averagecase', 0.046), ('deductive', 0.046), ('pops', 0.046), ('expand', 0.046), ('ux', 0.044), ('expands', 0.044), ('subtree', 0.044), ('practice', 0.043), ('rightmost', 0.042), ('reordering', 0.042), ('hs', 0.041), ('nk', 0.041), ('ong', 0.041), ('derivation', 0.04), ('sh', 0.04), ('watanabe', 0.039), ('items', 0.037), ('actions', 0.036), ('scan', 0.036), ('push', 0.036), ('theory', 0.036), ('boundary', 0.036), ('height', 0.035), ('slow', 0.035), ('bins', 0.033), ('limit', 0.032), ('speed', 0.032), ('normal', 0.032), ('koehn', 0.032), ('dng', 0.031), ('embarassingly', 0.031), ('greibach', 0.031), ('lineartime', 0.031), ('logn', 0.031), ('multipass', 0.031), ('nbdmax', 0.031), ('theorem', 0.031), ('hypothesis', 0.03), ('ng', 0.03), ('programming', 0.029), ('chinese', 0.027), ('enhancing', 0.027), ('rules', 0.027), ('signature', 0.026), ('nps', 0.026), ('merits', 0.026), ('arity', 0.026), ('binning', 0.026), ('borrow', 0.026), ('earley', 0.026), ('exclusive', 0.026), ('ncb', 0.026), ('stacks', 0.026), ('seconds', 0.026), ('bin', 0.026)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 1.0000008 42 emnlp-2010-Efficient Incremental Decoding for Tree-to-String Translation

Author: Liang Huang ; Haitao Mi

Abstract: Syntax-based translation models should in principle be efficient with polynomially-sized search space, but in practice they are often embarassingly slow, partly due to the cost of language model integration. In this paper we borrow from phrase-based decoding the idea to generate a translation incrementally left-to-right, and show that for tree-to-string models, with a clever encoding of derivation history, this method runs in averagecase polynomial-time in theory, and lineartime with beam search in practice (whereas phrase-based decoding is exponential-time in theory and quadratic-time in practice). Experiments show that, with comparable translation quality, our tree-to-string system (in Python) can run more than 30 times faster than the phrase-based system Moses (in C++).

2 0.18543115 86 emnlp-2010-Non-Isomorphic Forest Pair Translation

Author: Hui Zhang ; Min Zhang ; Haizhou Li ; Eng Siong Chng

Abstract: This paper studies two issues, non-isomorphic structure translation and target syntactic structure usage, for statistical machine translation in the context of forest-based tree to tree sequence translation. For the first issue, we propose a novel non-isomorphic translation framework to capture more non-isomorphic structure mappings than traditional tree-based and tree-sequence-based translation methods. For the second issue, we propose a parallel space searching method to generate hypothesis using tree-to-string model and evaluate its syntactic goodness using tree-to-tree/tree sequence model. This not only reduces the search complexity by merging spurious-ambiguity translation paths and solves the data sparseness issue in training, but also serves as a syntax-based target language model for better grammatical generation. Experiment results on the benchmark data show our proposed two solutions are very effective, achieving significant performance improvement over baselines when applying to different translation models.

3 0.17393626 106 emnlp-2010-Top-Down Nearly-Context-Sensitive Parsing

Author: Eugene Charniak

Abstract: We present a new syntactic parser that works left-to-right and top down, thus maintaining a fully-connected parse tree for a few alternative parse hypotheses. All of the commonly used statistical parsers use context-free dynamic programming algorithms and as such work bottom up on the entire sentence. Thus they only find a complete fully connected parse at the very end. In contrast, both subjective and experimental evidence show that people understand a sentence word-to-word as they go along, or close to it. The constraint that the parser keeps one or more fully connected syntactic trees is intended to operationalize this cognitive fact. Our parser achieves a new best result for topdown parsers of 89.4%,a 20% error reduction over the previous single-parser best result for parsers of this type of 86.8% (Roark, 2001) . The improved performance is due to embracing the very large feature set available in exchange for giving up dynamic programming.

4 0.14736709 98 emnlp-2010-Soft Syntactic Constraints for Hierarchical Phrase-Based Translation Using Latent Syntactic Distributions

Author: Zhongqiang Huang ; Martin Cmejrek ; Bowen Zhou

Abstract: In this paper, we present a novel approach to enhance hierarchical phrase-based machine translation systems with linguistically motivated syntactic features. Rather than directly using treebank categories as in previous studies, we learn a set of linguistically-guided latent syntactic categories automatically from a source-side parsed, word-aligned parallel corpus, based on the hierarchical structure among phrase pairs as well as the syntactic structure of the source side. In our model, each X nonterminal in a SCFG rule is decorated with a real-valued feature vector computed based on its distribution of latent syntactic categories. These feature vectors are utilized at decod- ing time to measure the similarity between the syntactic analysis of the source side and the syntax of the SCFG rules that are applied to derive translations. Our approach maintains the advantages of hierarchical phrase-based translation systems while at the same time naturally incorporates soft syntactic constraints.

5 0.14355321 18 emnlp-2010-Assessing Phrase-Based Translation Models with Oracle Decoding

