acl acl2011 acl2011-109 knowledge-graph by maker-knowledge-mining

109 acl-2011-Effective Measures of Domain Similarity for Parsing


Source: pdf

Author: Barbara Plank ; Gertjan van Noord

Abstract: It is well known that parsing accuracy suffers when a model is applied to out-of-domain data. It is also known that the most beneficial data to parse a given domain is data that matches the domain (Sekine, 1997; Gildea, 2001). Hence, an important task is to select appropriate domains. However, most previous work on domain adaptation relied on the implicit assumption that domains are somehow given. As more and more data becomes available, automatic ways to select data that is beneficial for a new (unknown) target domain are becoming attractive. This paper evaluates various ways to automatically acquire related training data for a given test set. The results show that an unsupervised technique based on topic models is effective – it outperforms random data selection on both languages exam- ined, English and Dutch. Moreover, the technique works better than manually assigned labels gathered from meta-data that is available for English. 1 Introduction and Motivation Previous research on domain adaptation has focused on the task of adapting a system trained on one domain, say newspaper text, to a particular new domain, say biomedical data. Usually, some amount of (labeled or unlabeled) data from the new domain was given which has been determined by a human. However, with the growth of the web, more and more data is becoming available, where each document “is potentially its own domain” (McClosky et al., 2010). It is not straightforward to determine – 1566 Gertjan van Noord University of Groningen The Netherlands G J M van Noord@ rug nl . . . . . which data or model (in case we have several source domain models) will perform best on a new (unknown) target domain. Therefore, an important issue that arises is how to measure domain similarity, i.e. whether we can find a simple yet effective method to determine which model or data is most beneficial for an arbitrary piece of new text. Moreover, if we had such a measure, a related question is whether it can tell us something more about what is actually meant by “domain”. So far, it was mostly arbitrarily used to refer to some kind of coherent unit (related to topic, style or genre), e.g.: newspaper text, biomedical abstracts, questions, fiction. Most previous work on domain adaptation, for instance Hara et al. (2005), McClosky et al. (2006), Blitzer et al. (2006), Daum e´ III (2007), sidestepped this problem of automatic domain selection and adaptation. For parsing, to our knowledge only one recent study has started to examine this issue (McClosky et al., 2010) we will discuss their approach in Section 2. Rather, an implicit assumption of all of these studies is that domains are given, i.e. that they are represented by the respective corpora. Thus, a corpus has been considered a homogeneous unit. As more data is becoming available, it is unlikely that – domains will be ‘given’ . Moreover, a given corpus might not always be as homogeneous as originally thought (Webber, 2009; Lippincott et al., 2010). For instance, recent work has shown that the well-known Penn Treebank (PT) Wall Street Journal (WSJ) actually contains a variety of genres, including letters, wit and short verse (Webber, 2009). In this study we take a different approach. Rather than viewing a given corpus as a monolithic entity, ProceedingPso orftla thned 4,9 Otrhe Agonnn,u Jauln Mee 1e9t-i2ng4, o 2f0 t1h1e. A ?c s 2o0ci1a1ti Aonss foocria Ctioomnp fourta Ctioomnaplu Ltaintigouniaslti Lcisn,g puaigsetsic 1s566–1576, we break it down to the article-level and disregard corpora boundaries. Given the resulting set of documents (articles), we evaluate various ways to automatically acquire related training data for a given test set, to find answers to the following questions: • Given a pool of data (a collection of articles fGriovmen nun ak pnooowln o domains) caonldle a test article, eiss there a way to automatically select data that is relevant for the new domain? If so: • Which similarity measure is good for parsing? • How does it compare to human-annotated data? • Is the measure also useful for other languages Iasnd th/oer mtaesakssu?r To this end, we evaluate measures of domain similarity and feature representations and their impact on dependency parsing accuracy. Given a collection of annotated articles, and a new article that we want to parse, we want to select the most similar articles to train the best parser for that new article. In the following, we will first compare automatic measures to human-annotated labels by examining parsing performance within subdomains of the Penn Treebank WSJ. Then, we extend the experiments to the domain adaptation scenario. Experiments were performed on two languages: English and Dutch. The empirical results show that a simple measure based on topic distributions is effective for both languages and works well also for Part-of-Speech tagging. As the approach is based on plain surfacelevel information (words) and it finds related data in a completely unsupervised fashion, it can be easily applied to other tasks or languages for which annotated (or automatically annotated) data is available. 2 Related Work The work most related to ours is McClosky et al. (2010). They try to find the best combination of source models to parse data from a new domain, which is related to Plank and Sima’an (2008). In the latter, unlabeled data was used to create several parsers by weighting trees in the WSJ according to their similarity to the subdomain. McClosky et al. (2010) coined the term multiple source domain adaptation. Inspired by work on parsing accuracy 1567 prediction (Ravi et al., 2008), they train a linear regression model to predict the best (linear interpolation) of source domain models. Similar to us, McClosky et al. (2010) regard a target domain as mixture of source domains, but they focus on phrasestructure parsing. Furthermore, our approach differs from theirs in two respects: we do not treat source corpora as one entity and try to mix models, but rather consider articles as base units and try to find subsets of related articles (the most similar articles); moreover, instead of creating a supervised model (in their case to predict parsing accuracy), our approach is ‘simplistic’ : we apply measures of domain simi- larity directly (in an unsupervised fashion), without the necessity to train a supervised model. Two other related studies are (Lippincott et al., 2010; Van Asch and Daelemans, 2010). Van Asch and Daelemans (2010) explore a measure of domain difference (Renyi divergence) between pairs of domains and its correlation to Part-of-Speech tagging accuracy. Their empirical results show a linear correlation between the measure and the performance loss. Their goal is different, but related: rather than finding related data for a new domain, they want to estimate the loss in accuracy of a PoS tagger when applied to a new domain. We will briefly discuss results obtained with the Renyi divergence in Section 5.1. Lippincott et al. (2010) examine subdomain variation in biomedicine corpora and propose awareness of NLP tools to such variation. However, they did not yet evaluate the effect on a practical task, thus our study is somewhat complementary to theirs. The issue of data selection has recently been examined for Language Modeling (Moore and Lewis, 2010). A subset of the available data is automatically selected as training data for a Language Model based on a scoring mechanism that compares cross- entropy scores. Their approach considerably outperformed random selection and two previous proposed approaches both based on perplexity scoring.1 3 Measures of Domain Similarity 3.1 Measuring Similarity Automatically Feature Representations A similarity function may be defined over any set of events that are con1We tested data selection by perplexity scoring, but found the Language Models too small to be useful in our setting. sidered to be relevant for the task at hand. For parsing, these might be words, characters, n-grams (of words or characters), Part-of-Speech (PoS) tags, bilexical dependencies, syntactic rules, etc. However, to obtain more abstract types such as PoS tags or dependency relations, one would first need to gather respective labels. The necessary tools for this are again trained on particular corpora, and will suffer from domain shifts, rendering labels noisy. Therefore, we want to gauge the effect of the simplest representation possible: plain surface characteristics (unlabeled text). This has the advantage that we do not need to rely on additional supervised tools; moreover, it is interesting to know how far we can get with this level of information only. We examine the following feature representations: relative frequencies of words, relative frequencies of character tetragrams, and topic models. Our motivation was as follows. Relative frequencies of words are a simple and effective representation used e.g. in text classification (Manning and Sch u¨tze, 1999), while character n-grams have proven successful in genre classification (Wu et al., 2010). Topic models (Blei et al., 2003; Steyvers and Griffiths, 2007) can be considered an advanced model over word distributions: every article is represented by a topic distribution, which in turn is a distribution over words. Similarity between documents can be measured by comparing topic distributions. Similarity Functions There are many possible similarity (or distance) functions. They fall broadly into two categories: probabilistically-motivated and geometrically-motivated functions. The similarity functions examined in this study will be described in the following. The Kullback-Leibler (KL) divergence D(q| |r) is a cTlahsesic Kaull measure oibfl ‘edri s(KtaLn)ce d’i2v ebregtweneceen D Dtw(oq probability distributions, and is defined as: D(q| |r) = Pyq(y)logrq((yy)). It is a non-negative, additive, aPsymmetric measure, and 0 iff the two distributions are identical. However, the KL-divergence is undefined if there exists an event y such that q(y) > 0 but r(y) = 0, which is a property that “makes it unsuitable for distributions derived via maximumlikelihood estimates” (Lee, 2001). 2It is not a proper distance metric since it is asymmetric. 1568 One option to overcome this limitation is to apply smoothing techniques to gather non-zero estimates for all y. The alternative, examined in this paper, is to consider an approximation to the KL divergence, such as the Jensen-Shannon (JS) divergence (Lin, 1991) and the skew divergence (Lee, 2001). The Jensen-Shannon divergence, which is symmetric, computes the KL-divergence between q, r, and the average between the two. We use the JS divergence as defined in Lee (2001): JS(q, r) = [D(q| |avg(q, r)) + D(r| |avg(q, r))] . The asymm[eDtr(icq |s|akvewg( divergence sα, proposed by Lee (2001), mixes one distribution with the other by a degree de- 21 fined by α ∈ [0, 1) : sα (q, r, α) = D(q| |αr + (1 α)q). Ays α α approaches 1, rt,hαe )sk =ew D divergence approximates the KL-divergence. An alternative way to measure similarity is to consider the distributions as vectors and apply geometrically-motivated distance functions. This family of similarity functions includes the cosine cos(q, r) = qq(y) · r(y)/ | |q(y) | | | |r(y) | |, euclidean − euc(q,r) = qPy(q(y) − r(y))2 and variational (also known asq LP1 or MPanhattan) distance function, defined as var(q, r) = Py |q(y) − r(y) |. 3.2 Human-annotatePd data In contrast to the automatic measures devised in the previous section, we might have access to human annotated data. That is, use label information such as topic or genre to define the set of similar articles. Genre For the Penn Treebank (PT) Wall Street Journal (WSJ) section, more specifically, the subset available in the Penn Discourse Treebank, there exists a partition of the data by genre (Webber, 2009). Every article is assigned one of the following genre labels: news, letters, highlights, essays, errata, wit and short verse, quarterly progress reports, notable and quotable. This classification has been made on the basis of meta-data (Webber, 2009). It is wellknown that there is no meta-data directly associated with the individual WSJ files in the Penn Treebank. However, meta-data can be obtained by looking at the articles in the ACL/DCI corpus (LDC99T42), and a mapping file that aligns document numbers of DCI (DOCNO) to WSJ keys (Webber, 2009). An example document is given in Figure 1. The metadata field HL contains headlines, SO source info, and the IN field includes topic markers.

