acl acl2011 acl2011-1 knowledge-graph by maker-knowledge-mining
Source: pdf
Author: (hal)
Abstract: unkown-abstract
Reference: text
sentIndex sentText sentNum sentScore
wordName wordTfidf (topN-words)
[('hal', 0.712), ('daum', 0.653), ('ii', 0.166), ('iii', 0.163), ('il', 0.08), ('ha', 0.078), ('acl', 0.017)]
simIndex simValue paperId paperTitle
same-paper 1 0.99999988 1 acl-2011-(11-06-spirl)
Author: (hal)
Abstract: unkown-abstract
2 0.13118073 139 acl-2011-From Bilingual Dictionaries to Interlingual Document Representations
Author: Jagadeesh Jagarlamudi ; Hal Daume III ; Raghavendra Udupa
Abstract: Mapping documents into an interlingual representation can help bridge the language barrier of a cross-lingual corpus. Previous approaches use aligned documents as training data to learn an interlingual representation, making them sensitive to the domain of the training data. In this paper, we learn an interlingual representation in an unsupervised manner using only a bilingual dictionary. We first use the bilingual dictionary to find candidate document alignments and then use them to find an interlingual representation. Since the candidate alignments are noisy, we de- velop a robust learning algorithm to learn the interlingual representation. We show that bilingual dictionaries generalize to different domains better: our approach gives better performance than either a word by word translation method or Canonical Correlation Analysis (CCA) trained on a different domain.
3 0.09003298 104 acl-2011-Domain Adaptation for Machine Translation by Mining Unseen Words
Author: Hal Daume III ; Jagadeesh Jagarlamudi
Abstract: We show that unseen words account for a large part of the translation error when moving to new domains. Using an extension of a recent approach to mining translations from comparable corpora (Haghighi et al., 2008), we are able to find translations for otherwise OOV terms. We show several approaches to integrating such translations into a phrasebased translation system, yielding consistent improvements in translations quality (between 0.5 and 1.5 Bleu points) on four domains and two language pairs.
4 0.057187375 238 acl-2011-P11-2093 k2opt.pdf
Author: empty-author
Abstract: We present a pointwise approach to Japanese morphological analysis (MA) that ignores structure information during learning and tagging. Despite the lack of structure, it is able to outperform the current state-of-the-art structured approach for Japanese MA, and achieves accuracy similar to that of structured predictors using the same feature set. We also find that the method is both robust to outof-domain data, and can be easily adapted through the use of a combination of partial annotation and active learning.
5 0.033819649 251 acl-2011-Probabilistic Document Modeling for Syntax Removal in Text Summarization
Author: William M. Darling ; Fei Song
Abstract: Statistical approaches to automatic text summarization based on term frequency continue to perform on par with more complex summarization methods. To compute useful frequency statistics, however, the semantically important words must be separated from the low-content function words. The standard approach of using an a priori stopword list tends to result in both undercoverage, where syntactical words are seen as semantically relevant, and overcoverage, where words related to content are ignored. We present a generative probabilistic modeling approach to building content distributions for use with statistical multi-document summarization where the syntax words are learned directly from the data with a Hidden Markov Model and are thereby deemphasized in the term frequency statistics. This approach is compared to both a stopword-list and POS-tagging approach and our method demonstrates improved coverage on the DUC 2006 and TAC 2010 datasets using the ROUGE metric.