Author: Guillaume Wisniewski ; Alexandre Allauzen ; Francois Yvon

Abstract: Extant Statistical Machine Translation (SMT) systems are very complex softwares, which embed multiple layers of heuristics and embark very large numbers of numerical parameters. As a result, it is difficult to analyze output translations and there is a real need for tools that could help developers to better understand the various causes of errors. In this study, we make a step in that direction and present an attempt to evaluate the quality of the phrase-based translation model. In order to identify those translation errors that stem from deficiencies in the phrase table (PT), we propose to compute the oracle BLEU-4 score, that is the best score that a system based on this PT can achieve on a reference corpus. By casting the computation of the oracle BLEU-1 as an Integer Linear Programming (ILP) problem, we show that it is possible to efficiently compute accurate lower-bounds of this score, and report measures performed on several standard benchmarks. Various other applications of these oracle decoding techniques are also reported and discussed. 1 Phrase-Based Machine Translation 1.1 Principle A Phrase-Based Translation System (PBTS) consists of a ruleset and a scoring function (Lopez, 2009). The ruleset, represented in the phrase table, is a set of phrase1pairs {(f, e) }, each pair expressing that the source phrase f can ,bee) r}e,w earicthten p (atirra enxslparteedss)i inngto t a target phrase e. Trarsaens flation hypotheses are generated by iteratively rewriting portions of the source sentence as prescribed by the ruleset, until each source word has been consumed by exactly one rule. The order of target words in an hypothesis is uniquely determined by the order in which the rewrite operation are performed. The search space ofthe translation model corresponds to the set of all possible sequences of 1Following the usage in statistical machine translation literature, use “phrase” to denote a subsequence of consecutive words. we 933 rules applications. The scoring function aims to rank all possible translation hypotheses in such a way that the best one has the highest score. A PBTS is learned from a parallel corpus in two independent steps. In a first step, the corpus is aligned at the word level, by using alignment tools such as Gi z a++ (Och and Ney, 2003) and some symmetrisation heuristics; phrases are then extracted by other heuristics (Koehn et al., 2003) and assigned numerical weights. In the second step, the parameters of the scoring function are estimated, typically through Minimum Error Rate training (Och, 2003). Translating a sentence amounts to finding the best scoring translation hypothesis in the search space. Because of the combinatorial nature of this problem, translation has to rely on heuristic search techniques such as greedy hill-climbing (Germann, 2003) or variants of best-first search like multi-stack decoding (Koehn, 2004). Moreover, to reduce the overall complexity of decoding, the search space is typically pruned using simple heuristics. For instance, the state-of-the-art phrase-based decoder Moses (Koehn et al., 2007) considers only a restricted number of translations for each source sequence2 and enforces a distortion limit3 over which phrases can be reordered. As a consequence, the best translation hypothesis returned by the decoder is not always the one with the highest score. 1.2 Typology of PBTS Errors Analyzing the errors of a SMT system is not an easy task, because of the number of models that are combined, the size of these models, and the high complexity of the various decision making processes. For a SMT system, three different kinds of errors can be distinguished (Germann et al., 2004; Auli et al., 2009): search errors, induction errors and model errors. The former corresponds to cases where the hypothesis with the best score is missed by the search procedure, either because of the use of an ap2the 3the option of Moses, defaulting to 20. dl option of Moses, whose default value is 7. tt l ProceMedITin,g Ms oasfs thaceh 2u0se1t0ts C,o UnSfAer,e n9c-e11 on O Ectmobpeir ic 2a0l1 M0.e ?tc ho2d0s10 in A Nsastouciraatlio Lnan fogru Cagoem Ppruotcaetisosninagl, L pinaggeusis 9t3ic3s–943, proximate search method or because of the restrictions of the search space. Induction errors correspond to cases where, given the model, the search space does not contain the reference. Finally, model errors correspond to cases where the hypothesis with the highest score is not the best translation according to the evaluation metric. Model errors encompass several types oferrors that occur during learning (Bottou and Bousquet, 2008)4. Approximation errors are errors caused by the use of a restricted and oversimplistic class of functions (here, finitestate transducers to model the generation of hypotheses and a linear scoring function to discriminate them) to model the translation process. Estimation errors correspond to the use of sub-optimal values for both the phrase pairs weights and the parameters of the scoring function. The reasons behind these errors are twofold: first, training only considers a finite sample of data; second, it relies on error prone alignments. As a result, some “good” phrases are extracted with a small weight, or, in the limit, are not extracted at all; and conversely that some “poor” phrases are inserted into the phrase table, sometimes with a really optimistic score. Sorting out and assessing the impact of these various causes of errors is of primary interest for SMT system developers: for lack of such diagnoses, it is difficult to figure out which components of the system require the most urgent attention. Diagnoses are however, given the tight intertwining among the various component of a system, very difficult to obtain: most evaluations are limited to the computation of global scores and usually do not imply any kind of failure analysis. 1.3 Contribution and organization To systematically assess the impact of the multiple heuristic decisions made during training and decoding, we propose, following (Dreyer et al., 2007; Auli et al., 2009), to work out oracle scores, that is to evaluate the best achievable performances of a PBTS. We aim at both studying the expressive power of PBTS and at providing tools for identifying and quantifying causes of failure. Under standard metrics such as BLEU (Papineni et al., 2002), oracle scores are difficult (if not impossible) to compute, but, by casting the computation of the oracle unigram recall and precision as an Integer Linear Programming (ILP) problem, we show that it is possible to efficiently compute accurate lower-bounds of the oracle BLEU-4 scores and report measurements performed on several standard benchmarks. The main contributions of this paper are twofold. We first introduce an ILP program able to efficiently find the best hypothesis a PBTS can achieve. This program can be easily extended to test various improvements to 4We omit here optimization errors. 934 phrase-base systems or to evaluate the impact of different parameter settings. Second, we present a number of complementary results illustrating the usage of our oracle decoder for identifying and analyzing PBTS errors. Our experimental results confirm the main conclusions of (Turchi et al., 2008), showing that extant PBTs have the potential to generate hypotheses having very high BLEU4 score and that their main bottleneck is their scoring function. The rest of this paper is organized as follows: in Section 2, we introduce and formalize the oracle decoding problem, and present a series of ILP problems of increasing complexity designed so as to deliver accurate lowerbounds of oracle score. This section closes with various extensions allowing to model supplementary constraints, most notably reordering constraints (Section 2.5). Our experiments are reported in Section 3, where we first introduce the training and test corpora, along with a description of our system building pipeline (Section 3. 1). We then discuss the baseline oracle BLEU scores (Section 3.2), analyze the non-reachable parts of the reference translations, and comment several complementary results which allow to identify causes of failures. Section 4 discuss our approach and findings with respect to the existing literature on error analysis and oracle decoding. We conclude and discuss further prospects in Section 5. 2 Oracle Decoder 2.1 The Oracle Decoding Problem Definition To get some insights on the errors of phrasebased systems and better understand their limits, we propose to consider the oracle decoding problem defined as follows: given a source sentence, its reference translation5 and a phrase table, what is the “best” translation hypothesis a system can generate? As usual, the quality of an hypothesis is evaluated by the similarity between the reference and the hypothesis. Note that in the oracle decoding problem, we are only assessing the ability of PBT systems to generate good candidate translations, irrespective of their ability to score them properly. We believe that studying this problem is interesting for various reasons. First, as described in Section 3.4, comparing the best hypothesis a system could have generated and the hypothesis it actually generates allows us to carry on both quantitative and qualitative failure analysis. The oracle decoding problem can also be used to assess the expressive power of phrase-based systems (Auli et al., 2009). Other applications include computing acceptable pseudo-references for discriminative training (Tillmann and Zhang, 2006; Liang et al., 2006; Arun and 5The oracle decoding problem can be extended to the case of multiple references. For the sake of simplicity, we only describe the case of a single reference. Koehn, 2007) or combining machine translation systems in a multi-source setting (Li and Khudanpur, 2009). We have also used oracle decoding to identify erroneous or difficult to translate references (Section 3.3). Evaluation Measure To fully define the oracle decoding problem, a measure of the similarity between a translation hypothesis and its reference translation has to be chosen. The most obvious choice is the BLEU-4 score (Papineni et al., 2002) used in most machine translation evaluations. However, using this metric in the oracle decoding problem raises several issues. First, BLEU-4 is a metric defined at the corpus level and is hard to interpret at the sentence level. More importantly, BLEU-4 is not decomposable6: as it relies on 4-grams statistics, the contribution of each phrase pair to the global score depends on the translation of the previous and following phrases and can not be evaluated in isolation. Because of its nondecomposability, maximizing BLEU-4 is hard; in particular, the phrase-level decomposability of the evaluation × metric is necessary in our approach. To circumvent this difficulty, we propose to evaluate the similarity between a translation hypothesis and a reference by the number of their common words. This amounts to evaluating translation quality in terms of unigram precision and recall, which are highly correlated with human judgements (Lavie et al., ). This measure is closely related to the BLEU-1 evaluation metric and the Meteor (Banerjee and Lavie, 2005) metric (when it is evaluated without considering near-matches and the distortion penalty). We also believe that hypotheses that maximize the unigram precision and recall at the sentence level yield corpus level BLEU-4 scores close the maximal achievable. Indeed, in the setting we will introduce in the next section, BLEU-1 and BLEU-4 are highly correlated: as all correct words of the hypothesis will be compelled to be at their correct position, any hypothesis with a high 1-gram precision is also bound to have a high 2-gram precision, etc. 2.2 Formalizing the Oracle Decoding Problem The oracle decoding problem has already been considered in the case of word-based models, in which all translation units are bound to contain only one word. The problem can then be solved by a bipartite graph matching algorithm (Leusch et al., 2008): given a n m binary matarligxo describing possible t 2r0an08sl)a:ti goinv elinn aks n b×emtw beeinna source words and target words7, this algorithm finds the subset of links maximizing the number of words of the reference that have been translated, while ensuring that each word 6Neither at the sentence (Chiang et al., 2008), nor at the phrase level. 7The (i, j) entry of the matrix is 1if the ith word of the source can be translated by the jth word of the reference, 0 otherwise. 935 is translated only once. Generalizing this approach to phrase-based systems amounts to solving the following problem: given a set of possible translation links between potential phrases of the source and of the target, find the subset of links so that the unigram precision and recall are the highest possible. The corresponding oracle hypothesis can then be easily generated by selecting the target phrases that are aligned with one source phrase, disregarding the others. In addition, to mimic the way OOVs are usually handled, we match identical OOV tokens appearing both in the source and target sentences. In this approach, the unigram precision is always one (every word generated in the oracle hypothesis matches exactly one word in the reference). As a consequence, to find the oracle hypothesis, we just have to maximize the recall, that is the number of words appearing both in the hypothesis and in the reference. Considering phrases instead of isolated words has a major impact on the computational complexity: in this new setting, the optimal segmentations in phrases of both the source and of the target have to be worked out in addition to links selection. Moreover, constraints have to be taken into account so as to enforce a proper segmentation of the source and target sentences. These constraints make it impossible to use the approach of (Leusch et al., 2008) and concur in making the oracle decoding problem for phrase-based models more complex than it is for word-based models: it can be proven, using arguments borrowed from (De Nero and Klein, 2008), that this problem is NP-hard even for the simple unigram precision measure. 2.3 An Integer Program for Oracle Decoding To solve the combinatorial problem introduced in the previous section, we propose to cast it into an Integer Linear Programming (ILP) problem, for which many generic solvers exist. ILP has already been used in SMT to find the optimal translation for word-based (Germann et al., 2001) and to study the complexity of learning phrase alignments (De Nero and Klein, 2008) models. Following the latter reference, we introduce the following variables: fi,j (resp. ek,l) is a binary indicator variable that is true when the phrase contains all spans from betweenword position i to j (resp. k to l) of the source (resp. target) sentence. We also introduce a binary variable, denoted ai,j,k,l, to describe a possible link between source phrase fi,j and target phrase ek,l. These variables are built from the entries of the phrase table according to selection strategies introduced in Section 2.4. In the following, index variables are so that: 0 ≤ i< j ≤ n, in the source sentence and 0 ≤ k < l ≤ m, in the target sentence, where n (resp. m) is the length of the source (resp. target) sentence. Solving the oracle decoding problem then amounts to optimizing the following objective function: mi,j,akx,li,Xj,k,lai,j,k,l· (l − k), (1) under the constraints: X ∀x ∈ J1,mK : ek,l ≤ 1 (2) = (3) 1∀,kn,lK : Xai,j,k,l = fk,l (4) ∀i,j : Xai,j,k,l (5) k,l s.tX. Xk≤x≤l ∀∀xy ∈∈ J11,,mnKK : X i,j s.tX. Xi≤y≤j fi,j 1 Xi,j = ei,j Xk,l The objective function (1) corresponds to the number of target words that are generated. The first set of constraints (2) ensures that each word in the reference e ap- pears in no more than one phrase. Maximizing the objective under these constraints amounts to maximizing the unigram recall. The second set of constraints (3) ensures that each word in the source f is translated exactly once, which guarantees that the search space of the ILP problem is the same as the search space of a phrase-based system. Constraints (4) bind the fk,l and ai,j,k,l variables, ensuring that whenever a link ai,j,k,l is active, the corresponding phrase fk,l is also active. Constraints (5) play a similar role for the reference. The Relaxed Problem Even though it accurately models the search space of a phrase-based decoder, this programs is not really useful as is: due to out-ofvocabulary words or missing entries in the phrase table, the constraint that all source words should be translated yields infeasible problems8. We propose to relax this problem and allow some source words to remain untranslated. This is done by replacing constraints (3) by: ∀y ∈ J1,nK : X i,j s.tX. Xi≤y≤j fi,j ≤ 1 To better ref∀lyec ∈t th J1e, bneKh :avior of phrase-based decoders, which attempt to translate all source words, we also need to modify the objective function as follows: X i,Xj,k,l ai,j,k,l · (l − k) +Xfi,j · (j − i) Xi,j (6) The second term in this new objective ensures that optimal solutions translate as many source words as possible. 8An ILP problem is said to be infeasible when tion violates at least one constraint. every possible solu- 936 The Relaxed-Distortion Problem A last caveat with the Relaxed optimization program is caused by frequently occurring source tokens, such as function words or punctuation signs, which can often align with more than one target word. For lack of taking distortion information into account in our objective function, all these alignments are deemed equivalent, even if some of them are clearly more satisfactory than others. This situation is illustrated on Figure 1. le chat et the cat and le the chien dog Figure 1: Equivalent alignments between “le” and “the”. The dashed lines corresponds to a less interpretable solution. To overcome this difficulty, we propose a last change to the objective function: X i,Xj,k,l ai,j,k,l · (l − k) +Xfi,j · (j − i) X ai,j,k,l|k − i| Xi,j −α (7) i Xk ,l X,j, Compared to the objective function of the relaxed problem (6), we introduce here a supplementary penalty factor which favors monotonous alignments. For each phrase pair, the higher the difference between source and target positions, the higher this penalty. If α is small enough, this extra term allows us to select, among all the optimal alignments of the re l axed problem, the one with the lowest distortion. In our experiments, we set α to min {n, m} to ensure that the penalty factor is always smminall{enr, ,tmha}n tthoe e rneswuarred t fhoart aligning atwltyo single iwso ardlwsa. 2.4 Selecting Indicator Variables In the approach introduced in the previous sections, the oracle decoding problem is solved by selecting, among a set of possible translation links, the ones that yield the solution with the highest unigram recall. We propose two strategies to build this set of possible translation links. In the first one, denoted exact match, an indicator ai,j,k,l is created if there is an entry (f, e) so that f spans from word position ito j in the source and e from word position k to l in the target. In this strategy, the ILP program considers exactly the same ruleset as conventional phrase-based decoders. We also consider an alternative strategy, which could help us to identify errors made during the phrase extraction process. In this strategy, denoted inside match, an indicator ai,j,k,l is created when the following three criteria are met: i) f spans from position ito j of the source; ii) a substring of e, denoted e, spans from position k to l of the reference; iii) (f, e¯) is not an entry of the phrase table. The resulting set of indicator variables thus contains, at least, all the variables used in the exact match strategy. In addition, we license here the use of phrases containing words that do not occur in the reference. In fact, using such solutions can yield higher BLEU scores when the reward for additional correct matches exceeds the cost incurred by wrong predictions. These cases are symptoms of situations where the extraction heuristic failed to extract potentially useful subphrases. 2.5 Oracle Decoding with Reordering Constraints The ILP problem introduced in the previous section can be extended in several ways to describe and test various improvements to phrase-based systems or to evaluate the impact of different parameter settings. This flexibility mainly stems from the possibility offered by our framework to express arbitrary constraints over variables. In this section, we illustrate these possibilities by describing how reordering constraints can easily be considered. As a first example, the Moses decoder uses a distortion limit to constrain the set of possible reorderings. This constraint “enforces (...) that the last word of a phrase chosen for translation cannot be more than d9 words from the leftmost untranslated word in the source” (Lopez, 2009) and is expressed as: ∀aijkl , ai0j0k0l0 s.t. k > k0, aijkl · ai0j0k0l0 · |j − i0 + 1| ≤ d, The maximum distortion limit strategy (Lopez, 2009) is also easily expressed and take the following form (assuming this constraint is parameterized by d): ∀l < m − 1, ai,j,k,l·ai0,j0,l+1,l0 · |i0 − j − 1| 71is%t e6hs.a distortion greater that Moses default distortion limit. alignment decisions enabled by the use of larger training corpora and phrase table. To evaluate the impact ofthe second heuristic, we computed the number of phrases discarded by Moses (be- cause of the default ttl limit) but used in the oracle hypotheses. In the English to French NEWSCO setting, they account for 34.11% of the total number of phrases used in the oracle hypotheses. When the oracle decoder is constrained to use the same phrase table as Moses, its BLEU-4 score drops to 42.78. This shows that filtering the phrase table prior to decoding discards many useful phrase pairs and is seriously limiting the best achievable performance, a conclusion shared with (Auli et al., 2009). Search Errors Search errors can be identified by comparing the score of the best hypothesis found by Moses and the score of the oracle hypothesis. If the score of the oracle hypothesis is higher, then there has been a search error; on the contrary, there has been an estimation error when the score of the oracle hypothesis is lower than the score of the best hypothesis found by Moses. 940 Based on the comparison of the score of Moses hypotheses and of oracle hypotheses for the English to French NEWSCO setting, our preliminary conclusion is that the number of search errors is quite limited: only about 5% of the hypotheses of our oracle decoder are actually getting a better score than Moses solutions. Again, this shows that the scoring function (model error) is one of the main bottleneck of current PBTS. Comparing these hypotheses is nonetheless quite revealing: while Moses mostly selects phrase pairs with high translation scores and generates monotonous alignments, our ILP decoder uses larger reorderings and less probable phrases to achieve better solutions: on average, the reordering score of oracle solutions is −5.74, compared to −76.78 fscoro rMeo osfe osr outputs. iGonivsen is −the5 weight assigned through MERT training to the distortion score, no wonder that these hypotheses are severely penalized. The Impact of Phrase Length The observed outputs do not only depend on decisions made during the search, but also on decisions made during training. One such decision is the specification of maximal length for the source and target phrases. In our framework, evaluating the impact of this decision is simple: it suffices to change the definition of indicator variables so as to consider only alignments between phrases of a given length. In the English-French NEWSCO setting, the most restrictive choice, when only alignments between single words are authorized, yields an oracle BLEU-4 of 48.68; however, authorizing phrases up to length 2 allows to achieve an oracle value of 66.57, very close to the score achieved when considering all extracted phrases (67.77). This is corroborated with a further analysis of our oracle alignments, which use phrases whose average source length is 1.21 words (respectively 1.31 for target words). If many studies have already acknowledged the predomi- nance of “small” phrases in actual translations, our oracle scores suggest that, for this language pair, increasing the phrase length limit beyond 2 or 3 might be a waste of computational resources. 4 Related Work To the best of our knowledge, there are only a few works that try to study the expressive power ofphrase-based machine translation systems or to provide tools for analyzing potential causes of failure. The approach described in (Auli et al., 2009) is very similar to ours: in this study, the authors propose to find and analyze the limits of machine translation systems by studying the reference reachability. A reference is reachable for a given system if it can be exactly generated by this system. Reference reachability is assessed using Moses in forced decoding mode: during search, all hypotheses that deviate from the reference are simply discarded. Even though the main goal of this study was to compare the search space of phrase-based and hierarchical systems, it also provides some insights on the impact of various search parameters in Moses, delivering conclusions that are consistent with our main results. As described in Section 1.2, these authors also propose a typology of the errors of a statistical translation systems, but do not attempt to provide methods for identifying them. The authors of (Turchi et al., 2008) study the learn- ing capabilities of Moses by extensively analyzing learning curves representing the translation performances as a function of the number of examples, and by corrupting the model parameters. Even though their focus is more on assessing the scoring function, they reach conclusions similar to ours: the current bottleneck of translation performances is not the representation power of the PBTS but rather in their scoring functions. Oracle decoding is useful to compute reachable pseudo-references in the context of discriminative training. This is the main motivation of (Tillmann and Zhang, 2006), where the authors compute high BLEU hypotheses by running a conventional decoder so as to maximize a per-sentence approximation of BLEU-4, under a simple (local) reordering model. Oracle decoding has also been used to assess the limitations induced by various reordering constraints in (Dreyer et al., 2007). To this end, the authors propose to use a beam-search based oracle decoder, which computes lower bounds of the best achievable BLEU-4 using dynamic programming techniques over finite-state (for so-called local and IBM constraints) or hierarchically structured (for ITG constraints) sets of hypotheses. Even 941 though the numbers reported in this study are not directly comparable with ours17, it seems that our decoder is not only conceptually much simpler, but also achieves much more optimistic lower-bounds of the oracle BLEU score. The approach described in (Li and Khudanpur, 2009) employs a similar technique, which is to guide a heuristic search in an hypergraph representing possible translation hypotheses with n-gram counts matches, which amounts to decoding with a n-gram model trained on the sole reference translation. Additional tricks are presented in this article to speed-up decoding. Computing oracle BLEU scores is also the subject of (Zens and Ney, 2005; Leusch et al., 2008), yet with a different emphasis. These studies are concerned with finding the best hypotheses in a word graph or in a consensus network, a problem that has various implications for multi-pass decoding and/or system combination techniques. The former reference describes an exponential approximate algorithm, while the latter proves the NPcompleteness of this problem and discuss various heuristic approaches. Our problem is somewhat more complex and using their techniques would require us to built word graphs containing all the translations induced by arbitrary segmentations and permutations of the source sentence. 5 Conclusions In this paper, we have presented a methodology for analyzing the errors of PBTS, based on the computation of an approximation of the BLEU-4 oracle score. We have shown that this approximation could be computed fairly accurately and efficiently using Integer Linear Programming techniques. Our main result is a confirmation of the fact that extant PBTS systems are expressive enough to achieve very high translation performance with respect to conventional quality measurements. The main efforts should therefore strive to improve on the way phrases and hypotheses are scored during training. This gives further support to attempts aimed at designing context-dependent scoring functions as in (Stroppa et al., 2007; Gimpel and Smith, 2008), or at attempts to perform discriminative training of feature-rich models. (Bangalore et al., 2007). We have shown that the examination of difficult-totranslate sentences was an effective way to detect errors or inconsistencies in the reference translations, making our approach a potential aid for controlling the quality or assessing the difficulty of test data. Our experiments have also highlighted the impact of various parameters. Various extensions of the baseline ILP program have been suggested and/or evaluated. In particular, the ILP formalism lends itself well to expressing various constraints that are typically used in conventional PBTS. In 17The best BLEU-4 oracle they achieve on Europarl German to English is approximately 48; but they considered a smaller version of the training corpus and the WMT’06 test set. our future work, we aim at using this ILP framework to systematically assess various search configurations. We plan to explore how replacing non-reachable references with high-score pseudo-references can improve discrim- inative training of PBTS. We are also concerned by determining how tight is our approximation of the BLEU4 score is: to this end, we intend to compute the best BLEU-4 score within the n-best solutions of the oracle decoding problem. Acknowledgments Warm thanks to Houda Bouamor for helping us with the annotation tool. This work has been partly financed by OSEO, the French State Agency for Innovation, under the Quaero program. References Tobias Achterberg. 2007. Constraint Integer Programming. Ph.D. thesis, Technische Universit a¨t Berlin. http : / / opus .kobv .de /tuberl in/vol ltexte / 2 0 0 7 / 16 11/ . Abhishek Arun and Philipp Koehn. 2007. Online learning methods for discriminative training of phrase based statistical machine translation. In Proc. of MT Summit XI, Copenhagen, Denmark. Michael Auli, Adam Lopez, Hieu Hoang, and Philipp Koehn. 2009. A systematic analysis of translation model search spaces. In Proc. of WMT, pages 224–232, Athens, Greece. Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proc. of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan. Srinivas Bangalore, Patrick Haffner, and Stephan Kanthak. 2007. Statistical machine translation through global lexical selection and sentence reconstruction. In Proc. of ACL, pages 152–159, Prague, Czech Republic. L e´on Bottou and Olivier Bousquet. 2008. The tradeoffs oflarge scale learning. In Proc. of NIPS, pages 161–168, Vancouver, B.C., Canada. Chris Callison-Burch, Philipp Koehn, Christof Monz, and Josh Schroeder. 2009. Findings of the 2009 Workshop on Statistical Machine Translation. In Proc. of WMT, pages 1–28, Athens, Greece. David Chiang, Steve DeNeefe, Yee Seng Chan, and Hwee Tou Ng. 2008. Decomposability of translation metrics for improved evaluation and efficient algorithms. In Proc. of ECML, pages 610–619, Honolulu, Hawaii. John De Nero and Dan Klein. 2008. The complexity of phrase alignment problems. In Proc. of ACL: HLT, Short Papers, pages 25–28, Columbus, Ohio. Markus Dreyer, Keith B. Hall, and Sanjeev P. Khudanpur. 2007. Comparing reordering constraints for smt using efficient bleu oracle computation. In NAACL-HLT/AMTA Workshop on Syntax and Structure in Statistical Translation, pages 103– 110, Rochester, New York. 942 Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. 2001 . Fast decoding and optimal decoding for machine translation. In Proc. of ACL, pages 228–235, Toulouse, France. Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. 2004. Fast and optimal decoding for machine translation. Artificial Intelligence, 154(1-2): 127– 143. Ulrich Germann. 2003. Greedy decoding for statistical machine translation in almost linear time. In Proc. of NAACL, pages 1–8, Edmonton, Canada. Kevin Gimpel and Noah A. Smith. 2008. Rich source-side context for statistical machine translation. In Proc. of WMT, pages 9–17, Columbus, Ohio. Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proc. of NAACL, pages 48–54, Edmonton, Canada. Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris CallisonBurch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In Proc. of ACL, demonstration session. Philipp Koehn. 2004. Pharaoh: A beam search decoder for phrase-based statistical machine translation models. In Proc. of AMTA, pages 115–124, Washington DC. Shankar Kumar and William Byrne. 2005. Local phrase reordering models for statistical machine translation. In Proc. of HLT, pages 161–168, Vancouver, Canada. Alon Lavie, Kenji Sagae, and Shyamsundar Jayaraman. The significance of recall in automatic metrics for MT evaluation. In In Proc. of AMTA, pages 134–143, Washington DC. Gregor Leusch, Evgeny Matusov, and Hermann Ney. 2008. Complexity of finding the BLEU-optimal hypothesis in a confusion network. In Proc. of EMNLP, pages 839–847, Honolulu, Hawaii. Zhifei Li and Sanjeev Khudanpur. 2009. Efficient extraction of oracle-best translations from hypergraphs. In Proc. of NAACL, pages 9–12, Boulder, Colorado. Percy Liang, Alexandre Bouchard-C oˆt´ e, Dan Klein, and Ben Taskar. 2006. An end-to-end discriminative approach to machine translation. In Proc. of ACL, pages 761–768, Sydney, Australia. Adam Lopez. 2009. Translation as weighted deduction. In Proc. of EACL, pages 532–540, Athens, Greece. Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models. Comput. Linguist. , 29(1): 19–5 1. Franz Josef Och. 2003. Minimum error rate training in statistical machine translation. In Proc. of ACL, pages 160–167, Sapporo, Japan. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-jing Zhu. 2002. Bleu: A method for automatic evaluation of machine translation. Technical report, Philadelphia, Pennsylvania. D. Roth and W. Yih. 2005. Integer linear programming inference for conditional random fields. In Proc. of ICML, pages 737–744, Bonn, Germany. Nicolas Stroppa, Antal van den Bosch, and Andy Way. 2007. Exploiting source similarity for smt using context-informed features. In Andy Way and Barbara Proc. of TMI, pages Christoph Tillmann 231–240, Sk¨ ovde, and Tong Zhang. Gawronska, editors, Sweden. 2006. A discriminative global training algorithm for statistical mt. In Proc. of ACL, 721–728, Sydney, Australia. Turchi, Tijl De Bie, and Nello pages Marco Cristianini. 2008. Learn- ing performance of a machine translation system: a statistical and computational analysis. In Proc. of WMT, pages Columbus, Ohio. 35–43, Richard Zens and Hermann Ney. 2005. Word graphs for statistical machine translation. In Proc. of the ACL Workshop on Building and Using Parallel Texts, pages 191–198, Ann Arbor, Michigan. 943