Reference: text


Summary: the most important sentenses genereted by tfidf model

sentIndex sentText sentNum sentScore

1 Effective Measures of Domain Similarity for Parsing Barbara Plank University of Groningen The Netherlands b plank @ rug nl . [sent-1, score-0.325]

2 Abstract It is well known that parsing accuracy suffers when a model is applied to out-of-domain data. [sent-3, score-0.082]

3 It is also known that the most beneficial data to parse a given domain is data that matches the domain (Sekine, 1997; Gildea, 2001). [sent-4, score-0.613]

4 Hence, an important task is to select appropriate domains. [sent-5, score-0.048]

5 However, most previous work on domain adaptation relied on the implicit assumption that domains are somehow given. [sent-6, score-0.541]

6 As more and more data becomes available, automatic ways to select data that is beneficial for a new (unknown) target domain are becoming attractive. [sent-7, score-0.49]

7 This paper evaluates various ways to automatically acquire related training data for a given test set. [sent-8, score-0.052]

8 The results show that an unsupervised technique based on topic models is effective – it outperforms random data selection on both languages exam- ined, English and Dutch. [sent-9, score-0.278]

9 Moreover, the technique works better than manually assigned labels gathered from meta-data that is available for English. [sent-10, score-0.043]

10 1 Introduction and Motivation Previous research on domain adaptation has focused on the task of adapting a system trained on one domain, say newspaper text, to a particular new domain, say biomedical data. [sent-11, score-0.474]

11 Usually, some amount of (labeled or unlabeled) data from the new domain was given which has been determined by a human. [sent-12, score-0.27]

12 However, with the growth of the web, more and more data is becoming available, where each document “is potentially its own domain” (McClosky et al. [sent-13, score-0.099]

13 It is not straightforward to determine – 1566 Gertjan van Noord University of Groningen The Netherlands G J M van Noord@ rug nl . [sent-15, score-0.336]

14 which data or model (in case we have several source domain models) will perform best on a new (unknown) target domain. [sent-20, score-0.317]

15 Therefore, an important issue that arises is how to measure domain similarity, i. [sent-21, score-0.355]

16 whether we can find a simple yet effective method to determine which model or data is most beneficial for an arbitrary piece of new text. [sent-23, score-0.117]

17 Most previous work on domain adaptation, for instance Hara et al. [sent-28, score-0.27]

18 (2006), Daum e´ III (2007), sidestepped this problem of automatic domain selection and adaptation. [sent-31, score-0.328]

19 For parsing, to our knowledge only one recent study has started to examine this issue (McClosky et al. [sent-32, score-0.054]

20 Rather, an implicit assumption of all of these studies is that domains are given, i. [sent-34, score-0.147]

21 Thus, a corpus has been considered a homogeneous unit. [sent-37, score-0.084]

22 As more data is becoming available, it is unlikely that – domains will be ‘given’ . [sent-38, score-0.203]

23 Moreover, a given corpus might not always be as homogeneous as originally thought (Webber, 2009; Lippincott et al. [sent-39, score-0.084]

24 For instance, recent work has shown that the well-known Penn Treebank (PT) Wall Street Journal (WSJ) actually contains a variety of genres, including letters, wit and short verse (Webber, 2009). [sent-41, score-0.204]

25 Rather than viewing a given corpus as a monolithic entity, ProceedingPso orftla thned 4,9 Otrhe Agonnn,u Jauln Mee 1e9t-i2ng4, o 2f0 t1h1e. [sent-43, score-0.055]

26 c s 2o0ci1a1ti Aonss foocria Ctioomnp fourta Ctioomnaplu Ltaintigouniaslti Lcisn,g puaigsetsic 1s566–1576, we break it down to the article-level and disregard corpora boundaries. [sent-45, score-0.045]

27 If so: • Which similarity measure is good for parsing? [sent-47, score-0.247]

28 • Is the measure also useful for other languages Iasnd th/oer mtaesakssu? [sent-49, score-0.136]

29 r To this end, we evaluate measures of domain similarity and feature representations and their impact on dependency parsing accuracy. [sent-50, score-0.636]

30 Given a collection of annotated articles, and a new article that we want to parse, we want to select the most similar articles to train the best parser for that new article. [sent-51, score-0.371]

31 In the following, we will first compare automatic measures to human-annotated labels by examining parsing performance within subdomains of the Penn Treebank WSJ. [sent-52, score-0.249]

32 Then, we extend the experiments to the domain adaptation scenario. [sent-53, score-0.349]

33 The empirical results show that a simple measure based on topic distributions is effective for both languages and works well also for Part-of-Speech tagging. [sent-55, score-0.402]

34 As the approach is based on plain surfacelevel information (words) and it finds related data in a completely unsupervised fashion, it can be easily applied to other tasks or languages for which annotated (or automatically annotated) data is available. [sent-56, score-0.168]

35 They try to find the best combination of source models to parse data from a new domain, which is related to Plank and Sima’an (2008). [sent-59, score-0.105]

36 In the latter, unlabeled data was used to create several parsers by weighting trees in the WSJ according to their similarity to the subdomain. [sent-60, score-0.213]

37 Inspired by work on parsing accuracy 1567 prediction (Ravi et al. [sent-63, score-0.082]

38 , 2008), they train a linear regression model to predict the best (linear interpolation) of source domain models. [sent-64, score-0.317]

39 (2010) regard a target domain as mixture of source domains, but they focus on phrasestructure parsing. [sent-66, score-0.317]

40 Van Asch and Daelemans (2010) explore a measure of domain difference (Renyi divergence) between pairs of domains and its correlation to Part-of-Speech tagging accuracy. [sent-70, score-0.459]

41 Their empirical results show a linear correlation between the measure and the performance loss. [sent-71, score-0.085]

42 Their goal is different, but related: rather than finding related data for a new domain, they want to estimate the loss in accuracy of a PoS tagger when applied to a new domain. [sent-72, score-0.061]

43 We will briefly discuss results obtained with the Renyi divergence in Section 5. [sent-73, score-0.273]

44 (2010) examine subdomain variation in biomedicine corpora and propose awareness of NLP tools to such variation. [sent-76, score-0.202]

45 The issue of data selection has recently been examined for Language Modeling (Moore and Lewis, 2010). [sent-78, score-0.126]

46 Their approach considerably outperformed random selection and two previous proposed approaches both based on perplexity scoring. [sent-80, score-0.119]

47 1 Measuring Similarity Automatically Feature Representations A similarity function may be defined over any set of events that are con1We tested data selection by perplexity scoring, but found the Language Models too small to be useful in our setting. [sent-82, score-0.281]

48 However, to obtain more abstract types such as PoS tags or dependency relations, one would first need to gather respective labels. [sent-85, score-0.118]

49 The necessary tools for this are again trained on particular corpora, and will suffer from domain shifts, rendering labels noisy. [sent-86, score-0.362]

50 Therefore, we want to gauge the effect of the simplest representation possible: plain surface characteristics (unlabeled text). [sent-87, score-0.171]

51 We examine the following feature representations: relative frequencies of words, relative frequencies of character tetragrams, and topic models. [sent-89, score-0.299]

52 Relative frequencies of words are a simple and effective representation used e. [sent-91, score-0.104]

53 in text classification (Manning and Sch u¨tze, 1999), while character n-grams have proven successful in genre classification (Wu et al. [sent-93, score-0.162]

54 , 2003; Steyvers and Griffiths, 2007) can be considered an advanced model over word distributions: every article is represented by a topic distribution, which in turn is a distribution over words. [sent-96, score-0.206]

55 Similarity between documents can be measured by comparing topic distributions. [sent-97, score-0.125]

56 Similarity Functions There are many possible similarity (or distance) functions. [sent-98, score-0.162]

57 The similarity functions examined in this study will be described in the following. [sent-100, score-0.23]

58 The Kullback-Leibler (KL) divergence D(q| |r) is a cTlahsesic Kaull measure oibfl ‘edri s(KtaLn)ce d’i2v ebregtweneceen D Dtw(oq probability distributions, and is defined as: D(q| |r) = Pyq(y)logrq((yy)). [sent-101, score-0.358]

59 It is a non-negative, additive, aPsymmetric measure, and 0 iff the two distributions are identical. [sent-102, score-0.097]

60 However, the KL-divergence is undefined if there exists an event y such that q(y) > 0 but r(y) = 0, which is a property that “makes it unsuitable for distributions derived via maximumlikelihood estimates” (Lee, 2001). [sent-103, score-0.248]

61 2It is not a proper distance metric since it is asymmetric. [sent-104, score-0.054]

62 1568 One option to overcome this limitation is to apply smoothing techniques to gather non-zero estimates for all y. [sent-105, score-0.072]

63 The alternative, examined in this paper, is to consider an approximation to the KL divergence, such as the Jensen-Shannon (JS) divergence (Lin, 1991) and the skew divergence (Lee, 2001). [sent-106, score-0.658]

64 We use the JS divergence as defined in Lee (2001): JS(q, r) = [D(q| |avg(q, r)) + D(r| |avg(q, r))] . [sent-108, score-0.273]

65 The asymm[eDtr(icq |s|akvewg( divergence sα, proposed by Lee (2001), mixes one distribution with the other by a degree de- 21 fined by α ∈ [0, 1) : sα (q, r, α) = D(q| |αr + (1 α)q). [sent-109, score-0.376]

66 Ays α α approaches 1, rt,hαe )sk =ew D divergence approximates the KL-divergence. [sent-110, score-0.273]

67 An alternative way to measure similarity is to consider the distributions as vectors and apply geometrically-motivated distance functions. [sent-111, score-0.398]

68 This family of similarity functions includes the cosine cos(q, r) = qq(y) · r(y)/ | |q(y) | | | |r(y) | |, euclidean − euc(q,r) = qPy(q(y) − r(y))2 and variational (also known asq LP1 or MPanhattan) distance function, defined as var(q, r) = Py |q(y) − r(y) |. [sent-112, score-0.216]

69 2 Human-annotatePd data In contrast to the automatic measures devised in the previous section, we might have access to human annotated data. [sent-114, score-0.069]

70 That is, use label information such as topic or genre to define the set of similar articles. [sent-115, score-0.287]

71 Genre For the Penn Treebank (PT) Wall Street Journal (WSJ) section, more specifically, the subset available in the Penn Discourse Treebank, there exists a partition of the data by genre (Webber, 2009). [sent-116, score-0.162]

72 Every article is assigned one of the following genre labels: news, letters, highlights, essays, errata, wit and short verse, quarterly progress reports, notable and quotable. [sent-117, score-0.39]

73 However, meta-data can be obtained by looking at the articles in the ACL/DCI corpus (LDC99T42), and a mapping file that aligns document numbers of DCI (DOCNO) to WSJ keys (Webber, 2009). [sent-120, score-0.12]

74 The metadata field HL contains headlines, SO source info, and the IN field includes topic markers. [sent-122, score-0.172]


similar papers computed by tfidf model

tfidf for this paper:

wordName wordTfidf (topN-words)

[('webber', 0.277), ('divergence', 0.273), ('domain', 0.27), ('mcclosky', 0.202), ('lippincott', 0.188), ('similarity', 0.162), ('genre', 0.162), ('plank', 0.153), ('renyi', 0.126), ('topic', 0.125), ('wsj', 0.124), ('articles', 0.12), ('js', 0.114), ('asch', 0.111), ('domains', 0.104), ('rug', 0.102), ('groningen', 0.102), ('verse', 0.102), ('wit', 0.102), ('becoming', 0.099), ('distributions', 0.097), ('noord', 0.096), ('penn', 0.092), ('measure', 0.085), ('homogeneous', 0.084), ('parsing', 0.082), ('van', 0.082), ('article', 0.081), ('adaptation', 0.079), ('daelemans', 0.078), ('avg', 0.078), ('netherlands', 0.074), ('beneficial', 0.073), ('gather', 0.072), ('nl', 0.07), ('measures', 0.069), ('examined', 0.068), ('moreover', 0.067), ('biomedical', 0.066), ('treebank', 0.065), ('lee', 0.064), ('plain', 0.062), ('kl', 0.062), ('want', 0.061), ('perplexity', 0.061), ('frequencies', 0.06), ('newspaper', 0.059), ('try', 0.058), ('selection', 0.058), ('letters', 0.055), ('maximumlikelihood', 0.055), ('surfacelevel', 0.055), ('asymm', 0.055), ('ays', 0.055), ('biomedicine', 0.055), ('coined', 0.055), ('dci', 0.055), ('eiss', 0.055), ('euc', 0.055), ('mixes', 0.055), ('monolithic', 0.055), ('subdomains', 0.055), ('distance', 0.054), ('examine', 0.054), ('representations', 0.053), ('acquire', 0.052), ('fashion', 0.051), ('larity', 0.051), ('gertjan', 0.051), ('ined', 0.051), ('var', 0.051), ('languages', 0.051), ('unlabeled', 0.051), ('wall', 0.05), ('tools', 0.049), ('select', 0.048), ('fined', 0.048), ('gauge', 0.048), ('unsuitable', 0.048), ('sidered', 0.048), ('hara', 0.048), ('respects', 0.048), ('undefined', 0.048), ('source', 0.047), ('pt', 0.046), ('respective', 0.046), ('headlines', 0.045), ('quarterly', 0.045), ('disregard', 0.045), ('somehow', 0.045), ('street', 0.045), ('effective', 0.044), ('skew', 0.044), ('info', 0.044), ('yy', 0.044), ('awareness', 0.044), ('qq', 0.044), ('labels', 0.043), ('implicit', 0.043), ('motivation', 0.043)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 1.0000001 109 acl-2011-Effective Measures of Domain Similarity for Parsing