6 0.033269104 59 acl-2011-Better Automatic Treebank Conversion Using A Feature-Based Approach
7 0.03291586 143 acl-2011-Getting the Most out of Transition-based Dependency Parsing
8 0.030429952 103 acl-2011-Domain Adaptation by Constraining Inter-Domain Variability of Latent Feature Representation
9 0.029995553 235 acl-2011-Optimal and Syntactically-Informed Decoding for Monolingual Phrase-Based Alignment
10 0.026605645 187 acl-2011-Jointly Learning to Extract and Compress
11 0.024558457 58 acl-2011-Beam-Width Prediction for Efficient Context-Free Parsing
12 0.023812434 286 acl-2011-Social Network Extraction from Texts: A Thesis Proposal
13 0.023112709 44 acl-2011-An exponential translation model for target language morphology
14 0.022101197 109 acl-2011-Effective Measures of Domain Similarity for Parsing
15 0.021682685 98 acl-2011-Discovery of Topically Coherent Sentences for Extractive Summarization
16 0.021416206 256 acl-2011-Query Weighting for Ranking Model Adaptation
17 0.020715121 196 acl-2011-Large-Scale Cross-Document Coreference Using Distributed Inference and Hierarchical Models
18 0.019229863 230 acl-2011-Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation
19 0.017479645 127 acl-2011-Exploiting Web-Derived Selectional Preference to Improve Statistical Dependency Parsing
20 0.0162577 141 acl-2011-Gappy Phrasal Alignment By Agreement
topicId topicWeight
[(0, 0.02), (1, 0.001), (2, 0.0), (3, 0.008), (4, 0.001), (5, -0.013), (6, 0.005), (7, 0.017), (8, -0.002), (9, 0.016), (10, 0.021), (11, 0.012), (12, 0.017), (13, -0.001), (14, 0.014), (15, 0.007), (16, -0.009), (17, 0.017), (18, 0.019), (19, -0.064), (20, 0.014), (21, -0.069), (22, 0.022), (23, 0.001), (24, -0.008), (25, -0.001), (26, -0.06), (27, -0.045), (28, 0.003), (29, -0.04), (30, 0.04), (31, 0.018), (32, 0.059), (33, -0.035), (34, -0.029), (35, -0.018), (36, -0.045), (37, 0.032), (38, 0.011), (39, 0.039), (40, 0.018), (41, 0.047), (42, -0.052), (43, -0.02), (44, 0.022), (45, 0.015), (46, -0.001), (47, -0.042), (48, 0.057), (49, -0.031)]
simIndex simValue paperId paperTitle
same-paper 1 0.99963993 1 acl-2011-(11-06-spirl)
Author: (hal)
Abstract: unkown-abstract
2 0.48173076 139 acl-2011-From Bilingual Dictionaries to Interlingual Document Representations
Author: Jagadeesh Jagarlamudi ; Hal Daume III ; Raghavendra Udupa
Abstract: Mapping documents into an interlingual representation can help bridge the language barrier of a cross-lingual corpus. Previous approaches use aligned documents as training data to learn an interlingual representation, making them sensitive to the domain of the training data. In this paper, we learn an interlingual representation in an unsupervised manner using only a bilingual dictionary. We first use the bilingual dictionary to find candidate document alignments and then use them to find an interlingual representation. Since the candidate alignments are noisy, we de- velop a robust learning algorithm to learn the interlingual representation. We show that bilingual dictionaries generalize to different domains better: our approach gives better performance than either a word by word translation method or Canonical Correlation Analysis (CCA) trained on a different domain.
3 0.37743437 104 acl-2011-Domain Adaptation for Machine Translation by Mining Unseen Words
Author: Hal Daume III ; Jagadeesh Jagarlamudi
Abstract: We show that unseen words account for a large part of the translation error when moving to new domains. Using an extension of a recent approach to mining translations from comparable corpora (Haghighi et al., 2008), we are able to find translations for otherwise OOV terms. We show several approaches to integrating such translations into a phrasebased translation system, yielding consistent improvements in translations quality (between 0.5 and 1.5 Bleu points) on four domains and two language pairs.
4 0.37519899 179 acl-2011-Is Machine Translation Ripe for Cross-Lingual Sentiment Classification?