6 0.13770299 40 emnlp-2010-Effects of Empty Categories on Machine Translation

7 0.13096514 2 emnlp-2010-A Fast Decoder for Joint Word Segmentation and POS-Tagging Using a Single Discriminative Model

8 0.12330736 57 emnlp-2010-Hierarchical Phrase-Based Translation Grammars Extracted from Alignment Posterior Probabilities

9 0.11122623 121 emnlp-2010-What a Parser Can Learn from a Semantic Role Labeler and Vice Versa

10 0.10914396 78 emnlp-2010-Minimum Error Rate Training by Sampling the Translation Lattice

11 0.10391113 33 emnlp-2010-Cross Language Text Classification by Model Translation and Semi-Supervised Learning

12 0.095489763 94 emnlp-2010-SCFG Decoding Without Binarization

13 0.093100101 93 emnlp-2010-Resolving Event Noun Phrases to Their Verbal Mentions

14 0.089676835 99 emnlp-2010-Statistical Machine Translation with a Factorized Grammar

15 0.087361455 76 emnlp-2010-Maximum Entropy Based Phrase Reordering for Hierarchical Phrase-Based Translation

16 0.087282322 65 emnlp-2010-Inducing Probabilistic CCG Grammars from Logical Form with Higher-Order Unification

17 0.085466042 5 emnlp-2010-A Hybrid Morpheme-Word Representation for Machine Translation of Morphologically Rich Languages

18 0.081509843 118 emnlp-2010-Utilizing Extra-Sentential Context for Parsing

19 0.076155245 36 emnlp-2010-Discriminative Word Alignment with a Function Word Reordering Model

20 0.071997203 39 emnlp-2010-EMNLP 044


similar papers computed by lsi model

lsi for this paper:

topicId topicWeight

[(0, 0.249), (1, -0.137), (2, 0.203), (3, 0.028), (4, 0.107), (5, 0.102), (6, 0.047), (7, -0.098), (8, -0.279), (9, -0.069), (10, 0.125), (11, -0.113), (12, -0.081), (13, -0.069), (14, -0.045), (15, -0.06), (16, 0.078), (17, -0.04), (18, 0.06), (19, -0.132), (20, -0.098), (21, 0.21), (22, 0.083), (23, 0.116), (24, -0.1), (25, -0.022), (26, 0.074), (27, 0.109), (28, 0.046), (29, -0.033), (30, -0.093), (31, -0.058), (32, 0.021), (33, 0.018), (34, 0.048), (35, 0.039), (36, -0.061), (37, 0.096), (38, 0.022), (39, 0.001), (40, -0.159), (41, -0.035), (42, 0.016), (43, 0.057), (44, -0.077), (45, 0.013), (46, -0.028), (47, -0.075), (48, 0.09), (49, 0.039)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.96830541 42 emnlp-2010-Efficient Incremental Decoding for Tree-to-String Translation

Author: Liang Huang ; Haitao Mi

Abstract: Syntax-based translation models should in principle be efficient with polynomially-sized search space, but in practice they are often embarassingly slow, partly due to the cost of language model integration. In this paper we borrow from phrase-based decoding the idea to generate a translation incrementally left-to-right, and show that for tree-to-string models, with a clever encoding of derivation history, this method runs in averagecase polynomial-time in theory, and lineartime with beam search in practice (whereas phrase-based decoding is exponential-time in theory and quadratic-time in practice). Experiments show that, with comparable translation quality, our tree-to-string system (in Python) can run more than 30 times faster than the phrase-based system Moses (in C++).

2 0.61296117 106 emnlp-2010-Top-Down Nearly-Context-Sensitive Parsing

Author: Eugene Charniak

Abstract: We present a new syntactic parser that works left-to-right and top down, thus maintaining a fully-connected parse tree for a few alternative parse hypotheses. All of the commonly used statistical parsers use context-free dynamic programming algorithms and as such work bottom up on the entire sentence. Thus they only find a complete fully connected parse at the very end. In contrast, both subjective and experimental evidence show that people understand a sentence word-to-word as they go along, or close to it. The constraint that the parser keeps one or more fully connected syntactic trees is intended to operationalize this cognitive fact. Our parser achieves a new best result for topdown parsers of 89.4%,a 20% error reduction over the previous single-parser best result for parsers of this type of 86.8% (Roark, 2001) . The improved performance is due to embracing the very large feature set available in exchange for giving up dynamic programming.

3 0.5748229 40 emnlp-2010-Effects of Empty Categories on Machine Translation

Author: Tagyoung Chung ; Daniel Gildea

Abstract: We examine effects that empty categories have on machine translation. Empty categories are elements in parse trees that lack corresponding overt surface forms (words) such as dropped pronouns and markers for control constructions. We start by training machine translation systems with manually inserted empty elements. We find that inclusion of some empty categories in training data improves the translation result. We expand the experiment by automatically inserting these elements into a larger data set using various methods and training on the modified corpus. We show that even when automatic prediction of null elements is not highly accurate, it nevertheless improves the end translation result.

4 0.54825473 86 emnlp-2010-Non-Isomorphic Forest Pair Translation

Author: Hui Zhang ; Min Zhang ; Haizhou Li ; Eng Siong Chng

Abstract: This paper studies two issues, non-isomorphic structure translation and target syntactic structure usage, for statistical machine translation in the context of forest-based tree to tree sequence translation. For the first issue, we propose a novel non-isomorphic translation framework to capture more non-isomorphic structure mappings than traditional tree-based and tree-sequence-based translation methods. For the second issue, we propose a parallel space searching method to generate hypothesis using tree-to-string model and evaluate its syntactic goodness using tree-to-tree/tree sequence model. This not only reduces the search complexity by merging spurious-ambiguity translation paths and solves the data sparseness issue in training, but also serves as a syntax-based target language model for better grammatical generation. Experiment results on the benchmark data show our proposed two solutions are very effective, achieving significant performance improvement over baselines when applying to different translation models.