Author: Barbara Plank ; Gertjan van Noord

Abstract: It is well known that parsing accuracy suffers when a model is applied to out-of-domain data. It is also known that the most beneficial data to parse a given domain is data that matches the domain (Sekine, 1997; Gildea, 2001). Hence, an important task is to select appropriate domains. However, most previous work on domain adaptation relied on the implicit assumption that domains are somehow given. As more and more data becomes available, automatic ways to select data that is beneficial for a new (unknown) target domain are becoming attractive. This paper evaluates various ways to automatically acquire related training data for a given test set. The results show that an unsupervised technique based on topic models is effective – it outperforms random data selection on both languages exam- ined, English and Dutch. Moreover, the technique works better than manually assigned labels gathered from meta-data that is available for English. 1 Introduction and Motivation Previous research on domain adaptation has focused on the task of adapting a system trained on one domain, say newspaper text, to a particular new domain, say biomedical data. Usually, some amount of (labeled or unlabeled) data from the new domain was given which has been determined by a human. However, with the growth of the web, more and more data is becoming available, where each document “is potentially its own domain” (McClosky et al., 2010). It is not straightforward to determine – 1566 Gertjan van Noord University of Groningen The Netherlands G J M van Noord@ rug nl . . . . . which data or model (in case we have several source domain models) will perform best on a new (unknown) target domain. Therefore, an important issue that arises is how to measure domain similarity, i.e. whether we can find a simple yet effective method to determine which model or data is most beneficial for an arbitrary piece of new text. Moreover, if we had such a measure, a related question is whether it can tell us something more about what is actually meant by “domain”. So far, it was mostly arbitrarily used to refer to some kind of coherent unit (related to topic, style or genre), e.g.: newspaper text, biomedical abstracts, questions, fiction. Most previous work on domain adaptation, for instance Hara et al. (2005), McClosky et al. (2006), Blitzer et al. (2006), Daum e´ III (2007), sidestepped this problem of automatic domain selection and adaptation. For parsing, to our knowledge only one recent study has started to examine this issue (McClosky et al., 2010) we will discuss their approach in Section 2. Rather, an implicit assumption of all of these studies is that domains are given, i.e. that they are represented by the respective corpora. Thus, a corpus has been considered a homogeneous unit. As more data is becoming available, it is unlikely that – domains will be ‘given’ . Moreover, a given corpus might not always be as homogeneous as originally thought (Webber, 2009; Lippincott et al., 2010). For instance, recent work has shown that the well-known Penn Treebank (PT) Wall Street Journal (WSJ) actually contains a variety of genres, including letters, wit and short verse (Webber, 2009). In this study we take a different approach. Rather than viewing a given corpus as a monolithic entity, ProceedingPso orftla thned 4,9 Otrhe Agonnn,u Jauln Mee 1e9t-i2ng4, o 2f0 t1h1e. A ?c s 2o0ci1a1ti Aonss foocria Ctioomnp fourta Ctioomnaplu Ltaintigouniaslti Lcisn,g puaigsetsic 1s566–1576, we break it down to the article-level and disregard corpora boundaries. Given the resulting set of documents (articles), we evaluate various ways to automatically acquire related training data for a given test set, to find answers to the following questions: • Given a pool of data (a collection of articles fGriovmen nun ak pnooowln o domains) caonldle a test article, eiss there a way to automatically select data that is relevant for the new domain? If so: • Which similarity measure is good for parsing? • How does it compare to human-annotated data? • Is the measure also useful for other languages Iasnd th/oer mtaesakssu?r To this end, we evaluate measures of domain similarity and feature representations and their impact on dependency parsing accuracy. Given a collection of annotated articles, and a new article that we want to parse, we want to select the most similar articles to train the best parser for that new article. In the following, we will first compare automatic measures to human-annotated labels by examining parsing performance within subdomains of the Penn Treebank WSJ. Then, we extend the experiments to the domain adaptation scenario. Experiments were performed on two languages: English and Dutch. The empirical results show that a simple measure based on topic distributions is effective for both languages and works well also for Part-of-Speech tagging. As the approach is based on plain surfacelevel information (words) and it finds related data in a completely unsupervised fashion, it can be easily applied to other tasks or languages for which annotated (or automatically annotated) data is available. 2 Related Work The work most related to ours is McClosky et al. (2010). They try to find the best combination of source models to parse data from a new domain, which is related to Plank and Sima’an (2008). In the latter, unlabeled data was used to create several parsers by weighting trees in the WSJ according to their similarity to the subdomain. McClosky et al. (2010) coined the term multiple source domain adaptation. Inspired by work on parsing accuracy 1567 prediction (Ravi et al., 2008), they train a linear regression model to predict the best (linear interpolation) of source domain models. Similar to us, McClosky et al. (2010) regard a target domain as mixture of source domains, but they focus on phrasestructure parsing. Furthermore, our approach differs from theirs in two respects: we do not treat source corpora as one entity and try to mix models, but rather consider articles as base units and try to find subsets of related articles (the most similar articles); moreover, instead of creating a supervised model (in their case to predict parsing accuracy), our approach is ‘simplistic’ : we apply measures of domain simi- larity directly (in an unsupervised fashion), without the necessity to train a supervised model. Two other related studies are (Lippincott et al., 2010; Van Asch and Daelemans, 2010). Van Asch and Daelemans (2010) explore a measure of domain difference (Renyi divergence) between pairs of domains and its correlation to Part-of-Speech tagging accuracy. Their empirical results show a linear correlation between the measure and the performance loss. Their goal is different, but related: rather than finding related data for a new domain, they want to estimate the loss in accuracy of a PoS tagger when applied to a new domain. We will briefly discuss results obtained with the Renyi divergence in Section 5.1. Lippincott et al. (2010) examine subdomain variation in biomedicine corpora and propose awareness of NLP tools to such variation. However, they did not yet evaluate the effect on a practical task, thus our study is somewhat complementary to theirs. The issue of data selection has recently been examined for Language Modeling (Moore and Lewis, 2010). A subset of the available data is automatically selected as training data for a Language Model based on a scoring mechanism that compares cross- entropy scores. Their approach considerably outperformed random selection and two previous proposed approaches both based on perplexity scoring.1 3 Measures of Domain Similarity 3.1 Measuring Similarity Automatically Feature Representations A similarity function may be defined over any set of events that are con1We tested data selection by perplexity scoring, but found the Language Models too small to be useful in our setting. sidered to be relevant for the task at hand. For parsing, these might be words, characters, n-grams (of words or characters), Part-of-Speech (PoS) tags, bilexical dependencies, syntactic rules, etc. However, to obtain more abstract types such as PoS tags or dependency relations, one would first need to gather respective labels. The necessary tools for this are again trained on particular corpora, and will suffer from domain shifts, rendering labels noisy. Therefore, we want to gauge the effect of the simplest representation possible: plain surface characteristics (unlabeled text). This has the advantage that we do not need to rely on additional supervised tools; moreover, it is interesting to know how far we can get with this level of information only. We examine the following feature representations: relative frequencies of words, relative frequencies of character tetragrams, and topic models. Our motivation was as follows. Relative frequencies of words are a simple and effective representation used e.g. in text classification (Manning and Sch u¨tze, 1999), while character n-grams have proven successful in genre classification (Wu et al., 2010). Topic models (Blei et al., 2003; Steyvers and Griffiths, 2007) can be considered an advanced model over word distributions: every article is represented by a topic distribution, which in turn is a distribution over words. Similarity between documents can be measured by comparing topic distributions. Similarity Functions There are many possible similarity (or distance) functions. They fall broadly into two categories: probabilistically-motivated and geometrically-motivated functions. The similarity functions examined in this study will be described in the following. The Kullback-Leibler (KL) divergence D(q| |r) is a cTlahsesic Kaull measure oibfl ‘edri s(KtaLn)ce d’i2v ebregtweneceen D Dtw(oq probability distributions, and is defined as: D(q| |r) = Pyq(y)logrq((yy)). It is a non-negative, additive, aPsymmetric measure, and 0 iff the two distributions are identical. However, the KL-divergence is undefined if there exists an event y such that q(y) > 0 but r(y) = 0, which is a property that “makes it unsuitable for distributions derived via maximumlikelihood estimates” (Lee, 2001). 2It is not a proper distance metric since it is asymmetric. 1568 One option to overcome this limitation is to apply smoothing techniques to gather non-zero estimates for all y. The alternative, examined in this paper, is to consider an approximation to the KL divergence, such as the Jensen-Shannon (JS) divergence (Lin, 1991) and the skew divergence (Lee, 2001). The Jensen-Shannon divergence, which is symmetric, computes the KL-divergence between q, r, and the average between the two. We use the JS divergence as defined in Lee (2001): JS(q, r) = [D(q| |avg(q, r)) + D(r| |avg(q, r))] . The asymm[eDtr(icq |s|akvewg( divergence sα, proposed by Lee (2001), mixes one distribution with the other by a degree de- 21 fined by α ∈ [0, 1) : sα (q, r, α) = D(q| |αr + (1 α)q). Ays α α approaches 1, rt,hαe )sk =ew D divergence approximates the KL-divergence. An alternative way to measure similarity is to consider the distributions as vectors and apply geometrically-motivated distance functions. This family of similarity functions includes the cosine cos(q, r) = qq(y) · r(y)/ | |q(y) | | | |r(y) | |, euclidean − euc(q,r) = qPy(q(y) − r(y))2 and variational (also known asq LP1 or MPanhattan) distance function, defined as var(q, r) = Py |q(y) − r(y) |. 3.2 Human-annotatePd data In contrast to the automatic measures devised in the previous section, we might have access to human annotated data. That is, use label information such as topic or genre to define the set of similar articles. Genre For the Penn Treebank (PT) Wall Street Journal (WSJ) section, more specifically, the subset available in the Penn Discourse Treebank, there exists a partition of the data by genre (Webber, 2009). Every article is assigned one of the following genre labels: news, letters, highlights, essays, errata, wit and short verse, quarterly progress reports, notable and quotable. This classification has been made on the basis of meta-data (Webber, 2009). It is wellknown that there is no meta-data directly associated with the individual WSJ files in the Penn Treebank. However, meta-data can be obtained by looking at the articles in the ACL/DCI corpus (LDC99T42), and a mapping file that aligns document numbers of DCI (DOCNO) to WSJ keys (Webber, 2009). An example document is given in Figure 1. The metadata field HL contains headlines, SO source info, and the IN field includes topic markers.

2 0.17835529 103 acl-2011-Domain Adaptation by Constraining Inter-Domain Variability of Latent Feature Representation

Author: Ivan Titov

Abstract: We consider a semi-supervised setting for domain adaptation where only unlabeled data is available for the target domain. One way to tackle this problem is to train a generative model with latent variables on the mixture of data from the source and target domains. Such a model would cluster features in both domains and ensure that at least some of the latent variables are predictive of the label on the source domain. The danger is that these predictive clusters will consist of features specific to the source domain only and, consequently, a classifier relying on such clusters would perform badly on the target domain. We introduce a constraint enforcing that marginal distributions of each cluster (i.e., each latent variable) do not vary significantly across domains. We show that this constraint is effec- tive on the sentiment classification task (Pang et al., 2002), resulting in scores similar to the ones obtained by the structural correspondence methods (Blitzer et al., 2007) without the need to engineer auxiliary tasks.

3 0.14397131 161 acl-2011-Identifying Word Translations from Comparable Corpora Using Latent Topic Models

Author: Ivan Vulic ; Wim De Smet ; Marie-Francine Moens

Abstract: A topic model outputs a set of multinomial distributions over words for each topic. In this paper, we investigate the value of bilingual topic models, i.e., a bilingual Latent Dirichlet Allocation model for finding translations of terms in comparable corpora without using any linguistic resources. Experiments on a document-aligned English-Italian Wikipedia corpus confirm that the developed methods which only use knowledge from word-topic distributions outperform methods based on similarity measures in the original word-document space. The best results, obtained by combining knowledge from wordtopic distributions with similarity measures in the original space, are also reported.

4 0.13548261 104 acl-2011-Domain Adaptation for Machine Translation by Mining Unseen Words

Author: Hal Daume III ; Jagadeesh Jagarlamudi

Abstract: We show that unseen words account for a large part of the translation error when moving to new domains. Using an extension of a recent approach to mining translations from comparable corpora (Haghighi et al., 2008), we are able to find translations for otherwise OOV terms. We show several approaches to integrating such translations into a phrasebased translation system, yielding consistent improvements in translations quality (between 0.5 and 1.5 Bleu points) on four domains and two language pairs.