Author: Kevin Duh ; Akinori Fujino ; Masaaki Nagata
Abstract: Recent advances in Machine Translation (MT) have brought forth a new paradigm for building NLP applications in low-resource scenarios. To build a sentiment classifier for a language with no labeled resources, one can translate labeled data from another language, then train a classifier on the translated text. This can be viewed as a domain adaptation problem, where labeled translations and test data have some mismatch. Various prior work have achieved positive results using this approach. In this opinion piece, we take a step back and make some general statements about crosslingual adaptation problems. First, we claim that domain mismatch is not caused by MT errors, and accuracy degradation will occur even in the case of perfect MT. Second, we argue that the cross-lingual adaptation problem is qualitatively different from other (monolingual) adaptation problems in NLP; thus new adaptation algorithms ought to be considered. This paper will describe a series of carefullydesigned experiments that led us to these conclusions. 1 Summary Question 1: If MT gave perfect translations (semantically), do we still have a domain adaptation challenge in cross-lingual sentiment classification? Answer: Yes. The reason is that while many lations of a word may be valid, the MT system have a systematic bias. For example, the word some” might be prevalent in English reviews, transmight “awebut in 429 translated reviews, the word “excellent” is generated instead. From the perspective of MT, this translation is correct and preserves sentiment polarity. But from the perspective of a classifier, there is a domain mismatch due to differences in word distributions. Question 2: Can we apply standard adaptation algorithms developed for other (monolingual) adaptation problems to cross-lingual adaptation? Answer: No. It appears that the interaction between target unlabeled data and source data can be rather unexpected in the case of cross-lingual adaptation. We do not know the reason, but our experiments show that the accuracy of adaptation algorithms in cross-lingual scenarios have much higher variance than monolingual scenarios. The goal of this opinion piece is to argue the need to better understand the characteristics of domain adaptation in cross-lingual problems. We invite the reader to disagree with our conclusion (that the true barrier to good performance is not insufficient MT quality, but inappropriate domain adaptation methods). Here we present a series of experiments that led us to this conclusion. First we describe the experiment design (§2) and baselines (§3), before answering Question §12 (§4) dan bda Question 32) (§5). 2 Experiment Design The cross-lingual setup is this: we have labeled data from source domain S and wish to build a sentiment classifier for target domain T. Domain mismatch can arise from language differences (e.g. English vs. translated text) or market differences (e.g. DVD vs. Book reviews). Our experiments will involve fixing Proceedings ofP thoer t4l9atnhd A, Onrnuegaoln M,e Jeuntineg 19 o-f2 t4h,e 2 A0s1s1o.c?i ac t2io0n11 fo Ar Cssoocmiaptuiotanti foonra Clo Lminpguutiast i ocns:aslh Loirntpgaupisetrics , pages 429–433, T to a common testset and varying S. This allows us to experiment with different settings for adaptation. We use the Amazon review dataset of Prettenhofer (2010)1 , due to its wide range of languages (English [EN], Japanese [JP], French [FR], German [DE]) and markets (music, DVD, books). Unlike Prettenhofer (2010), we reverse the direction of cross-lingual adaptation and consider English as target. English is not a low-resource language, but this setting allows for more comparisons. Each source dataset has 2000 reviews, equally balanced between positive and negative. The target has 2000 test samples, large unlabeled data (25k, 30k, 50k samples respectively for Music, DVD, and Books), and an additional 2000 labeled data reserved for oracle experiments. Texts in JP, FR, and DE are translated word-by-word into English with Google Translate.2 We perform three sets of experiments, shown in Table 1. Table 2 lists all the results; we will interpret them in the following sections. Target (T) Source (S) 312BDMToVuasbDkil-ecE1N:ExpDMB eorVuimsDkice-JEnPtN,s eBD,MtuoVBDpuoVsk:-iFDck-iERxFN,T DB,vVoMaDruky-sSiDc.E-, 3 How much performance degradation occurs in cross-lingual adaptation? First, we need to quantify the accuracy degradation under different source data, without consideration of domain adaptation methods. So we train a SVM classifier on labeled source data3, and directly apply it on test data. The oracle setting, which has no domain-mismatch (e.g. train on Music-EN, test on Music-EN), achieves an average test accuracy of (81.6 + 80.9 + 80.0)/3 = 80.8%4. Aver1http://www.webis.de/research/corpora/webis-cls-10 2This is done by querying foreign words to build a bilingual dictionary. The words are converted to tfidf unigram features. 