5 0.46333852 18 emnlp-2010-Assessing Phrase-Based Translation Models with Oracle Decoding

Author: Guillaume Wisniewski ; Alexandre Allauzen ; Francois Yvon

Abstract: Extant Statistical Machine Translation (SMT) systems are very complex softwares, which embed multiple layers of heuristics and embark very large numbers of numerical parameters. As a result, it is difficult to analyze output translations and there is a real need for tools that could help developers to better understand the various causes of errors. In this study, we make a step in that direction and present an attempt to evaluate the quality of the phrase-based translation model. In order to identify those translation errors that stem from deficiencies in the phrase table (PT), we propose to compute the oracle BLEU-4 score, that is the best score that a system based on this PT can achieve on a reference corpus. By casting the computation of the oracle BLEU-1 as an Integer Linear Programming (ILP) problem, we show that it is possible to efficiently compute accurate lower-bounds of this score, and report measures performed on several standard benchmarks. Various other applications of these oracle decoding techniques are also reported and discussed. 1 Phrase-Based Machine Translation 1.1 Principle A Phrase-Based Translation System (PBTS) consists of a ruleset and a scoring function (Lopez, 2009). The ruleset, represented in the phrase table, is a set of phrase1pairs {(f, e) }, each pair expressing that the source phrase f can ,bee) r}e,w earicthten p (atirra enxslparteedss)i inngto t a target phrase e. Trarsaens flation hypotheses are generated by iteratively rewriting portions of the source sentence as prescribed by the ruleset, until each source word has been consumed by exactly one rule. The order of target words in an hypothesis is uniquely determined by the order in which the rewrite operation are performed. The search space ofthe translation model corresponds to the set of all possible sequences of 1Following the usage in statistical machine translation literature, use “phrase” to denote a subsequence of consecutive words. we 933 rules applications. The scoring function aims to rank all possible translation hypotheses in such a way that the best one has the highest score. A PBTS is learned from a parallel corpus in two independent steps. In a first step, the corpus is aligned at the word level, by using alignment tools such as Gi z a++ (Och and Ney, 2003) and some symmetrisation heuristics; phrases are then extracted by other heuristics (Koehn et al., 2003) and assigned numerical weights. In the second step, the parameters of the scoring function are estimated, typically through Minimum Error Rate training (Och, 2003). Translating a sentence amounts to finding the best scoring translation hypothesis in the search space. Because of the combinatorial nature of this problem, translation has to rely on heuristic search techniques such as greedy hill-climbing (Germann, 2003) or variants of best-first search like multi-stack decoding (Koehn, 2004). Moreover, to reduce the overall complexity of decoding, the search space is typically pruned using simple heuristics. For instance, the state-of-the-art phrase-based decoder Moses (Koehn et al., 2007) considers only a restricted number of translations for each source sequence2 and enforces a distortion limit3 over which phrases can be reordered. As a consequence, the best translation hypothesis returned by the decoder is not always the one with the highest score. 1.2 Typology of PBTS Errors Analyzing the errors of a SMT system is not an easy task, because of the number of models that are combined, the size of these models, and the high complexity of the various decision making processes. For a SMT system, three different kinds of errors can be distinguished (Germann et al., 2004; Auli et al., 2009): search errors, induction errors and model errors. The former corresponds to cases where the hypothesis with the best score is missed by the search procedure, either because of the use of an ap2the 3the option of Moses, defaulting to 20. dl option of Moses, whose default value is 7. tt l ProceMedITin,g Ms oasfs thaceh 2u0se1t0ts C,o UnSfAer,e n9c-e11 on O Ectmobpeir ic 2a0l1 M0.e ?tc ho2d0s10 in A Nsastouciraatlio Lnan fogru Cagoem Ppruotcaetisosninagl, L pinaggeusis 9t3ic3s–943, proximate search method or because of the restrictions of the search space. Induction errors correspond to cases where, given the model, the search space does not contain the reference. Finally, model errors correspond to cases where the hypothesis with the highest score is not the best translation according to the evaluation metric. Model errors encompass several types oferrors that occur during learning (Bottou and Bousquet, 2008)4. Approximation errors are errors caused by the use of a restricted and oversimplistic class of functions (here, finitestate transducers to model the generation of hypotheses and a linear scoring function to discriminate them) to model the translation process. Estimation errors correspond to the use of sub-optimal values for both the phrase pairs weights and the parameters of the scoring function. The reasons behind these errors are twofold: first, training only considers a finite sample of data; second, it relies on error prone alignments. As a result, some “good” phrases are extracted with a small weight, or, in the limit, are not extracted at all; and conversely that some “poor” phrases are inserted into the phrase table, sometimes with a really optimistic score. Sorting out and assessing the impact of these various causes of errors is of primary interest for SMT system developers: for lack of such diagnoses, it is difficult to figure out which components of the system require the most urgent attention. Diagnoses are however, given the tight intertwining among the various component of a system, very difficult to obtain: most evaluations are limited to the computation of global scores and usually do not imply any kind of failure analysis. 1.3 Contribution and organization To systematically assess the impact of the multiple heuristic decisions made during training and decoding, we propose, following (Dreyer et al., 2007; Auli et al., 2009), to work out oracle scores, that is to evaluate the best achievable performances of a PBTS. We aim at both studying the expressive power of PBTS and at providing tools for identifying and quantifying causes of failure. Under standard metrics such as BLEU (Papineni et al., 2002), oracle scores are difficult (if not impossible) to compute, but, by casting the computation of the oracle unigram recall and precision as an Integer Linear Programming (ILP) problem, we show that it is possible to efficiently compute accurate lower-bounds of the oracle BLEU-4 scores and report measurements performed on several standard benchmarks. The main contributions of this paper are twofold. We first introduce an ILP program able to efficiently find the best hypothesis a PBTS can achieve. This program can be easily extended to test various improvements to 4We omit here optimization errors. 934 phrase-base systems or to evaluate the impact of different parameter settings. Second, we present a number of complementary results illustrating the usage of our oracle decoder for identifying and analyzing PBTS errors. Our experimental results confirm the main conclusions of (Turchi et al., 2008), showing that extant PBTs have the potential to generate hypotheses having very high BLEU4 score and that their main bottleneck is their scoring function. The rest of this paper is organized as follows: in Section 2, we introduce and formalize the oracle decoding problem, and present a series of ILP problems of increasing complexity designed so as to deliver accurate lowerbounds of oracle score. This section closes with various extensions allowing to model supplementary constraints, most notably reordering constraints (Section 2.5). Our experiments are reported in Section 3, where we first introduce the training and test corpora, along with a description of our system building pipeline (Section 3. 1). We then discuss the baseline oracle BLEU scores (Section 3.2), analyze the non-reachable parts of the reference translations, and comment several complementary results which allow to identify causes of failures. Section 4 discuss our approach and findings with respect to the existing literature on error analysis and oracle decoding. We conclude and discuss further prospects in Section 5. 2 Oracle Decoder 2.1 The Oracle Decoding Problem Definition To get some insights on the errors of phrasebased systems and better understand their limits, we propose to consider the oracle decoding problem defined as follows: given a source sentence, its reference translation5 and a phrase table, what is the “best” translation hypothesis a system can generate? As usual, the quality of an hypothesis is evaluated by the similarity between the reference and the hypothesis. Note that in the oracle decoding problem, we are only assessing the ability of PBT systems to generate good candidate translations, irrespective of their ability to score them properly. We believe that studying this problem is interesting for various reasons. First, as described in Section 3.4, comparing the best hypothesis a system could have generated and the hypothesis it actually generates allows us to carry on both quantitative and qualitative failure analysis. The oracle decoding problem can also be used to assess the expressive power of phrase-based systems (Auli et al., 2009). Other applications include computing acceptable pseudo-references for discriminative training (Tillmann and Zhang, 2006; Liang et al., 2006; Arun and 5The oracle decoding problem can be extended to the case of multiple references. For the sake of simplicity, we only describe the case of a single reference. Koehn, 2007) or combining machine translation systems in a multi-source setting (Li and Khudanpur, 2009). We have also used oracle decoding to identify erroneous or difficult to translate references (Section 3.3). Evaluation Measure To fully define the oracle decoding problem, a measure of the similarity between a translation hypothesis and its reference translation has to be chosen. The most obvious choice is the BLEU-4 score (Papineni et al., 2002) used in most machine translation evaluations. However, using this metric in the oracle decoding problem raises several issues. First, BLEU-4 is a metric defined at the corpus level and is hard to interpret at the sentence level. More importantly, BLEU-4 is not decomposable6: as it relies on 4-grams statistics, the contribution of each phrase pair to the global score depends on the translation of the previous and following phrases and can not be evaluated in isolation. Because of its nondecomposability, maximizing BLEU-4 is hard; in particular, the phrase-level decomposability of the evaluation × metric is necessary in our approach. To circumvent this difficulty, we propose to evaluate the similarity between a translation hypothesis and a reference by the number of their common words. This amounts to evaluating translation quality in terms of unigram precision and recall, which are highly correlated with human judgements (Lavie et al., ). This measure is closely related to the BLEU-1 evaluation metric and the Meteor (Banerjee and Lavie, 2005) metric (when it is evaluated without considering near-matches and the distortion penalty). We also believe that hypotheses that maximize the unigram precision and recall at the sentence level yield corpus level BLEU-4 scores close the maximal achievable. Indeed, in the setting we will introduce in the next section, BLEU-1 and BLEU-4 are highly correlated: as all correct words of the hypothesis will be compelled to be at their correct position, any hypothesis with a high 1-gram precision is also bound to have a high 2-gram precision, etc. 2.2 Formalizing the Oracle Decoding Problem The oracle decoding problem has already been considered in the case of word-based models, in which all translation units are bound to contain only one word. The problem can then be solved by a bipartite graph matching algorithm (Leusch et al., 2008): given a n m binary matarligxo describing possible t 2r0an08sl)a:ti goinv elinn aks n b×emtw beeinna source words and target words7, this algorithm finds the subset of links maximizing the number of words of the reference that have been translated, while ensuring that each word 6Neither at the sentence (Chiang et al., 2008), nor at the phrase level. 7The (i, j) entry of the matrix is 1if the ith word of the source can be translated by the jth word of the reference, 0 otherwise. 935 is translated only once. Generalizing this approach to phrase-based systems amounts to solving the following problem: given a set of possible translation links between potential phrases of the source and of the target, find the subset of links so that the unigram precision and recall are the highest possible. The corresponding oracle hypothesis can then be easily generated by selecting the target phrases that are aligned with one source phrase, disregarding the others. In addition, to mimic the way OOVs are usually handled, we match identical OOV tokens appearing both in the source and target sentences. In this approach, the unigram precision is always one (every word generated in the oracle hypothesis matches exactly one word in the reference). As a consequence, to find the oracle hypothesis, we just have to maximize the recall, that is the number of words appearing both in the hypothesis and in the reference. Considering phrases instead of isolated words has a major impact on the computational complexity: in this new setting, the optimal segmentations in phrases of both the source and of the target have to be worked out in addition to links selection. Moreover, constraints have to be taken into account so as to enforce a proper segmentation of the source and target sentences. These constraints make it impossible to use the approach of (Leusch et al., 2008) and concur in making the oracle decoding problem for phrase-based models more complex than it is for word-based models: it can be proven, using arguments borrowed from (De Nero and Klein, 2008), that this problem is NP-hard even for the simple unigram precision measure. 2.3 An Integer Program for Oracle Decoding To solve the combinatorial problem introduced in the previous section, we propose to cast it into an Integer Linear Programming (ILP) problem, for which many generic solvers exist. ILP has already been used in SMT to find the optimal translation for word-based (Germann et al., 2001) and to study the complexity of learning phrase alignments (De Nero and Klein, 2008) models. Following the latter reference, we introduce the following variables: fi,j (resp. ek,l) is a binary indicator variable that is true when the phrase contains all spans from betweenword position i to j (resp. k to l) of the source (resp. target) sentence. We also introduce a binary variable, denoted ai,j,k,l, to describe a possible link between source phrase fi,j and target phrase ek,l. These variables are built from the entries of the phrase table according to selection strategies introduced in Section 2.4. In the following, index variables are so that: 0 ≤ i< j ≤ n, in the source sentence and 0 ≤ k < l ≤ m, in the target sentence, where n (resp. m) is the length of the source (resp. target) sentence. Solving the oracle decoding problem then amounts to optimizing the following objective function: mi,j,akx,li,Xj,k,lai,j,k,l· (l − k), (1) under the constraints: X ∀x ∈ J1,mK : ek,l ≤ 1 (2) = (3) 1∀,kn,lK : Xai,j,k,l = fk,l (4) ∀i,j : Xai,j,k,l (5) k,l s.tX. Xk≤x≤l ∀∀xy ∈∈ J11,,mnKK : X i,j s.tX. Xi≤y≤j fi,j 1 Xi,j = ei,j Xk,l The objective function (1) corresponds to the number of target words that are generated. The first set of constraints (2) ensures that each word in the reference e ap- pears in no more than one phrase. Maximizing the objective under these constraints amounts to maximizing the unigram recall. The second set of constraints (3) ensures that each word in the source f is translated exactly once, which guarantees that the search space of the ILP problem is the same as the search space of a phrase-based system. Constraints (4) bind the fk,l and ai,j,k,l variables, ensuring that whenever a link ai,j,k,l is active, the corresponding phrase fk,l is also active. Constraints (5) play a similar role for the reference. The Relaxed Problem Even though it accurately models the search space of a phrase-based decoder, this programs is not really useful as is: due to out-ofvocabulary words or missing entries in the phrase table, the constraint that all source words should be translated yields infeasible problems8. We propose to relax this problem and allow some source words to remain untranslated. This is done by replacing constraints (3) by: ∀y ∈ J1,nK : X i,j s.tX. Xi≤y≤j fi,j ≤ 1 To better ref∀lyec ∈t th J1e, bneKh :avior of phrase-based decoders, which attempt to translate all source words, we also need to modify the objective function as follows: X i,Xj,k,l ai,j,k,l · (l − k) +Xfi,j · (j − i) Xi,j (6) The second term in this new objective ensures that optimal solutions translate as many source words as possible. 