5 0.13265564 179 acl-2011-Is Machine Translation Ripe for Cross-Lingual Sentiment Classification?

Author: Kevin Duh ; Akinori Fujino ; Masaaki Nagata

Abstract: Recent advances in Machine Translation (MT) have brought forth a new paradigm for building NLP applications in low-resource scenarios. To build a sentiment classifier for a language with no labeled resources, one can translate labeled data from another language, then train a classifier on the translated text. This can be viewed as a domain adaptation problem, where labeled translations and test data have some mismatch. Various prior work have achieved positive results using this approach. In this opinion piece, we take a step back and make some general statements about crosslingual adaptation problems. First, we claim that domain mismatch is not caused by MT errors, and accuracy degradation will occur even in the case of perfect MT. Second, we argue that the cross-lingual adaptation problem is qualitatively different from other (monolingual) adaptation problems in NLP; thus new adaptation algorithms ought to be considered. This paper will describe a series of carefullydesigned experiments that led us to these conclusions. 1 Summary Question 1: If MT gave perfect translations (semantically), do we still have a domain adaptation challenge in cross-lingual sentiment classification? Answer: Yes. The reason is that while many lations of a word may be valid, the MT system have a systematic bias. For example, the word some” might be prevalent in English reviews, transmight “awebut in 429 translated reviews, the word “excellent” is generated instead. From the perspective of MT, this translation is correct and preserves sentiment polarity. But from the perspective of a classifier, there is a domain mismatch due to differences in word distributions. Question 2: Can we apply standard adaptation algorithms developed for other (monolingual) adaptation problems to cross-lingual adaptation? Answer: No. It appears that the interaction between target unlabeled data and source data can be rather unexpected in the case of cross-lingual adaptation. We do not know the reason, but our experiments show that the accuracy of adaptation algorithms in cross-lingual scenarios have much higher variance than monolingual scenarios. The goal of this opinion piece is to argue the need to better understand the characteristics of domain adaptation in cross-lingual problems. We invite the reader to disagree with our conclusion (that the true barrier to good performance is not insufficient MT quality, but inappropriate domain adaptation methods). Here we present a series of experiments that led us to this conclusion. First we describe the experiment design (§2) and baselines (§3), before answering Question §12 (§4) dan bda Question 32) (§5). 2 Experiment Design The cross-lingual setup is this: we have labeled data from source domain S and wish to build a sentiment classifier for target domain T. Domain mismatch can arise from language differences (e.g. English vs. translated text) or market differences (e.g. DVD vs. Book reviews). Our experiments will involve fixing Proceedings ofP thoer t4l9atnhd A, Onrnuegaoln M,e Jeuntineg 19 o-f2 t4h,e 2 A0s1s1o.c?i ac t2io0n11 fo Ar Cssoocmiaptuiotanti foonra Clo Lminpguutiast i ocns:aslh Loirntpgaupisetrics , pages 429–433, T to a common testset and varying S. This allows us to experiment with different settings for adaptation. We use the Amazon review dataset of Prettenhofer (2010)1 , due to its wide range of languages (English [EN], Japanese [JP], French [FR], German [DE]) and markets (music, DVD, books). Unlike Prettenhofer (2010), we reverse the direction of cross-lingual adaptation and consider English as target. English is not a low-resource language, but this setting allows for more comparisons. Each source dataset has 2000 reviews, equally balanced between positive and negative. The target has 2000 test samples, large unlabeled data (25k, 30k, 50k samples respectively for Music, DVD, and Books), and an additional 2000 labeled data reserved for oracle experiments. Texts in JP, FR, and DE are translated word-by-word into English with Google Translate.2 We perform three sets of experiments, shown in Table 1. Table 2 lists all the results; we will interpret them in the following sections. Target (T) Source (S) 312BDMToVuasbDkil-ecE1N:ExpDMB eorVuimsDkice-JEnPtN,s eBD,MtuoVBDpuoVsk:-iFDck-iERxFN,T DB,vVoMaDruky-sSiDc.E-, 3 How much performance degradation occurs in cross-lingual adaptation? First, we need to quantify the accuracy degradation under different source data, without consideration of domain adaptation methods. So we train a SVM classifier on labeled source data3, and directly apply it on test data. The oracle setting, which has no domain-mismatch (e.g. train on Music-EN, test on Music-EN), achieves an average test accuracy of (81.6 + 80.9 + 80.0)/3 = 80.8%4. Aver1http://www.webis.de/research/corpora/webis-cls-10 2This is done by querying foreign words to build a bilingual dictionary. The words are converted to tfidf unigram features. 3For all methods we try here, 5% of the 2000 labeled source samples are held-out for parameter tuning. 4See column EN of Table 2, Supervised SVM results. 430 age cross-lingual accuracies are: 69.4% (JP), 75.6% (FR), 77.0% (DE), so degradations compared to oracle are: -11% (JP), -5% (FR), -4% (DE).5 Crossmarket degradations are around -6%6. Observation 1: Degradations due to market and language mismatch are comparable in several cases (e.g. MUSIC-DE and DVD-EN perform similarly for target MUSIC-EN). Observation 2: The ranking of source language by decreasing accuracy is DE > FR > JP. Does this mean JP-EN is a more difficult language pair for MT? The next section will show that this is not necessarily the case. Certainly, the domain mismatch for JP is larger than DE, but this could be due to phenomenon other than MT errors. 4 Where exactly is the domain mismatch? 4.1 Theory of Domain Adaptation We analyze domain adaptation by the concepts of labeling and instance mismatch (Jiang and Zhai, 2007). Let pt(x, y) = pt (y|x)pt (x) be the target distribution of samples x (e.g. unigram feature vec- tor) and labels y (positive / negative). Let ps (x, y) = ps (y|x)ps (x) be the corresponding source distributio(ny. Wx)pe assume that one (or both) of the following distributions differ between source and target: • Instance mismatch: ps (x) pt (x). • Labeling mismatch: ps (y|x) pt(y|x). Instance mismatch implies that the input feature vectors have different distribution (e.g. one dataset uses the word “excellent” often, while the other uses the word “awesome”). This degrades performance because classifiers trained on “excellent” might not know how to classify texts with the word “awesome.” The solution is to tie together these features (Blitzer et al., 2006) or re-weight the input distribution (Sugiyama et al., 2008). Under some assumptions (i.e. covariate shift), oracle accuracy can be achieved theoretically (Shimodaira, 2000). Labeling mismatch implies the same input has different labels in different domains. For example, the JP word meaning “excellent” may be mistranslated as “bad” in English. Then, positive JP = = 5See “Adapt by Language” columns of Table 2. Note JP+FR+DE condition has 6000 labeled samples, so is not directly comparable to other adaptation scenarios (2000 samples). Nevertheless, mixing languages seem to give good results. 6See “Adapt by Market” columns of Table 2. TargetClassifierOEraNcleJPAFdaRpt bDyE LanJgPu+agFeR+DEMUASdIaCpt D byV MDar BkeOtOK MUSIC-ENSAudpaeprtvedise TdS SVVMM8719..666783..50 7745..62 7 776..937880..36--7768..847745..16 DVD-ENSAudpaeprtveidse TdS SVVMM8801..907701..14 7765..54 7 767..347789..477754..28--7746..57 BOOK-ENSAudpaeprtveidse TdS SVVMM8801..026793..68 7775..64 7 767..747799..957735..417767..24-Table 2: Test accuracies (%) for English Music/DVD/Book reviews. Each column is an adaptation scenario using different source data. The source data may vary by language or by market. For example, the first row shows that for the target of Music-EN, the accuracy of a SVM trained on translated JP reviews (in the same market) is 68.5, while the accuracy of a SVM trained on DVD reviews (in the same language) is 76.8. “Oracle” indicates training on the same market and same language domain as the target. “JP+FR+DE” indicates the concatenation of JP, FR, DE as source data. Boldface shows the winner of Supervised vs. Adapted. reviews ps (y will be associated = +1|x = bad) co(nydit =io +na1l − |x = 1 will be high, whereas the true xdis =tr bibaudti)o wn bad) instead. labeling mismatch, with the word “bad”: lslh boeu hldi hha,v we high pt(y = There are several cases for depending on sheovwe tahle c polarity changes (Table 3). The solution is to filter out these noisy samples (Jiang and Zhai, 2007) or optimize loosely-linked objectives through shared parameters or Bayesian priors (Finkel and Manning, 2009). Which mismatch is responsible for accuracy degradations in cross-lingual adaptation? • Instance mismatch: Systematic Iantessta nwcoerd m diissmtraibtcuhti:on Ssy MT bias gener- sdtiefmferaetinct MfroTm b naturally- occurring English. (Translation may be valid.) Label mismatch: MT error mis-translates a word iLnatob something w: MithT Td eifrfreorren mti polarity. Conclusion from §4.2 and §4.3: Instance mismaCtcohn occurs often; M §4T. error appears Imnisntainmcael. • Mis-translated polarity Effect Taeb0+±.lge→ .3(:±“ 0−tgLhoae b”nd →l m− i“sg→m otbah+dce”h):mIfpoLAinse ca-ptsoriuaesncvieatl /ndioeansgbvcaewrptlimovaeshipntdvaei(+), negative (−), or neutral (0) words have different effects. Wnege athtiivnek ( −th)e, foirrs nt tuwtroa cases hoardves graceful degradation, but the third case may be catastrophic. 431 4.2 Analysis of Instance Mismatch To measure instance mismatch, we compute statistics between ps (x) and pt(x), or approximations thereof: First, we calculate a (normalized) average feature from all samples of source S, which represents the unigram distribution of MT output. Simi- larly, the average feature vector for target T approximates the unigram distribution of English reviews pt(x). Then we measure: • KL Divergence between Avg(S) and Avg(T), wKhLer De Avg() nisc eth bee average Avvegct(oSr.) • Set Coverage of Avg(T) on Avg(S): how many Sweotrd C (type) ien o Tf appears oatn le Aavsgt once ionw wS .m Both measures correlate strongly with final accuracy, as seen in Figure 1. The correlation coefficients are r = −0.78 for KL Divergence and r = 0.71 for Coverage, 0 b.7o8th statistically significant (p < 0.05). This implies that instance mismatch is an important reason for the degradations seen in Section 3.7 4.3 Analysis of Labeling Mismatch We measure labeling mismatch by looking at differences in the weight vectors of oracle SVM and adapted SVM. Intuitively, if a feature has positive weight in the oracle SVM, but negative weight in the adapted SVM, then it is likely a MT mis-translation 7The observant reader may notice that cross-market points exhibit higher coverage but equal accuracy (74-78%) to some cross-lingual points. This suggests that MT output may be more constrained in vocabulary than naturally-occurring English. 0.35 0.3 gnvLrDeiceKe0 0 0. 120.25 510 erts TeCovega0 0 0. .98657 68 70 72 7A4ccuracy76 78 80 82 0.4 68 70 72 7A4ccuracy76 78 80 82 Figure 1: KL Divergence and Coverage vs. accuracy. (o) are cross-lingual and (x) are cross-market data points. is causing the polarity flip. Algorithm 1 (with K=2000) shows how we compute polarity flip rate.8 We found that the polarity flip rate does not correlate well with accuracy at all (r = 0.04). Conclusion: Labeling mismatch is not a factor in performance degradation. Nevertheless, we note there is a surprising large number of flips (24% on average). A manual check of the flipped words in BOOK-JP revealed few MT mistakes. Only 3.7% of 450 random EN-JP word pairs checked can be judged as blatantly incorrect (without sentence context). The majority of flipped words do not have a clear sentiment orientation (e.g. “amazon”, “human”, “moreover”). 5 Are standard adaptation algorithms applicable to cross-lingual problems? One of the breakthroughs in cross-lingual text classification is the realization that it can be cast as domain adaptation. This makes available a host of preexisting adaptation algorithms for improving over supervised results. However, we argue that it may be 8The feature normalization in Step 1 is important that the weight magnitudes are comparable. to ensure 432 Algorithm 1 Measuring labeling mismatch Input: Weight vectors for source wsand target wt Input: Target data average sample vector avg(T) Output: Polarity flip rate f 1: Normalize: ws = avg(T) * ws ; wt = avg(T) * wt 2: Set S+ = { K most positive features in ws} 3: Set S− == {{ KK mmoosstt negative ffeeaattuurreess inn wws}} 4: Set T+ == {{ KK m moosstt npoesgiatitivvee f efeaatuturreess i inn w wt}} 5: Set T− == {{ KK mmoosstt negative ffeeaattuurreess inn wwt}} 6: for each= f{e a Ktur me io ∈t T+ adtiov 7: rif e ia c∈h S fe−a ttuhreen i if ∈ = T f + 1 8: enidf fio ∈r 9: for each feature j ∈ T− do 10: rif e j ∈h Sfe+a uthreen j f ∈ = T f + 1 11: enidf fjo r∈ 12: f = 2Kf better to “adapt” the standard adaptation algorithm to the cross-lingual setting. We arrived at this conclusion by trying the adapted counterpart of SVMs off-the-shelf. Recently, (Bergamo and Torresani, 2010) showed that Transductive SVMs (TSVM), originally developed for semi-supervised learning, are also strong adaptation methods. The idea is to train on source data like a SVM, but encourage the classification boundary to divide through low density regions in the unlabeled target data. Table 2 shows that TSVM outperforms SVM in all but one case for cross-market adaptation, but gives mixed results for cross-lingual adaptation. This is a puzzling result considering that both use the same unlabeled data. Why does TSVM exhibit such a large variance on cross-lingual problems, but not on cross-market problems? Is unlabeled target data interacting with source data in some unexpected way? Certainly there are several successful studies (Wan, 2009; Wei and Pal, 2010; Banea et al., 2008), but we think it is important to consider the possibility that cross-lingual adaptation has some fundamental differences. We conjecture that adapting from artificially-generated text (e.g. MT output) is a different story than adapting from naturallyoccurring text (e.g. cross-market). In short, MT is ripe for cross-lingual adaptation; what is not ripe is probably our understanding of the special characteristics of the adaptation problem. References Carmen Banea, Rada Mihalcea, Janyce Wiebe, and Samer Hassan. 2008. Multilingual subjectivity analysis using machine translation. In Proc. of Conference on Empirical Methods in Natural Language Processing (EMNLP). Alessandro Bergamo and Lorenzo Torresani. 2010. Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In Advances in Neural Information Processing Systems (NIPS). John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation with structural correspondence learning. In Proc. of Conference on Empirical Methods in Natural Language Processing (EMNLP). Jenny Rose Finkel and Chris Manning. 2009. Hierarchical Bayesian domain adaptation. In Proc. of NAACL Human Language Technologies (HLT). Jing Jiang and ChengXiang Zhai. 2007. Instance weighting for domain adaptation in NLP. In Proc. of the Association for Computational Linguistics (ACL). Peter Prettenhofer and Benno Stein. 2010. Crosslanguage text classification using structural correspondence learning. In Proc. of the Association for Computational Linguistics (ACL). Hidetoshi Shimodaira. 2000. Improving predictive inference under covariate shift by weighting the loglikelihood function. Journal of Statistical Planning and Inferenc, 90. Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von B ¨unau, and Motoaki Kawanabe. 2008. Direct importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60(4). Xiaojun Wan. 2009. Co-training for cross-lingual sentiment classification. In Proc. of the Association for Computational Linguistics (ACL). Bin Wei and Chris Pal. 2010. Cross lingual adaptation: an experiment on sentiment classification. In Proceedings of the ACL 2010 Conference Short Papers. 433