3For all methods we try here, 5% of the 2000 labeled source samples are held-out for parameter tuning. 4See column EN of Table 2, Supervised SVM results. 430 age cross-lingual accuracies are: 69.4% (JP), 75.6% (FR), 77.0% (DE), so degradations compared to oracle are: -11% (JP), -5% (FR), -4% (DE).5 Crossmarket degradations are around -6%6. Observation 1: Degradations due to market and language mismatch are comparable in several cases (e.g. MUSIC-DE and DVD-EN perform similarly for target MUSIC-EN). Observation 2: The ranking of source language by decreasing accuracy is DE > FR > JP. Does this mean JP-EN is a more difficult language pair for MT? The next section will show that this is not necessarily the case. Certainly, the domain mismatch for JP is larger than DE, but this could be due to phenomenon other than MT errors. 4 Where exactly is the domain mismatch? 4.1 Theory of Domain Adaptation We analyze domain adaptation by the concepts of labeling and instance mismatch (Jiang and Zhai, 2007). Let pt(x, y) = pt (y|x)pt (x) be the target distribution of samples x (e.g. unigram feature vec- tor) and labels y (positive / negative). Let ps (x, y) = ps (y|x)ps (x) be the corresponding source distributio(ny. Wx)pe assume that one (or both) of the following distributions differ between source and target: • Instance mismatch: ps (x) pt (x). • Labeling mismatch: ps (y|x) pt(y|x). Instance mismatch implies that the input feature vectors have different distribution (e.g. one dataset uses the word “excellent” often, while the other uses the word “awesome”). This degrades performance because classifiers trained on “excellent” might not know how to classify texts with the word “awesome.” The solution is to tie together these features (Blitzer et al., 2006) or re-weight the input distribution (Sugiyama et al., 2008). Under some assumptions (i.e. covariate shift), oracle accuracy can be achieved theoretically (Shimodaira, 2000). Labeling mismatch implies the same input has different labels in different domains. For example, the JP word meaning “excellent” may be mistranslated as “bad” in English. Then, positive JP = = 5See “Adapt by Language” columns of Table 2. Note JP+FR+DE condition has 6000 labeled samples, so is not directly comparable to other adaptation scenarios (2000 samples). Nevertheless, mixing languages seem to give good results. 6See “Adapt by Market” columns of Table 2. TargetClassifierOEraNcleJPAFdaRpt bDyE LanJgPu+agFeR+DEMUASdIaCpt D byV MDar BkeOtOK MUSIC-ENSAudpaeprtvedise TdS SVVMM8719..666783..50 7745..62 7 776..937880..36--7768..847745..16 DVD-ENSAudpaeprtveidse TdS SVVMM8801..907701..14 7765..54 7 767..347789..477754..28--7746..57 BOOK-ENSAudpaeprtveidse TdS SVVMM8801..026793..68 7775..64 7 767..747799..957735..417767..24-Table 2: Test accuracies (%) for English Music/DVD/Book reviews. Each column is an adaptation scenario using different source data. The source data may vary by language or by market. For example, the first row shows that for the target of Music-EN, the accuracy of a SVM trained on translated JP reviews (in the same market) is 68.5, while the accuracy of a SVM trained on DVD reviews (in the same language) is 76.8. “Oracle” indicates training on the same market and same language domain as the target. “JP+FR+DE” indicates the concatenation of JP, FR, DE as source data. Boldface shows the winner of Supervised vs. Adapted. reviews ps (y will be associated = +1|x = bad) co(nydit =io +na1l − |x = 1 will be high, whereas the true xdis =tr bibaudti)o wn bad) instead. labeling mismatch, with the word “bad”: lslh boeu hldi hha,v we high pt(y = There are several cases for depending on sheovwe tahle c polarity changes (Table 3). The solution is to filter out these noisy samples (Jiang and Zhai, 2007) or optimize loosely-linked objectives through shared parameters or Bayesian priors (Finkel and Manning, 2009). Which mismatch is responsible for accuracy degradations in cross-lingual adaptation? • Instance mismatch: Systematic Iantessta nwcoerd m diissmtraibtcuhti:on Ssy MT bias gener- sdtiefmferaetinct MfroTm b naturally- occurring English. (Translation may be valid.) Label mismatch: MT error mis-translates a word iLnatob something w: MithT Td eifrfreorren mti polarity. Conclusion from §4.2 and §4.3: Instance mismaCtcohn occurs often; M §4T. error appears Imnisntainmcael. • Mis-translated polarity Effect Taeb0+±.lge→ .3(:±“ 0−tgLhoae b”nd →l m− i“sg→m otbah+dce”h):mIfpoLAinse ca-ptsoriuaesncvieatl /ndioeansgbvcaewrptlimovaeshipntdvaei(+), negative (−), or neutral (0) words have different effects. Wnege athtiivnek ( −th)e, foirrs nt tuwtroa cases hoardves graceful degradation, but the third case may be catastrophic. 