8An ILP problem is said to be infeasible when tion violates at least one constraint. every possible solu- 936 The Relaxed-Distortion Problem A last caveat with the Relaxed optimization program is caused by frequently occurring source tokens, such as function words or punctuation signs, which can often align with more than one target word. For lack of taking distortion information into account in our objective function, all these alignments are deemed equivalent, even if some of them are clearly more satisfactory than others. This situation is illustrated on Figure 1. le chat et the cat and le the chien dog Figure 1: Equivalent alignments between “le” and “the”. The dashed lines corresponds to a less interpretable solution. To overcome this difficulty, we propose a last change to the objective function: X i,Xj,k,l ai,j,k,l · (l − k) +Xfi,j · (j − i) X ai,j,k,l|k − i| Xi,j −α (7) i Xk ,l X,j, Compared to the objective function of the relaxed problem (6), we introduce here a supplementary penalty factor which favors monotonous alignments. For each phrase pair, the higher the difference between source and target positions, the higher this penalty. If α is small enough, this extra term allows us to select, among all the optimal alignments of the re l axed problem, the one with the lowest distortion. In our experiments, we set α to min {n, m} to ensure that the penalty factor is always smminall{enr, ,tmha}n tthoe e rneswuarred t fhoart aligning atwltyo single iwso ardlwsa. 2.4 Selecting Indicator Variables In the approach introduced in the previous sections, the oracle decoding problem is solved by selecting, among a set of possible translation links, the ones that yield the solution with the highest unigram recall. We propose two strategies to build this set of possible translation links. In the first one, denoted exact match, an indicator ai,j,k,l is created if there is an entry (f, e) so that f spans from word position ito j in the source and e from word position k to l in the target. In this strategy, the ILP program considers exactly the same ruleset as conventional phrase-based decoders. We also consider an alternative strategy, which could help us to identify errors made during the phrase extraction process. In this strategy, denoted inside match, an indicator ai,j,k,l is created when the following three criteria are met: i) f spans from position ito j of the source; ii) a substring of e, denoted e, spans from position k to l of the reference; iii) (f, e¯) is not an entry of the phrase table. The resulting set of indicator variables thus contains, at least, all the variables used in the exact match strategy. In addition, we license here the use of phrases containing words that do not occur in the reference. In fact, using such solutions can yield higher BLEU scores when the reward for additional correct matches exceeds the cost incurred by wrong predictions. These cases are symptoms of situations where the extraction heuristic failed to extract potentially useful subphrases. 2.5 Oracle Decoding with Reordering Constraints The ILP problem introduced in the previous section can be extended in several ways to describe and test various improvements to phrase-based systems or to evaluate the impact of different parameter settings. This flexibility mainly stems from the possibility offered by our framework to express arbitrary constraints over variables. In this section, we illustrate these possibilities by describing how reordering constraints can easily be considered. As a first example, the Moses decoder uses a distortion limit to constrain the set of possible reorderings. This constraint “enforces (...) that the last word of a phrase chosen for translation cannot be more than d9 words from the leftmost untranslated word in the source” (Lopez, 2009) and is expressed as: ∀aijkl , ai0j0k0l0 s.t. k > k0, aijkl · ai0j0k0l0 · |j − i0 + 1| ≤ d, The maximum distortion limit strategy (Lopez, 2009) is also easily expressed and take the following form (assuming this constraint is parameterized by d): ∀l < m − 1, ai,j,k,l·ai0,j0,l+1,l0 · |i0 − j − 1| 71is%t e6hs.a distortion greater that Moses default distortion limit. alignment decisions enabled by the use of larger training corpora and phrase table. To evaluate the impact ofthe second heuristic, we computed the number of phrases discarded by Moses (be- cause of the default ttl limit) but used in the oracle hypotheses. In the English to French NEWSCO setting, they account for 34.11% of the total number of phrases used in the oracle hypotheses. When the oracle decoder is constrained to use the same phrase table as Moses, its BLEU-4 score drops to 42.78. This shows that filtering the phrase table prior to decoding discards many useful phrase pairs and is seriously limiting the best achievable performance, a conclusion shared with (Auli et al., 2009). Search Errors Search errors can be identified by comparing the score of the best hypothesis found by Moses and the score of the oracle hypothesis. If the score of the oracle hypothesis is higher, then there has been a search error; on the contrary, there has been an estimation error when the score of the oracle hypothesis is lower than the score of the best hypothesis found by Moses. 940 Based on the comparison of the score of Moses hypotheses and of oracle hypotheses for the English to French NEWSCO setting, our preliminary conclusion is that the number of search errors is quite limited: only about 5% of the hypotheses of our oracle decoder are actually getting a better score than Moses solutions. Again, this shows that the scoring function (model error) is one of the main bottleneck of current PBTS. Comparing these hypotheses is nonetheless quite revealing: while Moses mostly selects phrase pairs with high translation scores and generates monotonous alignments, our ILP decoder uses larger reorderings and less probable phrases to achieve better solutions: on average, the reordering score of oracle solutions is −5.74, compared to −76.78 fscoro rMeo osfe osr outputs. iGonivsen is −the5 weight assigned through MERT training to the distortion score, no wonder that these hypotheses are severely penalized. The Impact of Phrase Length The observed outputs do not only depend on decisions made during the search, but also on decisions made during training. One such decision is the specification of maximal length for the source and target phrases. In our framework, evaluating the impact of this decision is simple: it suffices to change the definition of indicator variables so as to consider only alignments between phrases of a given length. In the English-French NEWSCO setting, the most restrictive choice, when only alignments between single words are authorized, yields an oracle BLEU-4 of 48.68; however, authorizing phrases up to length 2 allows to achieve an oracle value of 66.57, very close to the score achieved when considering all extracted phrases (67.77). This is corroborated with a further analysis of our oracle alignments, which use phrases whose average source length is 1.21 words (respectively 1.31 for target words). If many studies have already acknowledged the predomi- nance of “small” phrases in actual translations, our oracle scores suggest that, for this language pair, increasing the phrase length limit beyond 2 or 3 might be a waste of computational resources. 4 Related Work To the best of our knowledge, there are only a few works that try to study the expressive power ofphrase-based machine translation systems or to provide tools for analyzing potential causes of failure. The approach described in (Auli et al., 2009) is very similar to ours: in this study, the authors propose to find and analyze the limits of machine translation systems by studying the reference reachability. A reference is reachable for a given system if it can be exactly generated by this system. Reference reachability is assessed using Moses in forced decoding mode: during search, all hypotheses that deviate from the reference are simply discarded. Even though the main goal of this study was to compare the search space of phrase-based and hierarchical systems, it also provides some insights on the impact of various search parameters in Moses, delivering conclusions that are consistent with our main results. As described in Section 1.2, these authors also propose a typology of the errors of a statistical translation systems, but do not attempt to provide methods for identifying them. The authors of (Turchi et al., 2008) study the learn- ing capabilities of Moses by extensively analyzing learning curves representing the translation performances as a function of the number of examples, and by corrupting the model parameters. Even though their focus is more on assessing the scoring function, they reach conclusions similar to ours: the current bottleneck of translation performances is not the representation power of the PBTS but rather in their scoring functions. Oracle decoding is useful to compute reachable pseudo-references in the context of discriminative training. This is the main motivation of (Tillmann and Zhang, 2006), where the authors compute high BLEU hypotheses by running a conventional decoder so as to maximize a per-sentence approximation of BLEU-4, under a simple (local) reordering model. Oracle decoding has also been used to assess the limitations induced by various reordering constraints in (Dreyer et al., 2007). To this end, the authors propose to use a beam-search based oracle decoder, which computes lower bounds of the best achievable BLEU-4 using dynamic programming techniques over finite-state (for so-called local and IBM constraints) or hierarchically structured (for ITG constraints) sets of hypotheses. Even 941 though the numbers reported in this study are not directly comparable with ours17, it seems that our decoder is not only conceptually much simpler, but also achieves much more optimistic lower-bounds of the oracle BLEU score. The approach described in (Li and Khudanpur, 2009) employs a similar technique, which is to guide a heuristic search in an hypergraph representing possible translation hypotheses with n-gram counts matches, which amounts to decoding with a n-gram model trained on the sole reference translation. Additional tricks are presented in this article to speed-up decoding. Computing oracle BLEU scores is also the subject of (Zens and Ney, 2005; Leusch et al., 2008), yet with a different emphasis. These studies are concerned with finding the best hypotheses in a word graph or in a consensus network, a problem that has various implications for multi-pass decoding and/or system combination techniques. The former reference describes an exponential approximate algorithm, while the latter proves the NPcompleteness of this problem and discuss various heuristic approaches. Our problem is somewhat more complex and using their techniques would require us to built word graphs containing all the translations induced by arbitrary segmentations and permutations of the source sentence. 5 Conclusions In this paper, we have presented a methodology for analyzing the errors of PBTS, based on the computation of an approximation of the BLEU-4 oracle score. We have shown that this approximation could be computed fairly accurately and efficiently using Integer Linear Programming techniques. Our main result is a confirmation of the fact that extant PBTS systems are expressive enough to achieve very high translation performance with respect to conventional quality measurements. The main efforts should therefore strive to improve on the way phrases and hypotheses are scored during training. This gives further support to attempts aimed at designing context-dependent scoring functions as in (Stroppa et al., 2007; Gimpel and Smith, 2008), or at attempts to perform discriminative training of feature-rich models. (Bangalore et al., 2007). We have shown that the examination of difficult-totranslate sentences was an effective way to detect errors or inconsistencies in the reference translations, making our approach a potential aid for controlling the quality or assessing the difficulty of test data. Our experiments have also highlighted the impact of various parameters. Various extensions of the baseline ILP program have been suggested and/or evaluated. In particular, the ILP formalism lends itself well to expressing various constraints that are typically used in conventional PBTS. In 17The best BLEU-4 oracle they achieve on Europarl German to English is approximately 48; but they considered a smaller version of the training corpus and the WMT’06 test set. our future work, we aim at using this ILP framework to systematically assess various search configurations. We plan to explore how replacing non-reachable references with high-score pseudo-references can improve discrim- inative training of PBTS. We are also concerned by determining how tight is our approximation of the BLEU4 score is: to this end, we intend to compute the best BLEU-4 score within the n-best solutions of the oracle decoding problem. Acknowledgments Warm thanks to Houda Bouamor for helping us with the annotation tool. This work has been partly financed by OSEO, the French State Agency for Innovation, under the Quaero program. References Tobias Achterberg. 2007. Constraint Integer Programming. Ph.D. thesis, Technische Universit a¨t Berlin. http : / / opus .kobv .de /tuberl in/vol ltexte / 2 0 0 7 / 16 11/ . Abhishek Arun and Philipp Koehn. 2007. Online learning methods for discriminative training of phrase based statistical machine translation. In Proc. of MT Summit XI, Copenhagen, Denmark. Michael Auli, Adam Lopez, Hieu Hoang, and Philipp Koehn. 2009. A systematic analysis of translation model search spaces. In Proc. of WMT, pages 224–232, Athens, Greece. Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proc. of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan. Srinivas Bangalore, Patrick Haffner, and Stephan Kanthak. 2007. Statistical machine translation through global lexical selection and sentence reconstruction. In Proc. of ACL, pages 152–159, Prague, Czech Republic. L e´on Bottou and Olivier Bousquet. 2008. The tradeoffs oflarge scale learning. In Proc. of NIPS, pages 161–168, Vancouver, B.C., Canada. Chris Callison-Burch, Philipp Koehn, Christof Monz, and Josh Schroeder. 2009. Findings of the 2009 Workshop on Statistical Machine Translation. In Proc. of WMT, pages 1–28, Athens, Greece. David Chiang, Steve DeNeefe, Yee Seng Chan, and Hwee Tou Ng. 2008. Decomposability of translation metrics for improved evaluation and efficient algorithms. In Proc. of ECML, pages 610–619, Honolulu, Hawaii. John De Nero and Dan Klein. 2008. The complexity of phrase alignment problems. In Proc. of ACL: HLT, Short Papers, pages 25–28, Columbus, Ohio. Markus Dreyer, Keith B. Hall, and Sanjeev P. Khudanpur. 2007. Comparing reordering constraints for smt using efficient bleu oracle computation. In NAACL-HLT/AMTA Workshop on Syntax and Structure in Statistical Translation, pages 103– 110, Rochester, New York. 942 Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. 2001 . Fast decoding and optimal decoding for machine translation. In Proc. of ACL, pages 228–235, Toulouse, France. Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. 2004. Fast and optimal decoding for machine translation. Artificial Intelligence, 154(1-2): 127– 143. Ulrich Germann. 2003. Greedy decoding for statistical machine translation in almost linear time. In Proc. of NAACL, pages 1–8, Edmonton, Canada. Kevin Gimpel and Noah A. Smith. 2008. Rich source-side context for statistical machine translation. In Proc. of WMT, pages 9–17, Columbus, Ohio. Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proc. of NAACL, pages 48–54, Edmonton, Canada. Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris CallisonBurch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In Proc. of ACL, demonstration session. Philipp Koehn. 2004. Pharaoh: A beam search decoder for phrase-based statistical machine translation models. In Proc. of AMTA, pages 115–124, Washington DC. Shankar Kumar and William Byrne. 2005. Local phrase reordering models for statistical machine translation. In Proc. of HLT, pages 161–168, Vancouver, Canada. Alon Lavie, Kenji Sagae, and Shyamsundar Jayaraman. The significance of recall in automatic metrics for MT evaluation. In In Proc. of AMTA, pages 134–143, Washington DC. Gregor Leusch, Evgeny Matusov, and Hermann Ney. 2008. Complexity of finding the BLEU-optimal hypothesis in a confusion network. In Proc. of EMNLP, pages 839–847, Honolulu, Hawaii. Zhifei Li and Sanjeev Khudanpur. 2009. Efficient extraction of oracle-best translations from hypergraphs. In Proc. of NAACL, pages 9–12, Boulder, Colorado. Percy Liang, Alexandre Bouchard-C oˆt´ e, Dan Klein, and Ben Taskar. 2006. An end-to-end discriminative approach to machine translation. In Proc. of ACL, pages 761–768, Sydney, Australia. Adam Lopez. 2009. Translation as weighted deduction. In Proc. of EACL, pages 532–540, Athens, Greece. Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models. Comput. Linguist. , 29(1): 19–5 1. Franz Josef Och. 2003. Minimum error rate training in statistical machine translation. In Proc. of ACL, pages 160–167, Sapporo, Japan. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-jing Zhu. 2002. Bleu: A method for automatic evaluation of machine translation. Technical report, Philadelphia, Pennsylvania. D. Roth and W. Yih. 2005. Integer linear programming inference for conditional random fields. In Proc. of ICML, pages 737–744, Bonn, Germany. Nicolas Stroppa, Antal van den Bosch, and Andy Way. 2007. Exploiting source similarity for smt using context-informed features. In Andy Way and Barbara Proc. of TMI, pages Christoph Tillmann 231–240, Sk¨ ovde, and Tong Zhang. Gawronska, editors, Sweden. 2006. A discriminative global training algorithm for statistical mt. In Proc. of ACL, 721–728, Sydney, Australia. Turchi, Tijl De Bie, and Nello pages Marco Cristianini. 2008. Learn- ing performance of a machine translation system: a statistical and computational analysis. In Proc. of WMT, pages Columbus, Ohio. 35–43, Richard Zens and Hermann Ney. 2005. Word graphs for statistical machine translation. In Proc. of the ACL Workshop on Building and Using Parallel Texts, pages 191–198, Ann Arbor, Michigan. 943