6 0.13219963 18 acl-2011-A Latent Topic Extracting Method based on Events in a Document and its Application

7 0.1275381 52 acl-2011-Automatic Labelling of Topic Models

8 0.1208235 332 acl-2011-Using Multiple Sources to Construct a Sentiment Sensitive Thesaurus for Cross-Domain Sentiment Classification

9 0.11777646 117 acl-2011-Entity Set Expansion using Topic information

10 0.1080587 127 acl-2011-Exploiting Web-Derived Selectional Preference to Improve Statistical Dependency Parsing

11 0.10531395 256 acl-2011-Query Weighting for Ranking Model Adaptation

12 0.10438706 169 acl-2011-Improving Question Recommendation by Exploiting Information Need

13 0.097890511 54 acl-2011-Automatically Extracting Polarity-Bearing Topics for Cross-Domain Sentiment Classification

14 0.094239697 285 acl-2011-Simple supervised document geolocation with geodesic grids

15 0.092667133 267 acl-2011-Reversible Stochastic Attribute-Value Grammars

16 0.086404875 259 acl-2011-Rare Word Translation Extraction from Aligned Comparable Documents

17 0.084718309 92 acl-2011-Data point selection for cross-language adaptation of dependency parsers

18 0.080471881 238 acl-2011-P11-2093 k2opt.pdf

19 0.080046088 53 acl-2011-Automatically Evaluating Text Coherence Using Discourse Relations

20 0.0766491 79 acl-2011-Confidence Driven Unsupervised Semantic Parsing


similar papers computed by lsi model

lsi for this paper:

topicId topicWeight

[(0, 0.236), (1, 0.076), (2, -0.056), (3, 0.003), (4, -0.014), (5, -0.057), (6, -0.005), (7, 0.137), (8, 0.05), (9, 0.059), (10, -0.014), (11, -0.034), (12, 0.092), (13, -0.033), (14, 0.118), (15, 0.046), (16, -0.05), (17, 0.001), (18, 0.035), (19, -0.094), (20, 0.027), (21, -0.11), (22, -0.072), (23, 0.026), (24, 0.02), (25, 0.055), (26, -0.089), (27, -0.011), (28, 0.055), (29, -0.038), (30, -0.013), (31, 0.025), (32, -0.011), (33, -0.013), (34, 0.015), (35, 0.002), (36, -0.145), (37, -0.001), (38, 0.037), (39, -0.062), (40, -0.046), (41, 0.034), (42, -0.058), (43, -0.026), (44, 0.061), (45, 0.039), (46, 0.008), (47, 0.085), (48, -0.093), (49, -0.076)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.97500932 109 acl-2011-Effective Measures of Domain Similarity for Parsing

Author: Barbara Plank ; Gertjan van Noord

Abstract: It is well known that parsing accuracy suffers when a model is applied to out-of-domain data. It is also known that the most beneficial data to parse a given domain is data that matches the domain (Sekine, 1997; Gildea, 2001). Hence, an important task is to select appropriate domains. However, most previous work on domain adaptation relied on the implicit assumption that domains are somehow given. As more and more data becomes available, automatic ways to select data that is beneficial for a new (unknown) target domain are becoming attractive. This paper evaluates various ways to automatically acquire related training data for a given test set. The results show that an unsupervised technique based on topic models is effective – it outperforms random data selection on both languages exam- ined, English and Dutch. Moreover, the technique works better than manually assigned labels gathered from meta-data that is available for English. 1 Introduction and Motivation Previous research on domain adaptation has focused on the task of adapting a system trained on one domain, say newspaper text, to a particular new domain, say biomedical data. Usually, some amount of (labeled or unlabeled) data from the new domain was given which has been determined by a human. However, with the growth of the web, more and more data is becoming available, where each document “is potentially its own domain” (McClosky et al., 2010). It is not straightforward to determine – 1566 Gertjan van Noord University of Groningen The Netherlands G J M van Noord@ rug nl . . . . . which data or model (in case we have several source domain models) will perform best on a new (unknown) target domain. Therefore, an important issue that arises is how to measure domain similarity, i.e. whether we can find a simple yet effective method to determine which model or data is most beneficial for an arbitrary piece of new text. Moreover, if we had such a measure, a related question is whether it can tell us something more about what is actually meant by “domain”. So far, it was mostly arbitrarily used to refer to some kind of coherent unit (related to topic, style or genre), e.g.: newspaper text, biomedical abstracts, questions, fiction. Most previous work on domain adaptation, for instance Hara et al. (2005), McClosky et al. (2006), Blitzer et al. (2006), Daum e´ III (2007), sidestepped this problem of automatic domain selection and adaptation. For parsing, to our knowledge only one recent study has started to examine this issue (McClosky et al., 2010) we will discuss their approach in Section 2. Rather, an implicit assumption of all of these studies is that domains are given, i.e. that they are represented by the respective corpora. Thus, a corpus has been considered a homogeneous unit. As more data is becoming available, it is unlikely that – domains will be ‘given’ . Moreover, a given corpus might not always be as homogeneous as originally thought (Webber, 2009; Lippincott et al., 2010). For instance, recent work has shown that the well-known Penn Treebank (PT) Wall Street Journal (WSJ) actually contains a variety of genres, including letters, wit and short verse (Webber, 2009). In this study we take a different approach. Rather than viewing a given corpus as a monolithic entity, ProceedingPso orftla thned 4,9 Otrhe Agonnn,u Jauln Mee 1e9t-i2ng4, o 2f0 t1h1e. A ?c s 2o0ci1a1ti Aonss foocria Ctioomnp fourta Ctioomnaplu Ltaintigouniaslti Lcisn,g puaigsetsic 1s566–1576, we break it down to the article-level and disregard corpora boundaries. Given the resulting set of documents (articles), we evaluate various ways to automatically acquire related training data for a given test set, to find answers to the following questions: • Given a pool of data (a collection of articles fGriovmen nun ak pnooowln o domains) caonldle a test article, eiss there a way to automatically select data that is relevant for the new domain? If so: • Which similarity measure is good for parsing? • How does it compare to human-annotated data? • Is the measure also useful for other languages Iasnd th/oer mtaesakssu?r To this end, we evaluate measures of domain similarity and feature representations and their impact on dependency parsing accuracy. Given a collection of annotated articles, and a new article that we want to parse, we want to select the most similar articles to train the best parser for that new article. In the following, we will first compare automatic measures to human-annotated labels by examining parsing performance within subdomains of the Penn Treebank WSJ. Then, we extend the experiments to the domain adaptation scenario. Experiments were performed on two languages: English and Dutch. The empirical results show that a simple measure based on topic distributions is effective for both languages and works well also for Part-of-Speech tagging. As the approach is based on plain surfacelevel information (words) and it finds related data in a completely unsupervised fashion, it can be easily applied to other tasks or languages for which annotated (or automatically annotated) data is available. 2 Related Work The work most related to ours is McClosky et al. (2010). They try to find the best combination of source models to parse data from a new domain, which is related to Plank and Sima’an (2008). In the latter, unlabeled data was used to create several parsers by weighting trees in the WSJ according to their similarity to the subdomain. McClosky et al. (2010) coined the term multiple source domain adaptation. Inspired by work on parsing accuracy 1567 prediction (Ravi et al., 2008), they train a linear regression model to predict the best (linear interpolation) of source domain models. Similar to us, McClosky et al. (2010) regard a target domain as mixture of source domains, but they focus on phrasestructure parsing. Furthermore, our approach differs from theirs in two respects: we do not treat source corpora as one entity and try to mix models, but rather consider articles as base units and try to find subsets of related articles (the most similar articles); moreover, instead of creating a supervised model (in their case to predict parsing accuracy), our approach is ‘simplistic’ : we apply measures of domain simi- larity directly (in an unsupervised fashion), without the necessity to train a supervised model. Two other related studies are (Lippincott et al., 2010; Van Asch and Daelemans, 2010). Van Asch and Daelemans (2010) explore a measure of domain difference (Renyi divergence) between pairs of domains and its correlation to Part-of-Speech tagging accuracy. Their empirical results show a linear correlation between the measure and the performance loss. Their goal is different, but related: rather than finding related data for a new domain, they want to estimate the loss in accuracy of a PoS tagger when applied to a new domain. We will briefly discuss results obtained with the Renyi divergence in Section 5.1. Lippincott et al. (2010) examine subdomain variation in biomedicine corpora and propose awareness of NLP tools to such variation. However, they did not yet evaluate the effect on a practical task, thus our study is somewhat complementary to theirs. The issue of data selection has recently been examined for Language Modeling (Moore and Lewis, 2010). A subset of the available data is automatically selected as training data for a Language Model based on a scoring mechanism that compares cross- entropy scores. Their approach considerably outperformed random selection and two previous proposed approaches both based on perplexity scoring.1 3 Measures of Domain Similarity 3.1 Measuring Similarity Automatically Feature Representations A similarity function may be defined over any set of events that are con1We tested data selection by perplexity scoring, but found the Language Models too small to be useful in our setting. sidered to be relevant for the task at hand. For parsing, these might be words, characters, n-grams (of words or characters), Part-of-Speech (PoS) tags, bilexical dependencies, syntactic rules, etc. However, to obtain more abstract types such as PoS tags or dependency relations, one would first need to gather respective labels. The necessary tools for this are again trained on particular corpora, and will suffer from domain shifts, rendering labels noisy. Therefore, we want to gauge the effect of the simplest representation possible: plain surface characteristics (unlabeled text). This has the advantage that we do not need to rely on additional supervised tools; moreover, it is interesting to know how far we can get with this level of information only. We examine the following feature representations: relative frequencies of words, relative frequencies of character tetragrams, and topic models. Our motivation was as follows. Relative frequencies of words are a simple and effective representation used e.g. in text classification (Manning and Sch u¨tze, 1999), while character n-grams have proven successful in genre classification (Wu et al., 2010). Topic models (Blei et al., 2003; Steyvers and Griffiths, 2007) can be considered an advanced model over word distributions: every article is represented by a topic distribution, which in turn is a distribution over words. Similarity between documents can be measured by comparing topic distributions. Similarity Functions There are many possible similarity (or distance) functions. They fall broadly into two categories: probabilistically-motivated and geometrically-motivated functions. The similarity functions examined in this study will be described in the following. The Kullback-Leibler (KL) divergence D(q| |r) is a cTlahsesic Kaull measure oibfl ‘edri s(KtaLn)ce d’i2v ebregtweneceen D Dtw(oq probability distributions, and is defined as: D(q| |r) = Pyq(y)logrq((yy)). It is a non-negative, additive, aPsymmetric measure, and 0 iff the two distributions are identical. However, the KL-divergence is undefined if there exists an event y such that q(y) > 0 but r(y) = 0, which is a property that “makes it unsuitable for distributions derived via maximumlikelihood estimates” (Lee, 2001). 2It is not a proper distance metric since it is asymmetric. 1568 One option to overcome this limitation is to apply smoothing techniques to gather non-zero estimates for all y. The alternative, examined in this paper, is to consider an approximation to the KL divergence, such as the Jensen-Shannon (JS) divergence (Lin, 1991) and the skew divergence (Lee, 2001). The Jensen-Shannon divergence, which is symmetric, computes the KL-divergence between q, r, and the average between the two. We use the JS divergence as defined in Lee (2001): JS(q, r) = [D(q| |avg(q, r)) + D(r| |avg(q, r))] . The asymm[eDtr(icq |s|akvewg( divergence sα, proposed by Lee (2001), mixes one distribution with the other by a degree de- 21 fined by α ∈ [0, 1) : sα (q, r, α) = D(q| |αr + (1 α)q). Ays α α approaches 1, rt,hαe )sk =ew D divergence approximates the KL-divergence. An alternative way to measure similarity is to consider the distributions as vectors and apply geometrically-motivated distance functions. This family of similarity functions includes the cosine cos(q, r) = qq(y) · r(y)/ | |q(y) | | | |r(y) | |, euclidean − euc(q,r) = qPy(q(y) − r(y))2 and variational (also known asq LP1 or MPanhattan) distance function, defined as var(q, r) = Py |q(y) − r(y) |. 3.2 Human-annotatePd data In contrast to the automatic measures devised in the previous section, we might have access to human annotated data. That is, use label information such as topic or genre to define the set of similar articles. Genre For the Penn Treebank (PT) Wall Street Journal (WSJ) section, more specifically, the subset available in the Penn Discourse Treebank, there exists a partition of the data by genre (Webber, 2009). Every article is assigned one of the following genre labels: news, letters, highlights, essays, errata, wit and short verse, quarterly progress reports, notable and quotable. This classification has been made on the basis of meta-data (Webber, 2009). It is wellknown that there is no meta-data directly associated with the individual WSJ files in the Penn Treebank. However, meta-data can be obtained by looking at the articles in the ACL/DCI corpus (LDC99T42), and a mapping file that aligns document numbers of DCI (DOCNO) to WSJ keys (Webber, 2009). An example document is given in Figure 1. The metadata field HL contains headlines, SO source info, and the IN field includes topic markers.