431 4.2 Analysis of Instance Mismatch To measure instance mismatch, we compute statistics between ps (x) and pt(x), or approximations thereof: First, we calculate a (normalized) average feature from all samples of source S, which represents the unigram distribution of MT output. Simi- larly, the average feature vector for target T approximates the unigram distribution of English reviews pt(x). Then we measure: • KL Divergence between Avg(S) and Avg(T), wKhLer De Avg() nisc eth bee average Avvegct(oSr.) • Set Coverage of Avg(T) on Avg(S): how many Sweotrd C (type) ien o Tf appears oatn le Aavsgt once ionw wS .m Both measures correlate strongly with final accuracy, as seen in Figure 1. The correlation coefficients are r = −0.78 for KL Divergence and r = 0.71 for Coverage, 0 b.7o8th statistically significant (p < 0.05). This implies that instance mismatch is an important reason for the degradations seen in Section 3.7 4.3 Analysis of Labeling Mismatch We measure labeling mismatch by looking at differences in the weight vectors of oracle SVM and adapted SVM. Intuitively, if a feature has positive weight in the oracle SVM, but negative weight in the adapted SVM, then it is likely a MT mis-translation 7The observant reader may notice that cross-market points exhibit higher coverage but equal accuracy (74-78%) to some cross-lingual points. This suggests that MT output may be more constrained in vocabulary than naturally-occurring English. 0.35 0.3 gnvLrDeiceKe0 0 0. 120.25 510 erts TeCovega0 0 0. .98657 68 70 72 7A4ccuracy76 78 80 82 0.4 68 70 72 7A4ccuracy76 78 80 82 Figure 1: KL Divergence and Coverage vs. accuracy. (o) are cross-lingual and (x) are cross-market data points. is causing the polarity flip. Algorithm 1 (with K=2000) shows how we compute polarity flip rate.8 We found that the polarity flip rate does not correlate well with accuracy at all (r = 0.04). Conclusion: Labeling mismatch is not a factor in performance degradation. Nevertheless, we note there is a surprising large number of flips (24% on average). A manual check of the flipped words in BOOK-JP revealed few MT mistakes. Only 3.7% of 450 random EN-JP word pairs checked can be judged as blatantly incorrect (without sentence context). The majority of flipped words do not have a clear sentiment orientation (e.g. “amazon”, “human”, “moreover”). 5 Are standard adaptation algorithms applicable to cross-lingual problems? One of the breakthroughs in cross-lingual text classification is the realization that it can be cast as domain adaptation. This makes available a host of preexisting adaptation algorithms for improving over supervised results. However, we argue that it may be 8The feature normalization in Step 1 is important that the weight magnitudes are comparable. to ensure 432 Algorithm 1 Measuring labeling mismatch Input: Weight vectors for source wsand target wt Input: Target data average sample vector avg(T) Output: Polarity flip rate f 1: Normalize: ws = avg(T) * ws ; wt = avg(T) * wt 2: Set S+ = { K most positive features in ws} 3: Set S− == {{ KK mmoosstt negative ffeeaattuurreess inn wws}} 4: Set T+ == {{ KK m moosstt npoesgiatitivvee f efeaatuturreess i inn w wt}} 5: Set T− == {{ KK mmoosstt negative ffeeaattuurreess inn wwt}} 6: for each= f{e a Ktur me io ∈t T+ adtiov 7: rif e ia c∈h S fe−a ttuhreen i if ∈ = T f + 1 8: enidf fio ∈r 9: for each feature j ∈ T− do 10: rif e j ∈h Sfe+a uthreen j f ∈ = T f + 1 11: enidf fjo r∈ 12: f = 2Kf better to “adapt” the standard adaptation algorithm to the cross-lingual setting. We arrived at this conclusion by trying the adapted counterpart of SVMs off-the-shelf. Recently, (Bergamo and Torresani, 2010) showed that Transductive SVMs (TSVM), originally developed for semi-supervised learning, are also strong adaptation methods. The idea is to train on source data like a SVM, but encourage the classification boundary to divide through low density regions in the unlabeled target data. Table 2 shows that TSVM outperforms SVM in all but one case for cross-market adaptation, but gives mixed results for cross-lingual adaptation. This is a puzzling result considering that both use the same unlabeled data. Why does TSVM exhibit such a large variance on cross-lingual problems, but not on cross-market problems? Is unlabeled target data interacting with source data in some unexpected way? Certainly there are several successful studies (Wan, 2009; Wei and Pal, 2010; Banea et al., 2008), but we think it is important to consider the possibility that cross-lingual adaptation has some fundamental differences. We conjecture that adapting from artificially-generated text (e.g. MT output) is a different story than adapting from naturallyoccurring text (e.g. cross-market). In short, MT is ripe for cross-lingual adaptation; what is not ripe is probably our understanding of the special characteristics of the adaptation problem. References Carmen Banea, Rada Mihalcea, Janyce Wiebe, and Samer Hassan. 