6 0.44538853 98 emnlp-2010-Soft Syntactic Constraints for Hierarchical Phrase-Based Translation Using Latent Syntactic Distributions

7 0.42221317 94 emnlp-2010-SCFG Decoding Without Binarization

8 0.40059799 2 emnlp-2010-A Fast Decoder for Joint Word Segmentation and POS-Tagging Using a Single Discriminative Model

9 0.37864596 78 emnlp-2010-Minimum Error Rate Training by Sampling the Translation Lattice

10 0.37564099 93 emnlp-2010-Resolving Event Noun Phrases to Their Verbal Mentions

11 0.3496646 5 emnlp-2010-A Hybrid Morpheme-Word Representation for Machine Translation of Morphologically Rich Languages

12 0.3310886 118 emnlp-2010-Utilizing Extra-Sentential Context for Parsing

13 0.32204118 76 emnlp-2010-Maximum Entropy Based Phrase Reordering for Hierarchical Phrase-Based Translation

14 0.31926847 121 emnlp-2010-What a Parser Can Learn from a Semantic Role Labeler and Vice Versa

15 0.31732965 99 emnlp-2010-Statistical Machine Translation with a Factorized Grammar

16 0.29110706 57 emnlp-2010-Hierarchical Phrase-Based Translation Grammars Extracted from Alignment Posterior Probabilities

17 0.28236523 65 emnlp-2010-Inducing Probabilistic CCG Grammars from Logical Form with Higher-Order Unification

18 0.26024476 22 emnlp-2010-Automatic Evaluation of Translation Quality for Distant Language Pairs

19 0.24430473 63 emnlp-2010-Improving Translation via Targeted Paraphrasing

20 0.24270663 33 emnlp-2010-Cross Language Text Classification by Model Translation and Semi-Supervised Learning


similar papers computed by lda model

lda for this paper:

topicId topicWeight

[(3, 0.011), (10, 0.014), (12, 0.044), (28, 0.292), (29, 0.113), (30, 0.015), (32, 0.015), (52, 0.061), (56, 0.044), (62, 0.02), (66, 0.084), (72, 0.034), (76, 0.069), (77, 0.014), (87, 0.036), (89, 0.015), (92, 0.025)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.80815262 42 emnlp-2010-Efficient Incremental Decoding for Tree-to-String Translation

Author: Liang Huang ; Haitao Mi

Abstract: Syntax-based translation models should in principle be efficient with polynomially-sized search space, but in practice they are often embarassingly slow, partly due to the cost of language model integration. In this paper we borrow from phrase-based decoding the idea to generate a translation incrementally left-to-right, and show that for tree-to-string models, with a clever encoding of derivation history, this method runs in averagecase polynomial-time in theory, and lineartime with beam search in practice (whereas phrase-based decoding is exponential-time in theory and quadratic-time in practice). Experiments show that, with comparable translation quality, our tree-to-string system (in Python) can run more than 30 times faster than the phrase-based system Moses (in C++).

2 0.589737 7 emnlp-2010-A Mixture Model with Sharing for Lexical Semantics

Author: Joseph Reisinger ; Raymond Mooney

Abstract: We introduce tiered clustering, a mixture model capable of accounting for varying degrees of shared (context-independent) feature structure, and demonstrate its applicability to inferring distributed representations of word meaning. Common tasks in lexical semantics such as word relatedness or selectional preference can benefit from modeling such structure: Polysemous word usage is often governed by some common background metaphoric usage (e.g. the senses of line or run), and likewise modeling the selectional preference of verbs relies on identifying commonalities shared by their typical arguments. Tiered clustering can also be viewed as a form of soft feature selection, where features that do not contribute meaningfully to the clustering can be excluded. We demonstrate the applicability of tiered clustering, highlighting particular cases where modeling shared structure is beneficial and where it can be detrimental.

3 0.49837872 98 emnlp-2010-Soft Syntactic Constraints for Hierarchical Phrase-Based Translation Using Latent Syntactic Distributions

Author: Zhongqiang Huang ; Martin Cmejrek ; Bowen Zhou

Abstract: In this paper, we present a novel approach to enhance hierarchical phrase-based machine translation systems with linguistically motivated syntactic features. Rather than directly using treebank categories as in previous studies, we learn a set of linguistically-guided latent syntactic categories automatically from a source-side parsed, word-aligned parallel corpus, based on the hierarchical structure among phrase pairs as well as the syntactic structure of the source side. In our model, each X nonterminal in a SCFG rule is decorated with a real-valued feature vector computed based on its distribution of latent syntactic categories. These feature vectors are utilized at decod- ing time to measure the similarity between the syntactic analysis of the source side and the syntax of the SCFG rules that are applied to derive translations. Our approach maintains the advantages of hierarchical phrase-based translation systems while at the same time naturally incorporates soft syntactic constraints.

4 0.49146521 18 emnlp-2010-Assessing Phrase-Based Translation Models with Oracle Decoding