2 0.73575425 103 acl-2011-Domain Adaptation by Constraining Inter-Domain Variability of Latent Feature Representation

Author: Ivan Titov

Abstract: We consider a semi-supervised setting for domain adaptation where only unlabeled data is available for the target domain. One way to tackle this problem is to train a generative model with latent variables on the mixture of data from the source and target domains. Such a model would cluster features in both domains and ensure that at least some of the latent variables are predictive of the label on the source domain. The danger is that these predictive clusters will consist of features specific to the source domain only and, consequently, a classifier relying on such clusters would perform badly on the target domain. We introduce a constraint enforcing that marginal distributions of each cluster (i.e., each latent variable) do not vary significantly across domains. We show that this constraint is effec- tive on the sentiment classification task (Pang et al., 2002), resulting in scores similar to the ones obtained by the structural correspondence methods (Blitzer et al., 2007) without the need to engineer auxiliary tasks.

3 0.73001128 179 acl-2011-Is Machine Translation Ripe for Cross-Lingual Sentiment Classification?

Author: Kevin Duh ; Akinori Fujino ; Masaaki Nagata

Abstract: Recent advances in Machine Translation (MT) have brought forth a new paradigm for building NLP applications in low-resource scenarios. To build a sentiment classifier for a language with no labeled resources, one can translate labeled data from another language, then train a classifier on the translated text. This can be viewed as a domain adaptation problem, where labeled translations and test data have some mismatch. Various prior work have achieved positive results using this approach. In this opinion piece, we take a step back and make some general statements about crosslingual adaptation problems. First, we claim that domain mismatch is not caused by MT errors, and accuracy degradation will occur even in the case of perfect MT. Second, we argue that the cross-lingual adaptation problem is qualitatively different from other (monolingual) adaptation problems in NLP; thus new adaptation algorithms ought to be considered. This paper will describe a series of carefullydesigned experiments that led us to these conclusions. 1 Summary Question 1: If MT gave perfect translations (semantically), do we still have a domain adaptation challenge in cross-lingual sentiment classification? Answer: Yes. The reason is that while many lations of a word may be valid, the MT system have a systematic bias. For example, the word some” might be prevalent in English reviews, transmight “awebut in 429 translated reviews, the word “excellent” is generated instead. From the perspective of MT, this translation is correct and preserves sentiment polarity. But from the perspective of a classifier, there is a domain mismatch due to differences in word distributions. Question 2: Can we apply standard adaptation algorithms developed for other (monolingual) adaptation problems to cross-lingual adaptation? Answer: No. It appears that the interaction between target unlabeled data and source data can be rather unexpected in the case of cross-lingual adaptation. We do not know the reason, but our experiments show that the accuracy of adaptation algorithms in cross-lingual scenarios have much higher variance than monolingual scenarios. The goal of this opinion piece is to argue the need to better understand the characteristics of domain adaptation in cross-lingual problems. We invite the reader to disagree with our conclusion (that the true barrier to good performance is not insufficient MT quality, but inappropriate domain adaptation methods). Here we present a series of experiments that led us to this conclusion. First we describe the experiment design (§2) and baselines (§3), before answering Question §12 (§4) dan bda Question 32) (§5). 2 Experiment Design The cross-lingual setup is this: we have labeled data from source domain S and wish to build a sentiment classifier for target domain T. Domain mismatch can arise from language differences (e.g. English vs. translated text) or market differences (e.g. DVD vs. Book reviews). Our experiments will involve fixing Proceedings ofP thoer t4l9atnhd A, Onrnuegaoln M,e Jeuntineg 19 o-f2 t4h,e 2 A0s1s1o.c?i ac t2io0n11 fo Ar Cssoocmiaptuiotanti foonra Clo Lminpguutiast i ocns:aslh Loirntpgaupisetrics , pages 429–433, T to a common testset and varying S. This allows us to experiment with different settings for adaptation. We use the Amazon review dataset of Prettenhofer (2010)1 , due to its wide range of languages (English [EN], Japanese [JP], French [FR], German [DE]) and markets (music, DVD, books). Unlike Prettenhofer (2010), we reverse the direction of cross-lingual adaptation and consider English as target. English is not a low-resource language, but this setting allows for more comparisons. Each source dataset has 2000 reviews, equally balanced between positive and negative. The target has 2000 test samples, large unlabeled data (25k, 30k, 50k samples respectively for Music, DVD, and Books), and an additional 2000 labeled data reserved for oracle experiments. Texts in JP, FR, and DE are translated word-by-word into English with Google Translate.2 We perform three sets of experiments, shown in Table 1. Table 2 lists all the results; we will interpret them in the following sections. Target (T) Source (S) 312BDMToVuasbDkil-ecE1N:ExpDMB eorVuimsDkice-JEnPtN,s eBD,MtuoVBDpuoVsk:-iFDck-iERxFN,T DB,vVoMaDruky-sSiDc.E-, 3 How much performance degradation occurs in cross-lingual adaptation? First, we need to quantify the accuracy degradation under different source data, without consideration of domain adaptation methods. So we train a SVM classifier on labeled source data3, and directly apply it on test data. The oracle setting, which has no domain-mismatch (e.g. train on Music-EN, test on Music-EN), achieves an average test accuracy of (81.6 + 80.9 + 80.0)/3 = 80.8%4. Aver1http://www.webis.de/research/corpora/webis-cls-10 2This is done by querying foreign words to build a bilingual dictionary. The words are converted to tfidf unigram features. 3For all methods we try here, 5% of the 2000 labeled source samples are held-out for parameter tuning. 4See column EN of Table 2, Supervised SVM results. 430 age cross-lingual accuracies are: 69.4% (JP), 75.6% (FR), 77.0% (DE), so degradations compared to oracle are: -11% (JP), -5% (FR), -4% (DE).5 Crossmarket degradations are around -6%6. Observation 1: Degradations due to market and language mismatch are comparable in several cases (e.g. MUSIC-DE and DVD-EN perform similarly for target MUSIC-EN). Observation 2: The ranking of source language by decreasing accuracy is DE > FR > JP. Does this mean JP-EN is a more difficult language pair for MT? The next section will show that this is not necessarily the case. Certainly, the domain mismatch for JP is larger than DE, but this could be due to phenomenon other than MT errors. 4 Where exactly is the domain mismatch? 4.1 Theory of Domain Adaptation We analyze domain adaptation by the concepts of labeling and instance mismatch (Jiang and Zhai, 2007). Let pt(x, y) = pt (y|x)pt (x) be the target distribution of samples x (e.g. unigram feature vec- tor) and labels y (positive / negative). Let ps (x, y) = ps (y|x)ps (x) be the corresponding source distributio(ny. Wx)pe assume that one (or both) of the following distributions differ between source and target: • Instance mismatch: ps (x) pt (x). • Labeling mismatch: ps (y|x) pt(y|x). Instance mismatch implies that the input feature vectors have different distribution (e.g. one dataset uses the word “excellent” often, while the other uses the word “awesome”). This degrades performance because classifiers trained on “excellent” might not know how to classify texts with the word “awesome.” The solution is to tie together these features (Blitzer et al., 2006) or re-weight the input distribution (Sugiyama et al., 2008). Under some assumptions (i.e. covariate shift), oracle accuracy can be achieved theoretically (Shimodaira, 2000). Labeling mismatch implies the same input has different labels in different domains. For example, the JP word meaning “excellent” may be mistranslated as “bad” in English. Then, positive JP = = 5See “Adapt by Language” columns of Table 2. Note JP+FR+DE condition has 6000 labeled samples, so is not directly comparable to other adaptation scenarios (2000 samples). Nevertheless, mixing languages seem to give good results. 6See “Adapt by Market” columns of Table 2. TargetClassifierOEraNcleJPAFdaRpt bDyE LanJgPu+agFeR+DEMUASdIaCpt D byV MDar BkeOtOK MUSIC-ENSAudpaeprtvedise TdS SVVMM8719..666783..50 7745..62 7 776..937880..36--7768..847745..16 DVD-ENSAudpaeprtveidse TdS SVVMM8801..907701..14 7765..54 7 767..347789..477754..28--7746..57 BOOK-ENSAudpaeprtveidse TdS SVVMM8801..026793..68 7775..64 7 767..747799..957735..417767..24-Table 2: Test accuracies (%) for English Music/DVD/Book reviews. Each column is an adaptation scenario using different source data. The source data may vary by language or by market. For example, the first row shows that for the target of Music-EN, the accuracy of a SVM trained on translated JP reviews (in the same market) is 68.5, while the accuracy of a SVM trained on DVD reviews (in the same language) is 76.8. “Oracle” indicates training on the same market and same language domain as the target. “JP+FR+DE” indicates the concatenation of JP, FR, DE as source data. Boldface shows the winner of Supervised vs. Adapted. reviews ps (y will be associated = +1|x = bad) co(nydit =io +na1l − |x = 1 will be high, whereas the true xdis =tr bibaudti)o wn bad) instead. labeling mismatch, with the word “bad”: lslh boeu hldi hha,v we high pt(y = There are several cases for depending on sheovwe tahle c polarity changes (Table 3). The solution is to filter out these noisy samples (Jiang and Zhai, 2007) or optimize loosely-linked objectives through shared parameters or Bayesian priors (Finkel and Manning, 2009). Which mismatch is responsible for accuracy degradations in cross-lingual adaptation? • Instance mismatch: Systematic Iantessta nwcoerd m diissmtraibtcuhti:on Ssy MT bias gener- sdtiefmferaetinct MfroTm b naturally- occurring English. (Translation may be valid.) Label mismatch: MT error mis-translates a word iLnatob something w: MithT Td eifrfreorren mti polarity. Conclusion from §4.2 and §4.3: Instance mismaCtcohn occurs often; M §4T. error appears Imnisntainmcael. • Mis-translated polarity Effect Taeb0+±.lge→ .3(:±“ 0−tgLhoae b”nd →l m− i“sg→m otbah+dce”h):mIfpoLAinse ca-ptsoriuaesncvieatl /ndioeansgbvcaewrptlimovaeshipntdvaei(+), negative (−), or neutral (0) words have different effects. Wnege athtiivnek ( −th)e, foirrs nt tuwtroa cases hoardves graceful degradation, but the third case may be catastrophic. 