2008. Multilingual subjectivity analysis using machine translation. In Proc. of Conference on Empirical Methods in Natural Language Processing (EMNLP). Alessandro Bergamo and Lorenzo Torresani. 2010. Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In Advances in Neural Information Processing Systems (NIPS). John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation with structural correspondence learning. In Proc. of Conference on Empirical Methods in Natural Language Processing (EMNLP). Jenny Rose Finkel and Chris Manning. 2009. Hierarchical Bayesian domain adaptation. In Proc. of NAACL Human Language Technologies (HLT). Jing Jiang and ChengXiang Zhai. 2007. Instance weighting for domain adaptation in NLP. In Proc. of the Association for Computational Linguistics (ACL). Peter Prettenhofer and Benno Stein. 2010. Crosslanguage text classification using structural correspondence learning. In Proc. of the Association for Computational Linguistics (ACL). Hidetoshi Shimodaira. 2000. Improving predictive inference under covariate shift by weighting the loglikelihood function. Journal of Statistical Planning and Inferenc, 90. Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von B ¨unau, and Motoaki Kawanabe. 2008. Direct importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60(4). Xiaojun Wan. 2009. Co-training for cross-lingual sentiment classification. In Proc. of the Association for Computational Linguistics (ACL). Bin Wei and Chris Pal. 2010. Cross lingual adaptation: an experiment on sentiment classification. In Proceedings of the ACL 2010 Conference Short Papers. 433
5 0.37001416 103 acl-2011-Domain Adaptation by Constraining Inter-Domain Variability of Latent Feature Representation
Author: Ivan Titov
Abstract: We consider a semi-supervised setting for domain adaptation where only unlabeled data is available for the target domain. One way to tackle this problem is to train a generative model with latent variables on the mixture of data from the source and target domains. Such a model would cluster features in both domains and ensure that at least some of the latent variables are predictive of the label on the source domain. The danger is that these predictive clusters will consist of features specific to the source domain only and, consequently, a classifier relying on such clusters would perform badly on the target domain. We introduce a constraint enforcing that marginal distributions of each cluster (i.e., each latent variable) do not vary significantly across domains. We show that this constraint is effec- tive on the sentiment classification task (Pang et al., 2002), resulting in scores similar to the ones obtained by the structural correspondence methods (Blitzer et al., 2007) without the need to engineer auxiliary tasks.
6 0.35447431 109 acl-2011-Effective Measures of Domain Similarity for Parsing
7 0.34137216 311 acl-2011-Translationese and Its Dialects
8 0.32239845 189 acl-2011-K-means Clustering with Feature Hashing
9 0.31760421 92 acl-2011-Data point selection for cross-language adaptation of dependency parsers
10 0.30846196 9 acl-2011-A Cross-Lingual ILP Solution to Zero Anaphora Resolution
11 0.30637386 276 acl-2011-Semi-Supervised SimHash for Efficient Document Similarity Search
12 0.29307628 238 acl-2011-P11-2093 k2opt.pdf
13 0.29277688 113 acl-2011-Efficient Online Locality Sensitive Hashing via Reservoir Counting
14 0.29127559 212 acl-2011-Local Histograms of Character N-grams for Authorship Attribution
15 0.28335971 331 acl-2011-Using Large Monolingual and Bilingual Corpora to Improve Coordination Disambiguation
16 0.28173015 144 acl-2011-Global Learning of Typed Entailment Rules
17 0.27388 70 acl-2011-Clustering Comparable Corpora For Bilingual Lexicon Extraction
18 0.26707199 85 acl-2011-Coreference Resolution with World Knowledge
19 0.26221901 63 acl-2011-Bootstrapping coreference resolution using word associations
20 0.25786313 172 acl-2011-Insertion, Deletion, or Substitution? Normalizing Text Messages without Pre-categorization nor Supervision
topicId topicWeight
[(39, 0.655)]
simIndex simValue paperId paperTitle
same-paper 1 0.99911714 1 acl-2011-(11-06-spirl)
Author: (hal)
Abstract: unkown-abstract
2 0.78536123 184 acl-2011-Joint Hebrew Segmentation and Parsing using a PCFGLA Lattice Parser
Author: Yoav Goldberg ; Michael Elhadad
Abstract: We experiment with extending a lattice parsing methodology for parsing Hebrew (Goldberg and Tsarfaty, 2008; Golderg et al., 2009) to make use of a stronger syntactic model: the PCFG-LA Berkeley Parser. We show that the methodology is very effective: using a small training set of about 5500 trees, we construct a parser which parses and segments unsegmented Hebrew text with an F-score of almost 80%, an error reduction of over 20% over the best previous result for this task. This result indicates that lattice parsing with the Berkeley parser is an effective methodology for parsing over uncertain inputs.
3 0.75030005 52 acl-2011-Automatic Labelling of Topic Models
Author: Jey Han Lau ; Karl Grieser ; David Newman ; Timothy Baldwin
Abstract: We propose a method for automatically labelling topics learned via LDA topic models. We generate our label candidate set from the top-ranking topic terms, titles of Wikipedia articles containing the top-ranking topic terms, and sub-phrases extracted from the Wikipedia article titles. We rank the label candidates using a combination of association measures and lexical features, optionally fed into a supervised ranking model. Our method is shown to perform strongly over four independent sets of topics, significantly better than a benchmark method.
4 0.75003535 59 acl-2011-Better Automatic Treebank Conversion Using A Feature-Based Approach
Author: Muhua Zhu ; Jingbo Zhu ; Minghan Hu
Abstract: For the task of automatic treebank conversion, this paper presents a feature-based approach which encodes bracketing structures in a treebank into features to guide the conversion of this treebank to a different standard. Experiments on two Chinese treebanks show that our approach improves conversion accuracy by 1.31% over a strong baseline.
5 0.64841104 97 acl-2011-Discovering Sociolinguistic Associations with Structured Sparsity
Author: Jacob Eisenstein ; Noah A. Smith ; Eric P. Xing
Abstract: We present a method to discover robust and interpretable sociolinguistic associations from raw geotagged text data. Using aggregate demographic statistics about the authors’ geographic communities, we solve a multi-output regression problem between demographics and lexical frequencies. By imposing a composite ‘1,∞ regularizer, we obtain structured sparsity, driving entire rows of coefficients to zero. We perform two regression studies. First, we use term frequencies to predict demographic attributes; our method identifies a compact set of words that are strongly associated with author demographics. Next, we conjoin demographic attributes into features, which we use to predict term frequencies. The composite regularizer identifies a small number of features, which correspond to communities of authors united by shared demographic and linguistic properties.
6 0.58486205 27 acl-2011-A Stacked Sub-Word Model for Joint Chinese Word Segmentation and Part-of-Speech Tagging
7 0.55785066 29 acl-2011-A Word-Class Approach to Labeling PSCFG Rules for Machine Translation
8 0.51776671 192 acl-2011-Language-Independent Parsing with Empty Elements
9 0.39940062 182 acl-2011-Joint Annotation of Search Queries
10 0.34336072 10 acl-2011-A Discriminative Model for Joint Morphological Disambiguation and Dependency Parsing
11 0.32192948 282 acl-2011-Shift-Reduce CCG Parsing
12 0.31675717 242 acl-2011-Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments
13 0.31414306 215 acl-2011-MACAON An NLP Tool Suite for Processing Word Lattices
14 0.30967534 316 acl-2011-Unary Constraints for Efficient Context-Free Parsing
15 0.30574283 236 acl-2011-Optimistic Backtracking - A Backtracking Overlay for Deterministic Incremental Parsing
16 0.304037 269 acl-2011-Scaling up Automatic Cross-Lingual Semantic Role Annotation
17 0.28757527 241 acl-2011-Parsing the Internal Structure of Words: A New Paradigm for Chinese Word Segmentation
18 0.28485304 202 acl-2011-Learning Hierarchical Translation Structure with Linguistic Annotations
19 0.28066087 238 acl-2011-P11-2093 k2opt.pdf
20 0.27562851 300 acl-2011-The Surprising Variance in Shortest-Derivation Parsing