Author: Guillaume Wisniewski ; Alexandre Allauzen ; Francois Yvon

Abstract: Extant Statistical Machine Translation (SMT) systems are very complex softwares, which embed multiple layers of heuristics and embark very large numbers of numerical parameters. As a result, it is difficult to analyze output translations and there is a real need for tools that could help developers to better understand the various causes of errors. In this study, we make a step in that direction and present an attempt to evaluate the quality of the phrase-based translation model. In order to identify those translation errors that stem from deficiencies in the phrase table (PT), we propose to compute the oracle BLEU-4 score, that is the best score that a system based on this PT can achieve on a reference corpus. By casting the computation of the oracle BLEU-1 as an Integer Linear Programming (ILP) problem, we show that it is possible to efficiently compute accurate lower-bounds of this score, and report measures performed on several standard benchmarks. Various other applications of these oracle decoding techniques are also reported and discussed. 1 Phrase-Based Machine Translation 1.1 Principle A Phrase-Based Translation System (PBTS) consists of a ruleset and a scoring function (Lopez, 2009). The ruleset, represented in the phrase table, is a set of phrase1pairs {(f, e) }, each pair expressing that the source phrase f can ,bee) r}e,w earicthten p (atirra enxslparteedss)i inngto t a target phrase e. Trarsaens flation hypotheses are generated by iteratively rewriting portions of the source sentence as prescribed by the ruleset, until each source word has been consumed by exactly one rule. The order of target words in an hypothesis is uniquely determined by the order in which the rewrite operation are performed. The search space ofthe translation model corresponds to the set of all possible sequences of 1Following the usage in statistical machine translation literature, use “phrase” to denote a subsequence of consecutive words. we 933 rules applications. The scoring function aims to rank all possible translation hypotheses in such a way that the best one has the highest score. A PBTS is learned from a parallel corpus in two independent steps. In a first step, the corpus is aligned at the word level, by using alignment tools such as Gi z a++ (Och and Ney, 2003) and some symmetrisation heuristics; phrases are then extracted by other heuristics (Koehn et al., 2003) and assigned numerical weights. In the second step, the parameters of the scoring function are estimated, typically through Minimum Error Rate training (Och, 2003). Translating a sentence amounts to finding the best scoring translation hypothesis in the search space. Because of the combinatorial nature of this problem, translation has to rely on heuristic search techniques such as greedy hill-climbing (Germann, 2003) or variants of best-first search like multi-stack decoding (Koehn, 2004). Moreover, to reduce the overall complexity of decoding, the search space is typically pruned using simple heuristics. For instance, the state-of-the-art phrase-based decoder Moses (Koehn et al., 2007) considers only a restricted number of translations for each source sequence2 and enforces a distortion limit3 over which phrases can be reordered. As a consequence, the best translation hypothesis returned by the decoder is not always the one with the highest score. 1.2 Typology of PBTS Errors Analyzing the errors of a SMT system is not an easy task, because of the number of models that are combined, the size of these models, and the high complexity of the various decision making processes. For a SMT system, three different kinds of errors can be distinguished (Germann et al., 2004; Auli et al., 2009): search errors, induction errors and model errors. The former corresponds to cases where the hypothesis with the best score is missed by the search procedure, either because of the use of an ap2the 3the option of Moses, defaulting to 20. dl option of Moses, whose default value is 7. tt l ProceMedITin,g Ms oasfs thaceh 2u0se1t0ts C,o UnSfAer,e n9c-e11 on O Ectmobpeir ic 2a0l1 M0.e ?tc ho2d0s10 in A Nsastouciraatlio Lnan fogru Cagoem Ppruotcaetisosninagl, L pinaggeusis 9t3ic3s–943, proximate search method or because of the restrictions of the search space. Induction errors correspond to cases where, given the model, the search space does not contain the reference. Finally, model errors correspond to cases where the hypothesis with the highest score is not the best translation according to the evaluation metric. Model errors encompass several types oferrors that occur during learning (Bottou and Bousquet, 2008)4. Approximation errors are errors caused by the use of a restricted and oversimplistic class of functions (here, finitestate transducers to model the generation of hypotheses and a linear scoring function to discriminate them) to model the translation process. Estimation errors correspond to the use of sub-optimal values for both the phrase pairs weights and the parameters of the scoring function. The reasons behind these errors are twofold: first, training only considers a finite sample of data; second, it relies on error prone alignments. As a result, some “good” phrases are extracted with a small weight, or, in the limit, are not extracted at all; and conversely that some “poor” phrases are inserted into the phrase table, sometimes with a really optimistic score. Sorting out and assessing the impact of these various causes of errors is of primary interest for SMT system developers: for lack of such diagnoses, it is difficult to figure out which components of the system require the most urgent attention. Diagnoses are however, given the tight intertwining among the various component of a system, very difficult to obtain: most evaluations are limited to the computation of global scores and usually do not imply any kind of failure analysis. 1.3 Contribution and organization To systematically assess the impact of the multiple heuristic decisions made during training and decoding, we propose, following (Dreyer et al., 2007; Auli et al., 2009), to work out oracle scores, that is to evaluate the best achievable performances of a PBTS. We aim at both studying the expressive power of PBTS and at providing tools for identifying and quantifying causes of failure. Under standard metrics such as BLEU (Papineni et al., 2002), oracle scores are difficult (if not impossible) to compute, but, by casting the computation of the oracle unigram recall and precision as an Integer Linear Programming (ILP) problem, we show that it is possible to efficiently compute accurate lower-bounds of the oracle BLEU-4 scores and report measurements performed on several standard benchmarks. The main contributions of this paper are twofold. We first introduce an ILP program able to efficiently find the best hypothesis a PBTS can achieve. This program can be easily extended to test various improvements to 4We omit here optimization errors. 934 phrase-base systems or to evaluate the impact of different parameter settings. Second, we present a number of complementary results illustrating the usage of our oracle decoder for identifying and analyzing PBTS errors. Our experimental results confirm the main conclusions of (Turchi et al., 2008), showing that extant PBTs have the potential to generate hypotheses having very high BLEU4 score and that their main bottleneck is their scoring function. The rest of this paper is organized as follows: in Section 2, we introduce and formalize the oracle decoding problem, and present a series of ILP problems of increasing complexity designed so as to deliver accurate lowerbounds of oracle score. This section closes with various extensions allowing to model supplementary constraints, most notably reordering constraints (Section 2.5). Our experiments are reported in Section 3, where we first introduce the training and test corpora, along with a description of our system building pipeline (Section 3. 1). We then discuss the baseline oracle BLEU scores (Section 3.2), analyze the non-reachable parts of the reference translations, and comment several complementary results which allow to identify causes of failures. Section 4 discuss our approach and findings with respect to the existing literature on error analysis and oracle decoding. We conclude and discuss further prospects in Section 5. 2 Oracle Decoder 2.1 The Oracle Decoding Problem Definition To get some insights on the errors of phrasebased systems and better understand their limits, we propose to consider the oracle decoding problem defined as follows: given a source sentence, its reference translation5 and a phrase table, what is the “best” translation hypothesis a system can generate? As usual, the quality of an hypothesis is evaluated by the similarity between the reference and the hypothesis. Note that in the oracle decoding problem, we are only assessing the ability of PBT systems to generate good candidate translations, irrespective of their ability to score them properly. We believe that studying this problem is interesting for various reasons. First, as described in Section 3.4, comparing the best hypothesis a system could have generated and the hypothesis it actually generates allows us to carry on both quantitative and qualitative failure analysis. The oracle decoding problem can also be used to assess the expressive power of phrase-based systems (Auli et al., 2009). Other applications include computing acceptable pseudo-references for discriminative training (Tillmann and Zhang, 2006; Liang et al., 2006; Arun and 5The oracle decoding problem can be extended to the case of multiple references. For the sake of simplicity, we only describe the case of a single reference. Koehn, 2007) or combining machine translation systems in a multi-source setting (Li and Khudanpur, 2009). We have also used oracle decoding to identify erroneous or difficult to translate references (Section 3.3). Evaluation Measure To fully define the oracle decoding problem, a measure of the similarity between a translation hypothesis and its reference translation has to be chosen. The most obvious choice is the BLEU-4 score (Papineni et al., 2002) used in most machine translation evaluations. However, using this metric in the oracle decoding problem raises several issues. First, BLEU-4 is a metric defined at the corpus level and is hard to interpret at the sentence level. More importantly, BLEU-4 is not decomposable6: as it relies on 4-grams statistics, the contribution of each phrase pair to the global score depends on the translation of the previous and following phrases and can not be evaluated in isolation. Because of its nondecomposability, maximizing BLEU-4 is hard; in particular, the phrase-level decomposability of the evaluation × metric is necessary in our approach. To circumvent this difficulty, we propose to evaluate the similarity between a translation hypothesis and a reference by the number of their common words. This amounts to evaluating translation quality in terms of unigram precision and recall, which are highly correlated with human judgements (Lavie et al., ). This measure is closely related to the BLEU-1 evaluation metric and the Meteor (Banerjee and Lavie, 2005) metric (when it is evaluated without considering near-matches and the distortion penalty). We also believe that hypotheses that maximize the unigram precision and recall at the sentence level yield corpus level BLEU-4 scores close the maximal achievable. Indeed, in the setting we will introduce in the next section, BLEU-1 and BLEU-4 are highly correlated: as all correct words of the hypothesis will be compelled to be at their correct position, any hypothesis with a high 1-gram precision is also bound to have a high 2-gram precision, etc. 2.2 Formalizing the Oracle Decoding Problem The oracle decoding problem has already been considered in the case of word-based models, in which all translation units are bound to contain only one word. The problem can then be solved by a bipartite graph matching algorithm (Leusch et al., 2008): given a n m binary matarligxo describing possible t 2r0an08sl)a:ti goinv elinn aks n b×emtw beeinna source words and target words7, this algorithm finds the subset of links maximizing the number of words of the reference that have been translated, while ensuring that each word 6Neither at the sentence (Chiang et al., 2008), nor at the phrase level. 7The (i, j) entry of the matrix is 1if the ith word of the source can be translated by the jth word of the reference, 0 otherwise. 935 is translated only once. Generalizing this approach to phrase-based systems amounts to solving the following problem: given a set of possible translation links between potential phrases of the source and of the target, find the subset of links so that the unigram precision and recall are the highest possible. The corresponding oracle hypothesis can then be easily generated by selecting the target phrases that are aligned with one source phrase, disregarding the others. In addition, to mimic the way OOVs are usually handled, we match identical OOV tokens appearing both in the source and target sentences. In this approach, the unigram precision is always one (every word generated in the oracle hypothesis matches exactly one word in the reference). As a consequence, to find the oracle hypothesis, we just have to maximize the recall, that is the number of words appearing both in the hypothesis and in the reference. Considering phrases instead of isolated words has a major impact on the computational complexity: in this new setting, the optimal segmentations in phrases of both the source and of the target have to be worked out in addition to links selection. Moreover, constraints have to be taken into account so as to enforce a proper segmentation of the source and target sentences. These constraints make it impossible to use the approach of (Leusch et al., 2008) and concur in making the oracle decoding problem for phrase-based models more complex than it is for word-based models: it can be proven, using arguments borrowed from (De Nero and Klein, 2008), that this problem is NP-hard even for the simple unigram precision measure. 2.3 An Integer Program for Oracle Decoding To solve the combinatorial problem introduced in the previous section, we propose to cast it into an Integer Linear Programming (ILP) problem, for which many generic solvers exist. ILP has already been used in SMT to find the optimal translation for word-based (Germann et al., 2001) and to study the complexity of learning phrase alignments (De Nero and Klein, 2008) models. Following the latter reference, we introduce the following variables: fi,j (resp. ek,l) is a binary indicator variable that is true when the phrase contains all spans from betweenword position i to j (resp. k to l) of the source (resp. target) sentence. We also introduce a binary variable, denoted ai,j,k,l, to describe a possible link between source phrase fi,j and target phrase ek,l. These variables are built from the entries of the phrase table according to selection strategies introduced in Section 2.4. In the following, index variables are so that: 0 ≤ i< j ≤ n, in the source sentence and 0 ≤ k < l ≤ m, in the target sentence, where n (resp. m) is the length of the source (resp. target) sentence. Solving the oracle decoding problem then amounts to optimizing the following objective function: mi,j,akx,li,Xj,k,lai,j,k,l· (l − k), (1) under the constraints: X ∀x ∈ J1,mK : ek,l ≤ 1 (2) = (3) 1∀,kn,lK : Xai,j,k,l = fk,l (4) ∀i,j : Xai,j,k,l (5) k,l s.tX. Xk≤x≤l ∀∀xy ∈∈ J11,,mnKK : X i,j s.tX. Xi≤y≤j fi,j 1 Xi,j = ei,j Xk,l The objective function (1) corresponds to the number of target words that are generated. The first set of constraints (2) ensures that each word in the reference e ap- pears in no more than one phrase. Maximizing the objective under these constraints amounts to maximizing the unigram recall. The second set of constraints (3) ensures that each word in the source f is translated exactly once, which guarantees that the search space of the ILP problem is the same as the search space of a phrase-based system. Constraints (4) bind the fk,l and ai,j,k,l variables, ensuring that whenever a link ai,j,k,l is active, the corresponding phrase fk,l is also active. Constraints (5) play a similar role for the reference. The Relaxed Problem Even though it accurately models the search space of a phrase-based decoder, this programs is not really useful as is: due to out-ofvocabulary words or missing entries in the phrase table, the constraint that all source words should be translated yields infeasible problems8. We propose to relax this problem and allow some source words to remain untranslated. This is done by replacing constraints (3) by: ∀y ∈ J1,nK : X i,j s.tX. Xi≤y≤j fi,j ≤ 1 To better ref∀lyec ∈t th J1e, bneKh :avior of phrase-based decoders, which attempt to translate all source words, we also need to modify the objective function as follows: X i,Xj,k,l ai,j,k,l · (l − k) +Xfi,j · (j − i) Xi,j (6) The second term in this new objective ensures that optimal solutions translate as many source words as possible. 8An ILP problem is said to be infeasible when tion violates at least one constraint. every possible solu- 936 The Relaxed-Distortion Problem A last caveat with the Relaxed optimization program is caused by frequently occurring source tokens, such as function words or punctuation signs, which can often align with more than one target word. For lack of taking distortion information into account in our objective function, all these alignments are deemed equivalent, even if some of them are clearly more satisfactory than others. This situation is illustrated on Figure 1. le chat et the cat and le the chien dog Figure 1: Equivalent alignments between “le” and “the”. The dashed lines corresponds to a less interpretable solution. To overcome this difficulty, we propose a last change to the objective function: X i,Xj,k,l ai,j,k,l · (l − k) +Xfi,j · (j − i) X ai,j,k,l|k − i| Xi,j −α (7) i Xk ,l X,j, Compared to the objective function of the relaxed problem (6), we introduce here a supplementary penalty factor which favors monotonous alignments. For each phrase pair, the higher the difference between source and target positions, the higher this penalty. If α is small enough, this extra term allows us to select, among all the optimal alignments of the re l axed problem, the one with the lowest distortion. In our experiments, we set α to min {n, m} to ensure that the penalty factor is always smminall{enr, ,tmha}n tthoe e rneswuarred t fhoart aligning atwltyo single iwso ardlwsa. 2.4 Selecting Indicator Variables In the approach introduced in the previous sections, the oracle decoding problem is solved by selecting, among a set of possible translation links, the ones that yield the solution with the highest unigram recall. We propose two strategies to build this set of possible translation links. In the first one, denoted exact match, an indicator ai,j,k,l is created if there is an entry (f, e) so that f spans from word position ito j in the source and e from word position k to l in the target. In this strategy, the ILP program considers exactly the same ruleset as conventional phrase-based decoders. We also consider an alternative strategy, which could help us to identify errors made during the phrase extraction process. In this strategy, denoted inside match, an indicator ai,j,k,l is created when the following three criteria are met: i) f spans from position ito j of the source; ii) a substring of e, denoted e, spans from position k to l of the reference; iii) (f, e¯) is not an entry of the phrase table. The resulting set of indicator variables thus contains, at least, all the variables used in the exact match strategy. In addition, we license here the use of phrases containing words that do not occur in the reference. In fact, using such solutions can yield higher BLEU scores when the reward for additional correct matches exceeds the cost incurred by wrong predictions. These cases are symptoms of situations where the extraction heuristic failed to extract potentially useful subphrases. 2.5 Oracle Decoding with Reordering Constraints The ILP problem introduced in the previous section can be extended in several ways to describe and test various improvements to phrase-based systems or to evaluate the impact of different parameter settings. This flexibility mainly stems from the possibility offered by our framework to express arbitrary constraints over variables. In this section, we illustrate these possibilities by describing how reordering constraints can easily be considered. As a first example, the Moses decoder uses a distortion limit to constrain the set of possible reorderings. This constraint “enforces (...) that the last word of a phrase chosen for translation cannot be more than d9 words from the leftmost untranslated word in the source” (Lopez, 2009) and is expressed as: ∀aijkl , ai0j0k0l0 s.t. k > k0, aijkl · ai0j0k0l0 · |j − i0 + 1| ≤ d, The maximum distortion limit strategy (Lopez, 2009) is also easily expressed and take the following form (assuming this constraint is parameterized by d): ∀l < m − 1, ai,j,k,l·ai0,j0,l+1,l0 · |i0 − j − 1| 71is%t e6hs.a distortion greater that Moses default distortion limit. alignment decisions enabled by the use of larger training corpora and phrase table. To evaluate the impact ofthe second heuristic, we computed the number of phrases discarded by Moses (be- cause of the default ttl limit) but used in the oracle hypotheses. In the English to French NEWSCO setting, they account for 34.11% of the total number of phrases used in the oracle hypotheses. When the oracle decoder is constrained to use the same phrase table as Moses, its BLEU-4 score drops to 42.78. This shows that filtering the phrase table prior to decoding discards many useful phrase pairs and is seriously limiting the best achievable performance, a conclusion shared with (Auli et al., 2009). Search Errors Search errors can be identified by comparing the score of the best hypothesis found by Moses and the score of the oracle hypothesis. If the score of the oracle hypothesis is higher, then there has been a search error; on the contrary, there has been an estimation error when the score of the oracle hypothesis is lower than the score of the best hypothesis found by Moses. 940 Based on the comparison of the score of Moses hypotheses and of oracle hypotheses for the English to French NEWSCO setting, our preliminary conclusion is that the number of search errors is quite limited: only about 5% of the hypotheses of our oracle decoder are actually getting a better score than Moses solutions. Again, this shows that the scoring function (model error) is one of the main bottleneck of current PBTS. Comparing these hypotheses is nonetheless quite revealing: while Moses mostly selects phrase pairs with high translation scores and generates monotonous alignments, our ILP decoder uses larger reorderings and less probable phrases to achieve better solutions: on average, the reordering score of oracle solutions is −5.74, compared to −76.78 fscoro rMeo osfe osr outputs. iGonivsen is −the5 weight assigned through MERT training to the distortion score, no wonder that these hypotheses are severely penalized. The Impact of Phrase Length The observed outputs do not only depend on decisions made during the search, but also on decisions made during training. One such decision is the specification of maximal length for the source and target phrases. In our framework, evaluating the impact of this decision is simple: it suffices to change the definition of indicator variables so as to consider only alignments between phrases of a given length. In the English-French NEWSCO setting, the most restrictive choice, when only alignments between single words are authorized, yields an oracle BLEU-4 of 48.68; however, authorizing phrases up to length 2 allows to achieve an oracle value of 66.57, very close to the score achieved when considering all extracted phrases (67.77). This is corroborated with a further analysis of our oracle alignments, which use phrases whose average source length is 1.21 words (respectively 1.31 for target words). If many studies have already acknowledged the predomi- nance of “small” phrases in actual translations, our oracle scores suggest that, for this language pair, increasing the phrase length limit beyond 2 or 3 might be a waste of computational resources. 4 Related Work To the best of our knowledge, there are only a few works that try to study the expressive power ofphrase-based machine translation systems or to provide tools for analyzing potential causes of failure. The approach described in (Auli et al., 2009) is very similar to ours: in this study, the authors propose to find and analyze the limits of machine translation systems by studying the reference reachability. A reference is reachable for a given system if it can be exactly generated by this system. Reference reachability is assessed using Moses in forced decoding mode: during search, all hypotheses that deviate from the reference are simply discarded. Even though the main goal of this study was to compare the search space of phrase-based and hierarchical systems, it also provides some insights on the impact of various search parameters in Moses, delivering conclusions that are consistent with our main results. As described in Section 1.2, these authors also propose a typology of the errors of a statistical translation systems, but do not attempt to provide methods for identifying them. The authors of (Turchi et al., 2008) study the learn- ing capabilities of Moses by extensively analyzing learning curves representing the translation performances as a function of the number of examples, and by corrupting the model parameters. Even though their focus is more on assessing the scoring function, they reach conclusions similar to ours: the current bottleneck of translation performances is not the representation power of the PBTS but rather in their scoring functions. Oracle decoding is useful to compute reachable pseudo-references in the context of discriminative training. This is the main motivation of (Tillmann and Zhang, 2006), where the authors compute high BLEU hypotheses by running a conventional decoder so as to maximize a per-sentence approximation of BLEU-4, under a simple (local) reordering model. Oracle decoding has also been used to assess the limitations induced by various reordering constraints in (Dreyer et al., 2007). To this end, the authors propose to use a beam-search based oracle decoder, which computes lower bounds of the best achievable BLEU-4 using dynamic programming techniques over finite-state (for so-called local and IBM constraints) or hierarchically structured (for ITG constraints) sets of hypotheses. Even 941 though the numbers reported in this study are not directly comparable with ours17, it seems that our decoder is not only conceptually much simpler, but also achieves much more optimistic lower-bounds of the oracle BLEU score. The approach described in (Li and Khudanpur, 2009) employs a similar technique, which is to guide a heuristic search in an hypergraph representing possible translation hypotheses with n-gram counts matches, which amounts to decoding with a n-gram model trained on the sole reference translation. Additional tricks are presented in this article to speed-up decoding. Computing oracle BLEU scores is also the subject of (Zens and Ney, 2005; Leusch et al., 2008), yet with a different emphasis. These studies are concerned with finding the best hypotheses in a word graph or in a consensus network, a problem that has various implications for multi-pass decoding and/or system combination techniques. The former reference describes an exponential approximate algorithm, while the latter proves the NPcompleteness of this problem and discuss various heuristic approaches. Our problem is somewhat more complex and using their techniques would require us to built word graphs containing all the translations induced by arbitrary segmentations and permutations of the source sentence. 5 Conclusions In this paper, we have presented a methodology for analyzing the errors of PBTS, based on the computation of an approximation of the BLEU-4 oracle score. We have shown that this approximation could be computed fairly accurately and efficiently using Integer Linear Programming techniques. Our main result is a confirmation of the fact that extant PBTS systems are expressive enough to achieve very high translation performance with respect to conventional quality measurements. The main efforts should therefore strive to improve on the way phrases and hypotheses are scored during training. This gives further support to attempts aimed at designing context-dependent scoring functions as in (Stroppa et al., 2007; Gimpel and Smith, 2008), or at attempts to perform discriminative training of feature-rich models. (Bangalore et al., 2007). We have shown that the examination of difficult-totranslate sentences was an effective way to detect errors or inconsistencies in the reference translations, making our approach a potential aid for controlling the quality or assessing the difficulty of test data. Our experiments have also highlighted the impact of various parameters. Various extensions of the baseline ILP program have been suggested and/or evaluated. In particular, the ILP formalism lends itself well to expressing various constraints that are typically used in conventional PBTS. In 17The best BLEU-4 oracle they achieve on Europarl German to English is approximately 48; but they considered a smaller version of the training corpus and the WMT’06 test set. our future work, we aim at using this ILP framework to systematically assess various search configurations. We plan to explore how replacing non-reachable references with high-score pseudo-references can improve discrim- inative training of PBTS. We are also concerned by determining how tight is our approximation of the BLEU4 score is: to this end, we intend to compute the best BLEU-4 score within the n-best solutions of the oracle decoding problem. Acknowledgments Warm thanks to Houda Bouamor for helping us with the annotation tool. This work has been partly financed by OSEO, the French State Agency for Innovation, under the Quaero program. References Tobias Achterberg. 2007. Constraint Integer Programming. Ph.D. thesis, Technische Universit a¨t Berlin. http : / / opus .kobv .de /tuberl in/vol ltexte / 2 0 0 7 / 16 11/ . Abhishek Arun and Philipp Koehn. 2007. Online learning methods for discriminative training of phrase based statistical machine translation. In Proc. of MT Summit XI, Copenhagen, Denmark. Michael Auli, Adam Lopez, Hieu Hoang, and Philipp Koehn. 2009. A systematic analysis of translation model search spaces. In Proc. of WMT, pages 224–232, Athens, Greece. Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proc. of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan. Srinivas Bangalore, Patrick Haffner, and Stephan Kanthak. 2007. Statistical machine translation through global lexical selection and sentence reconstruction. In Proc. of ACL, pages 152–159, Prague, Czech Republic. L e´on Bottou and Olivier Bousquet. 2008. The tradeoffs oflarge scale learning. In Proc. of NIPS, pages 161–168, Vancouver, B.C., Canada. Chris Callison-Burch, Philipp Koehn, Christof Monz, and Josh Schroeder. 2009. Findings of the 2009 Workshop on Statistical Machine Translation. In Proc. of WMT, pages 1–28, Athens, Greece. David Chiang, Steve DeNeefe, Yee Seng Chan, and Hwee Tou Ng. 2008. Decomposability of translation metrics for improved evaluation and efficient algorithms. In Proc. of ECML, pages 610–619, Honolulu, Hawaii. John De Nero and Dan Klein. 2008. The complexity of phrase alignment problems. In Proc. of ACL: HLT, Short Papers, pages 25–28, Columbus, Ohio. Markus Dreyer, Keith B. Hall, and Sanjeev P. Khudanpur. 2007. Comparing reordering constraints for smt using efficient bleu oracle computation. In NAACL-HLT/AMTA Workshop on Syntax and Structure in Statistical Translation, pages 103– 110, Rochester, New York. 942 Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. 2001 . Fast decoding and optimal decoding for machine translation. In Proc. of ACL, pages 228–235, Toulouse, France. Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. 2004. Fast and optimal decoding for machine translation. Artificial Intelligence, 154(1-2): 127– 143. Ulrich Germann. 2003. Greedy decoding for statistical machine translation in almost linear time. In Proc. of NAACL, pages 1–8, Edmonton, Canada. Kevin Gimpel and Noah A. Smith. 2008. Rich source-side context for statistical machine translation. In Proc. of WMT, pages 9–17, Columbus, Ohio. Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proc. of NAACL, pages 48–54, Edmonton, Canada. Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris CallisonBurch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In Proc. of ACL, demonstration session. Philipp Koehn. 2004. Pharaoh: A beam search decoder for phrase-based statistical machine translation models. In Proc. of AMTA, pages 115–124, Washington DC. Shankar Kumar and William Byrne. 2005. Local phrase reordering models for statistical machine translation. In Proc. of HLT, pages 161–168, Vancouver, Canada. Alon Lavie, Kenji Sagae, and Shyamsundar Jayaraman. The significance of recall in automatic metrics for MT evaluation. In In Proc. of AMTA, pages 134–143, Washington DC. Gregor Leusch, Evgeny Matusov, and Hermann Ney. 2008. Complexity of finding the BLEU-optimal hypothesis in a confusion network. In Proc. of EMNLP, pages 839–847, Honolulu, Hawaii. Zhifei Li and Sanjeev Khudanpur. 2009. Efficient extraction of oracle-best translations from hypergraphs. In Proc. of NAACL, pages 9–12, Boulder, Colorado. Percy Liang, Alexandre Bouchard-C oˆt´ e, Dan Klein, and Ben Taskar. 2006. An end-to-end discriminative approach to machine translation. In Proc. of ACL, pages 761–768, Sydney, Australia. Adam Lopez. 2009. Translation as weighted deduction. In Proc. of EACL, pages 532–540, Athens, Greece. Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models. Comput. Linguist. , 29(1): 19–5 1. Franz Josef Och. 2003. Minimum error rate training in statistical machine translation. In Proc. of ACL, pages 160–167, Sapporo, Japan. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-jing Zhu. 2002. Bleu: A method for automatic evaluation of machine translation. Technical report, Philadelphia, Pennsylvania. D. Roth and W. Yih. 2005. Integer linear programming inference for conditional random fields. In Proc. of ICML, pages 737–744, Bonn, Germany. Nicolas Stroppa, Antal van den Bosch, and Andy Way. 2007. Exploiting source similarity for smt using context-informed features. In Andy Way and Barbara Proc. of TMI, pages Christoph Tillmann 231–240, Sk¨ ovde, and Tong Zhang. Gawronska, editors, Sweden. 2006. A discriminative global training algorithm for statistical mt. In Proc. of ACL, 721–728, Sydney, Australia. Turchi, Tijl De Bie, and Nello pages Marco Cristianini. 2008. Learn- ing performance of a machine translation system: a statistical and computational analysis. In Proc. of WMT, pages Columbus, Ohio. 35–43, Richard Zens and Hermann Ney. 2005. Word graphs for statistical machine translation. In Proc. of the ACL Workshop on Building and Using Parallel Texts, pages 191–198, Ann Arbor, Michigan. 943