431 4.2 Analysis of Instance Mismatch To measure instance mismatch, we compute statistics between ps (x) and pt(x), or approximations thereof: First, we calculate a (normalized) average feature from all samples of source S, which represents the unigram distribution of MT output. Simi- larly, the average feature vector for target T approximates the unigram distribution of English reviews pt(x). Then we measure: • KL Divergence between Avg(S) and Avg(T), wKhLer De Avg() nisc eth bee average Avvegct(oSr.) • Set Coverage of Avg(T) on Avg(S): how many Sweotrd C (type) ien o Tf appears oatn le Aavsgt once ionw wS .m Both measures correlate strongly with final accuracy, as seen in Figure 1. The correlation coefficients are r = −0.78 for KL Divergence and r = 0.71 for Coverage, 0 b.7o8th statistically significant (p < 0.05). This implies that instance mismatch is an important reason for the degradations seen in Section 3.7 4.3 Analysis of Labeling Mismatch We measure labeling mismatch by looking at differences in the weight vectors of oracle SVM and adapted SVM. Intuitively, if a feature has positive weight in the oracle SVM, but negative weight in the adapted SVM, then it is likely a MT mis-translation 7The observant reader may notice that cross-market points exhibit higher coverage but equal accuracy (74-78%) to some cross-lingual points. This suggests that MT output may be more constrained in vocabulary than naturally-occurring English. 0.35 0.3 gnvLrDeiceKe0 0 0. 120.25 510 erts TeCovega0 0 0. .98657 68 70 72 7A4ccuracy76 78 80 82 0.4 68 70 72 7A4ccuracy76 78 80 82 Figure 1: KL Divergence and Coverage vs. accuracy. (o) are cross-lingual and (x) are cross-market data points. is causing the polarity flip. Algorithm 1 (with K=2000) shows how we compute polarity flip rate.8 We found that the polarity flip rate does not correlate well with accuracy at all (r = 0.04). Conclusion: Labeling mismatch is not a factor in performance degradation. Nevertheless, we note there is a surprising large number of flips (24% on average). A manual check of the flipped words in BOOK-JP revealed few MT mistakes. Only 3.7% of 450 random EN-JP word pairs checked can be judged as blatantly incorrect (without sentence context). The majority of flipped words do not have a clear sentiment orientation (e.g. “amazon”, “human”, “moreover”). 5 Are standard adaptation algorithms applicable to cross-lingual problems? One of the breakthroughs in cross-lingual text classification is the realization that it can be cast as domain adaptation. This makes available a host of preexisting adaptation algorithms for improving over supervised results. However, we argue that it may be 8The feature normalization in Step 1 is important that the weight magnitudes are comparable. to ensure 432 Algorithm 1 Measuring labeling mismatch Input: Weight vectors for source wsand target wt Input: Target data average sample vector avg(T) Output: Polarity flip rate f 1: Normalize: ws = avg(T) * ws ; wt = avg(T) * wt 2: Set S+ = { K most positive features in ws} 3: Set S− == {{ KK mmoosstt negative ffeeaattuurreess inn wws}} 4: Set T+ == {{ KK m moosstt npoesgiatitivvee f efeaatuturreess i inn w wt}} 5: Set T− == {{ KK mmoosstt negative ffeeaattuurreess inn wwt}} 6: for each= f{e a Ktur me io ∈t T+ adtiov 7: rif e ia c∈h S fe−a ttuhreen i if ∈ = T f + 1 8: enidf fio ∈r 9: for each feature j ∈ T− do 10: rif e j ∈h Sfe+a uthreen j f ∈ = T f + 1 11: enidf fjo r∈ 12: f = 2Kf better to “adapt” the standard adaptation algorithm to the cross-lingual setting. We arrived at this conclusion by trying the adapted counterpart of SVMs off-the-shelf. Recently, (Bergamo and Torresani, 2010) showed that Transductive SVMs (TSVM), originally developed for semi-supervised learning, are also strong adaptation methods. The idea is to train on source data like a SVM, but encourage the classification boundary to divide through low density regions in the unlabeled target data. Table 2 shows that TSVM outperforms SVM in all but one case for cross-market adaptation, but gives mixed results for cross-lingual adaptation. This is a puzzling result considering that both use the same unlabeled data. Why does TSVM exhibit such a large variance on cross-lingual problems, but not on cross-market problems? Is unlabeled target data interacting with source data in some unexpected way? Certainly there are several successful studies (Wan, 2009; Wei and Pal, 2010; Banea et al., 2008), but we think it is important to consider the possibility that cross-lingual adaptation has some fundamental differences. We conjecture that adapting from artificially-generated text (e.g. MT output) is a different story than adapting from naturallyoccurring text (e.g. cross-market). In short, MT is ripe for cross-lingual adaptation; what is not ripe is probably our understanding of the special characteristics of the adaptation problem. References Carmen Banea, Rada Mihalcea, Janyce Wiebe, and Samer Hassan. 2008. Multilingual subjectivity analysis using machine translation. In Proc. of Conference on Empirical Methods in Natural Language Processing (EMNLP). Alessandro Bergamo and Lorenzo Torresani. 2010. Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In Advances in Neural Information Processing Systems (NIPS). John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation with structural correspondence learning. In Proc. of Conference on Empirical Methods in Natural Language Processing (EMNLP). Jenny Rose Finkel and Chris Manning. 2009. Hierarchical Bayesian domain adaptation. In Proc. of NAACL Human Language Technologies (HLT). Jing Jiang and ChengXiang Zhai. 2007. Instance weighting for domain adaptation in NLP. In Proc. of the Association for Computational Linguistics (ACL). Peter Prettenhofer and Benno Stein. 2010. Crosslanguage text classification using structural correspondence learning. In Proc. of the Association for Computational Linguistics (ACL). Hidetoshi Shimodaira. 2000. Improving predictive inference under covariate shift by weighting the loglikelihood function. Journal of Statistical Planning and Inferenc, 90. Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von B ¨unau, and Motoaki Kawanabe. 2008. Direct importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60(4). Xiaojun Wan. 2009. Co-training for cross-lingual sentiment classification. In Proc. of the Association for Computational Linguistics (ACL). Bin Wei and Chris Pal. 2010. Cross lingual adaptation: an experiment on sentiment classification. In Proceedings of the ACL 2010 Conference Short Papers. 433

4 0.63948452 92 acl-2011-Data point selection for cross-language adaptation of dependency parsers

Author: Anders Sgaard

Abstract: We consider a very simple, yet effective, approach to cross language adaptation of dependency parsers. We first remove lexical items from the treebanks and map part-of-speech tags into a common tagset. We then train a language model on tag sequences in otherwise unlabeled target data and rank labeled source data by perplexity per word of tag sequences from less similar to most similar to the target. We then train our target language parser on the most similar data points in the source labeled data. The strategy achieves much better results than a non-adapted baseline and stateof-the-art unsupervised dependency parsing, and results are comparable to more complex projection-based cross language adaptation algorithms.

5 0.61608231 54 acl-2011-Automatically Extracting Polarity-Bearing Topics for Cross-Domain Sentiment Classification

Author: Yulan He ; Chenghua Lin ; Harith Alani

Abstract: Joint sentiment-topic (JST) model was previously proposed to detect sentiment and topic simultaneously from text. The only supervision required by JST model learning is domain-independent polarity word priors. In this paper, we modify the JST model by incorporating word polarity priors through modifying the topic-word Dirichlet priors. We study the polarity-bearing topics extracted by JST and show that by augmenting the original feature space with polarity-bearing topics, the in-domain supervised classifiers learned from augmented feature representation achieve the state-of-the-art performance of 95% on the movie review data and an average of 90% on the multi-domain sentiment dataset. Furthermore, using feature augmentation and selection according to the information gain criteria for cross-domain sentiment classification, our proposed approach performs either better or comparably compared to previous approaches. Nevertheless, our approach is much simpler and does not require difficult parameter tuning.

6 0.59729755 161 acl-2011-Identifying Word Translations from Comparable Corpora Using Latent Topic Models

7 0.57812536 104 acl-2011-Domain Adaptation for Machine Translation by Mining Unseen Words

8 0.56051856 52 acl-2011-Automatic Labelling of Topic Models

9 0.56018466 18 acl-2011-A Latent Topic Extracting Method based on Events in a Document and its Application

10 0.55840981 238 acl-2011-P11-2093 k2opt.pdf

11 0.55292296 297 acl-2011-That's What She Said: Double Entendre Identification

12 0.54512954 278 acl-2011-Semi-supervised condensed nearest neighbor for part-of-speech tagging

13 0.54023457 102 acl-2011-Does Size Matter - How Much Data is Required to Train a REG Algorithm?

14 0.53895551 287 acl-2011-Structural Topic Model for Latent Topical Structure Analysis

15 0.52221894 285 acl-2011-Simple supervised document geolocation with geodesic grids

16 0.52115232 59 acl-2011-Better Automatic Treebank Conversion Using A Feature-Based Approach

17 0.5188759 319 acl-2011-Unsupervised Decomposition of a Document into Authorial Components

18 0.5131458 117 acl-2011-Entity Set Expansion using Topic information

19 0.50667953 332 acl-2011-Using Multiple Sources to Construct a Sentiment Sensitive Thesaurus for Cross-Domain Sentiment Classification

20 0.50542754 311 acl-2011-Translationese and Its Dialects


similar papers computed by lda model

lda for this paper:

topicId topicWeight

[(5, 0.02), (17, 0.548), (37, 0.119), (39, 0.034), (41, 0.041), (55, 0.011), (59, 0.025), (72, 0.014), (91, 0.018), (96, 0.106)]

similar papers list:

simIndex simValue paperId paperTitle

1 0.95428514 107 acl-2011-Dynamic Programming Algorithms for Transition-Based Dependency Parsers

Author: Marco Kuhlmann ; Carlos Gomez-Rodriguez ; Giorgio Satta

Abstract: We develop a general dynamic programming technique for the tabulation of transition-based dependency parsers, and apply it to obtain novel, polynomial-time algorithms for parsing with the arc-standard and arc-eager models. We also show how to reverse our technique to obtain new transition-based dependency parsers from existing tabular methods. Additionally, we provide a detailed discussion of the conditions under which the feature models commonly used in transition-based parsing can be integrated into our algorithms.

same-paper 2 0.91545105 109 acl-2011-Effective Measures of Domain Similarity for Parsing

Author: Barbara Plank ; Gertjan van Noord

Abstract: It is well known that parsing accuracy suffers when a model is applied to out-of-domain data. It is also known that the most beneficial data to parse a given domain is data that matches the domain (Sekine, 1997; Gildea, 2001). Hence, an important task is to select appropriate domains. However, most previous work on domain adaptation relied on the implicit assumption that domains are somehow given. As more and more data becomes available, automatic ways to select data that is beneficial for a new (unknown) target domain are becoming attractive. This paper evaluates various ways to automatically acquire related training data for a given test set. The results show that an unsupervised technique based on topic models is effective – it outperforms random data selection on both languages exam- ined, English and Dutch. Moreover, the technique works better than manually assigned labels gathered from meta-data that is available for English. 1 Introduction and Motivation Previous research on domain adaptation has focused on the task of adapting a system trained on one domain, say newspaper text, to a particular new domain, say biomedical data. Usually, some amount of (labeled or unlabeled) data from the new domain was given which has been determined by a human. However, with the growth of the web, more and more data is becoming available, where each document “is potentially its own domain” (McClosky et al., 2010). It is not straightforward to determine – 1566 Gertjan van Noord University of Groningen The Netherlands G J M van Noord@ rug nl . . . . . which data or model (in case we have several source domain models) will perform best on a new (unknown) target domain. Therefore, an important issue that arises is how to measure domain similarity, i.e. whether we can find a simple yet effective method to determine which model or data is most beneficial for an arbitrary piece of new text. Moreover, if we had such a measure, a related question is whether it can tell us something more about what is actually meant by “domain”. So far, it was mostly arbitrarily used to refer to some kind of coherent unit (related to topic, style or genre), e.g.: newspaper text, biomedical abstracts, questions, fiction. Most previous work on domain adaptation, for instance Hara et al. (2005), McClosky et al. (2006), Blitzer et al. (2006), Daum e´ III (2007), sidestepped this problem of automatic domain selection and adaptation. For parsing, to our knowledge only one recent study has started to examine this issue (McClosky et al., 2010) we will discuss their approach in Section 2. Rather, an implicit assumption of all of these studies is that domains are given, i.e. that they are represented by the respective corpora. Thus, a corpus has been considered a homogeneous unit. As more data is becoming available, it is unlikely that – domains will be ‘given’ . Moreover, a given corpus might not always be as homogeneous as originally thought (Webber, 2009; Lippincott et al., 2010). For instance, recent work has shown that the well-known Penn Treebank (PT) Wall Street Journal (WSJ) actually contains a variety of genres, including letters, wit and short verse (Webber, 2009). In this study we take a different approach. Rather than viewing a given corpus as a monolithic entity, ProceedingPso orftla thned 4,9 Otrhe Agonnn,u Jauln Mee 1e9t-i2ng4, o 2f0 t1h1e. A ?c s 2o0ci1a1ti Aonss foocria Ctioomnp fourta Ctioomnaplu Ltaintigouniaslti Lcisn,g puaigsetsic 1s566–1576, we break it down to the article-level and disregard corpora boundaries. Given the resulting set of documents (articles), we evaluate various ways to automatically acquire related training data for a given test set, to find answers to the following questions: • Given a pool of data (a collection of articles fGriovmen nun ak pnooowln o domains) caonldle a test article, eiss there a way to automatically select data that is relevant for the new domain? If so: • Which similarity measure is good for parsing? • How does it compare to human-annotated data? • Is the measure also useful for other languages Iasnd th/oer mtaesakssu?r To this end, we evaluate measures of domain similarity and feature representations and their impact on dependency parsing accuracy. Given a collection of annotated articles, and a new article that we want to parse, we want to select the most similar articles to train the best parser for that new article. In the following, we will first compare automatic measures to human-annotated labels by examining parsing performance within subdomains of the Penn Treebank WSJ. Then, we extend the experiments to the domain adaptation scenario. Experiments were performed on two languages: English and Dutch. The empirical results show that a simple measure based on topic distributions is effective for both languages and works well also for Part-of-Speech tagging. As the approach is based on plain surfacelevel information (words) and it finds related data in a completely unsupervised fashion, it can be easily applied to other tasks or languages for which annotated (or automatically annotated) data is available. 2 Related Work The work most related to ours is McClosky et al. (2010). They try to find the best combination of source models to parse data from a new domain, which is related to Plank and Sima’an (2008). In the latter, unlabeled data was used to create several parsers by weighting trees in the WSJ according to their similarity to the subdomain. McClosky et al. (2010) coined the term multiple source domain adaptation. Inspired by work on parsing accuracy 1567 prediction (Ravi et al., 2008), they train a linear regression model to predict the best (linear interpolation) of source domain models. Similar to us, McClosky et al. (2010) regard a target domain as mixture of source domains, but they focus on phrasestructure parsing. Furthermore, our approach differs from theirs in two respects: we do not treat source corpora as one entity and try to mix models, but rather consider articles as base units and try to find subsets of related articles (the most similar articles); moreover, instead of creating a supervised model (in their case to predict parsing accuracy), our approach is ‘simplistic’ : we apply measures of domain simi- larity directly (in an unsupervised fashion), without the necessity to train a supervised model. Two other related studies are (Lippincott et al., 2010; Van Asch and Daelemans, 2010). Van Asch and Daelemans (2010) explore a measure of domain difference (Renyi divergence) between pairs of domains and its correlation to Part-of-Speech tagging accuracy. Their empirical results show a linear correlation between the measure and the performance loss. Their goal is different, but related: rather than finding related data for a new domain, they want to estimate the loss in accuracy of a PoS tagger when applied to a new domain. We will briefly discuss results obtained with the Renyi divergence in Section 5.1. Lippincott et al. (2010) examine subdomain variation in biomedicine corpora and propose awareness of NLP tools to such variation. However, they did not yet evaluate the effect on a practical task, thus our study is somewhat complementary to theirs. The issue of data selection has recently been examined for Language Modeling (Moore and Lewis, 2010). A subset of the available data is automatically selected as training data for a Language Model based on a scoring mechanism that compares cross- entropy scores. Their approach considerably outperformed random selection and two previous proposed approaches both based on perplexity scoring.1 3 Measures of Domain Similarity 3.1 Measuring Similarity Automatically Feature Representations A similarity function may be defined over any set of events that are con1We tested data selection by perplexity scoring, but found the Language Models too small to be useful in our setting. sidered to be relevant for the task at hand. For parsing, these might be words, characters, n-grams (of words or characters), Part-of-Speech (PoS) tags, bilexical dependencies, syntactic rules, etc. However, to obtain more abstract types such as PoS tags or dependency relations, one would first need to gather respective labels. The necessary tools for this are again trained on particular corpora, and will suffer from domain shifts, rendering labels noisy. Therefore, we want to gauge the effect of the simplest representation possible: plain surface characteristics (unlabeled text). This has the advantage that we do not need to rely on additional supervised tools; moreover, it is interesting to know how far we can get with this level of information only. We examine the following feature representations: relative frequencies of words, relative frequencies of character tetragrams, and topic models. Our motivation was as follows. Relative frequencies of words are a simple and effective representation used e.g. in text classification (Manning and Sch u¨tze, 1999), while character n-grams have proven successful in genre classification (Wu et al., 2010). Topic models (Blei et al., 2003; Steyvers and Griffiths, 2007) can be considered an advanced model over word distributions: every article is represented by a topic distribution, which in turn is a distribution over words. Similarity between documents can be measured by comparing topic distributions. Similarity Functions There are many possible similarity (or distance) functions. They fall broadly into two categories: probabilistically-motivated and geometrically-motivated functions. The similarity functions examined in this study will be described in the following. The Kullback-Leibler (KL) divergence D(q| |r) is a cTlahsesic Kaull measure oibfl ‘edri s(KtaLn)ce d’i2v ebregtweneceen D Dtw(oq probability distributions, and is defined as: D(q| |r) = Pyq(y)logrq((yy)). It is a non-negative, additive, aPsymmetric measure, and 0 iff the two distributions are identical. However, the KL-divergence is undefined if there exists an event y such that q(y) > 0 but r(y) = 0, which is a property that “makes it unsuitable for distributions derived via maximumlikelihood estimates” (Lee, 2001). 2It is not a proper distance metric since it is asymmetric. 1568 One option to overcome this limitation is to apply smoothing techniques to gather non-zero estimates for all y. The alternative, examined in this paper, is to consider an approximation to the KL divergence, such as the Jensen-Shannon (JS) divergence (Lin, 1991) and the skew divergence (Lee, 2001). The Jensen-Shannon divergence, which is symmetric, computes the KL-divergence between q, r, and the average between the two. We use the JS divergence as defined in Lee (2001): JS(q, r) = [D(q| |avg(q, r)) + D(r| |avg(q, r))] . The asymm[eDtr(icq |s|akvewg( divergence sα, proposed by Lee (2001), mixes one distribution with the other by a degree de- 21 fined by α ∈ [0, 1) : sα (q, r, α) = D(q| |αr + (1 α)q). Ays α α approaches 1, rt,hαe )sk =ew D divergence approximates the KL-divergence. An alternative way to measure similarity is to consider the distributions as vectors and apply geometrically-motivated distance functions. This family of similarity functions includes the cosine cos(q, r) = qq(y) · r(y)/ | |q(y) | | | |r(y) | |, euclidean − euc(q,r) = qPy(q(y) − r(y))2 and variational (also known asq LP1 or MPanhattan) distance function, defined as var(q, r) = Py |q(y) − r(y) |. 3.2 Human-annotatePd data In contrast to the automatic measures devised in the previous section, we might have access to human annotated data. That is, use label information such as topic or genre to define the set of similar articles. Genre For the Penn Treebank (PT) Wall Street Journal (WSJ) section, more specifically, the subset available in the Penn Discourse Treebank, there exists a partition of the data by genre (Webber, 2009). Every article is assigned one of the following genre labels: news, letters, highlights, essays, errata, wit and short verse, quarterly progress reports, notable and quotable. This classification has been made on the basis of meta-data (Webber, 2009). It is wellknown that there is no meta-data directly associated with the individual WSJ files in the Penn Treebank. However, meta-data can be obtained by looking at the articles in the ACL/DCI corpus (LDC99T42), and a mapping file that aligns document numbers of DCI (DOCNO) to WSJ keys (Webber, 2009). An example document is given in Figure 1. The metadata field HL contains headlines, SO source info, and the IN field includes topic markers.

3 0.87771374 19 acl-2011-A Mobile Touchable Application for Online Topic Graph Extraction and Exploration of Web Content

Author: Gunter Neumann ; Sven Schmeier

Abstract: We present a mobile touchable application for online topic graph extraction and exploration of web content. The system has been implemented for operation on an iPad. The topic graph is constructed from N web snippets which are determined by a standard search engine. We consider the extraction of a topic graph as a specific empirical collocation extraction task where collocations are extracted between chunks. Our measure of association strength is based on the pointwise mutual information between chunk pairs which explicitly takes their distance into account. An initial user evaluation shows that this system is especially helpful for finding new interesting information on topics about which the user has only a vague idea or even no idea at all.

4 0.84444481 118 acl-2011-Entrainment in Speech Preceding Backchannels.

Author: Rivka Levitan ; Agustin Gravano ; Julia Hirschberg

Abstract: In conversation, when speech is followed by a backchannel, evidence of continued engagement by one’s dialogue partner, that speech displays a combination of cues that appear to signal to one’s interlocutor that a backchannel is appropriate. We term these cues backchannel-preceding cues (BPC)s, and examine the Columbia Games Corpus for evidence of entrainment on such cues. Entrainment, the phenomenon of dialogue partners becoming more similar to each other, is widely believed to be crucial to conversation quality and success. Our results show that speaking partners entrain on BPCs; that is, they tend to use similar sets of BPCs; this similarity increases over the course of a dialogue; and this similarity is associated with measures of dialogue coordination and task success. 1

5 0.84395051 268 acl-2011-Rule Markov Models for Fast Tree-to-String Translation

Author: Ashish Vaswani ; Haitao Mi ; Liang Huang ; David Chiang

Abstract: Most statistical machine translation systems rely on composed rules (rules that can be formed out of smaller rules in the grammar). