acl acl2013 acl2013-209 acl2013-209-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Huanhuan Liu ; Shoushan Li ; Guodong Zhou ; Chu-ren Huang ; Peifeng Li
Abstract: Emotion classification can be generally done from both the writer’s and reader’s perspectives. In this study, we find that two foundational tasks in emotion classification, i.e., reader’s emotion classification on the news and writer’s emotion classification on the comments, are strongly related to each other in terms of coarse-grained emotion categories, i.e., negative and positive. On the basis, we propose a respective way to jointly model these two tasks. In particular, a cotraining algorithm is proposed to improve semi-supervised learning of the two tasks. Experimental evaluation shows the effectiveness of our joint modeling approach. . 1
Alm C., D. Roth and R. Sproat. 2005. Emotions from Text: Machine Learning for Text-based Emotion Prediction. In Proceedings of EMNLP-05, pp.579586. Aman S. and S. Szpakowicz. 2008. Using Roget’ s Thesaurus for Fine-grained Emotion Recognition. In Proceedings of IJCNLP-08, pp.312-318. Chen Y., S. Lee, S. Li and C. Huang. 2010. Emotion Cause Detection with Linguistic Constructions. In Proceeding of COLING-10, pp.179-187. Cohen J. 1960. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1):37–46. Cui H., V. Mittal and M. Datar. 2006. Comparative Experiments on Sentiment Classification for Online Product Comments. In Proceedings of AAAI-06, pp.1265-1270. Das D. and S. Bandyopadhyay. 2009. Word to Sentence Level Emotion Tagging for Bengali Blogs. In Proceedings of ACL-09, pp. 149-152. Dasgupta S. and V. Ng. 2009. Mine the Easy, Classify the Hard: A Semi-Supervised Approach to Automatic Sentiment Classification. In Proceedings of ACL-IJCNLP-09, pp.701-709, 2009. Duin R. 2002. The Combining Classifier: To Train Or Not To Train? In Proceedings of 16th International Conference on Pattern Recognition (ICPR-02). Fumera G. and F. Roli. 2005. A Theoretical and Experimental Analysis of Linear Combiners for Multiple Classifier Systems. IEEE Trans. PAMI, vol.27, pp.942–956, 2005. Li S., Z. Wang, G. Zhou and S. Lee. 2011. Semisupervised Learning for Imbalanced Sentiment Classification. In Proceeding of IJCAI-11, pp.8261831 . Li S., C. Huang, G. Zhou and S. Lee. 2010. Employing Personal/Impersonal Views in Supervised and Semi-supervised Sentiment Classification. In Proceedings of ACL-10, pp.414-423. Lin K., C. Yang and H. Chen. 2007. What Emotions do News Articles Trigger in Their Readers? In Proceeding of SIGIR-07, poster, pp.733-734. Lin K., C. Yang and H. Chen. 2008. Emotion Classification of Online News Articles from the Reader’s Perspective. In Proceeding of the International Conference on Web Intelligence and Intelligent Agent Technology, pp.220-226. Liu B. 2012. Sentiment Analysis and Opinion Mining (Introduction and Survey). Morgan & Claypool Publishers, May 2012. Kittler J., M. Hatef, R. Duin, and J. Matas. 1998. On Combining Classifiers. IEEE Trans. PAMI, vol.20, pp.226-239, 1998 Moshfeghi Y., B. Piwowarski and J. Jose. 2011. Handling Data Sparsity in Collaborative Filtering using Emotion and Semantic Based Features. In Proceedings of SIGIR-11, pp.625-634. Pang B. and L. Lee. 2008. Opinion Mining and Sentiment Analysis: Foundations and Trends. Information Retrieval, vol.2(12), 1-135. Pang B., L. Lee and S. Vaithyanathan. 2002. Thumbs up? Sentiment Classification using Machine Learning Techniques. In Proceedings of EMNLP02, pp.79-86. Purver M. and S. Battersby. 2012. Experimenting with Distant Supervision for Emotion Classification. In Proceedings of EACL-12, pp.482-491 . Quan C. and F. Ren. 2009. Construction of a Blog Emotion Corpus for Chinese Emotional Expression Analysis. In Proceedings of EMNLP-09, pp.14461454. Riloff E., S. Patwardhan and J. Wiebe. 2006. Feature Subsumption for Opinion Analysis. In Proceedings of EMNLP-06, pp.440-448. Turney P. 2002. Thumbs up or Thumbs down? Semantic Orientation Applied to Unsupervised Classification of comments. In Proceedings of ACL-02, pp.417-424. Vilalta R. and Y. Drissi. 2002. A Perspective View and Survey of Meta-learning. Artificial Intelligence Review, 18(2): 77–95. Volkova S., W. Dolan and T. Wilson. 2012. CLex: A Lexicon for Exploring Color, Concept and Emotion Associations in Language. In Proceedings of EACL-12, pp.306-314. Wilson T., J. Wiebe, and P. Hoffmann. 2009. Recognizing Contextual Polarity: An Exploration of Features for Phrase-Level Sentiment Analysis. Computational Linguistics, vol.35(3), pp.399-433. Xu G., X. Meng and H. Wang. 2010. Build Chinese Emotion Lexicons Using A Graph-based Algorithm and Multiple Resources. In Proceeding of COLING-10, pp.1209-1217. 515