5 0.48261082 57 emnlp-2010-Hierarchical Phrase-Based Translation Grammars Extracted from Alignment Posterior Probabilities

Author: Adria de Gispert ; Juan Pino ; William Byrne

Abstract: We report on investigations into hierarchical phrase-based translation grammars based on rules extracted from posterior distributions over alignments of the parallel text. Rather than restrict rule extraction to a single alignment, such as Viterbi, we instead extract rules based on posterior distributions provided by the HMM word-to-word alignmentmodel. We define translation grammars progressively by adding classes of rules to a basic phrase-based system. We assess these grammars in terms of their expressive power, measured by their ability to align the parallel text from which their rules are extracted, and the quality of the translations they yield. In Chinese-to-English translation, we find that rule extraction from posteriors gives translation improvements. We also find that grammars with rules with only one nonterminal, when extracted from posteri- ors, can outperform more complex grammars extracted from Viterbi alignments. Finally, we show that the best way to exploit source-totarget and target-to-source alignment models is to build two separate systems and combine their output translation lattices.

6 0.48247615 78 emnlp-2010-Minimum Error Rate Training by Sampling the Translation Lattice

7 0.48025945 40 emnlp-2010-Effects of Empty Categories on Machine Translation

8 0.47901541 86 emnlp-2010-Non-Isomorphic Forest Pair Translation

9 0.47433698 87 emnlp-2010-Nouns are Vectors, Adjectives are Matrices: Representing Adjective-Noun Constructions in Semantic Space

10 0.47271505 65 emnlp-2010-Inducing Probabilistic CCG Grammars from Logical Form with Higher-Order Unification

11 0.47167113 26 emnlp-2010-Classifying Dialogue Acts in One-on-One Live Chats

12 0.47110772 67 emnlp-2010-It Depends on the Translation: Unsupervised Dependency Parsing via Word Alignment

13 0.46774194 89 emnlp-2010-PEM: A Paraphrase Evaluation Metric Exploiting Parallel Texts

14 0.46750546 105 emnlp-2010-Title Generation with Quasi-Synchronous Grammar

15 0.4643409 29 emnlp-2010-Combining Unsupervised and Supervised Alignments for MT: An Empirical Study

16 0.46365121 35 emnlp-2010-Discriminative Sample Selection for Statistical Machine Translation

17 0.46186695 116 emnlp-2010-Using Universal Linguistic Knowledge to Guide Grammar Induction

18 0.46122563 6 emnlp-2010-A Latent Variable Model for Geographic Lexical Variation

19 0.46096998 106 emnlp-2010-Top-Down Nearly-Context-Sensitive Parsing

20 0.46061635 32 emnlp-2010-Context Comparison of Bursty Events in Web Search and Online Media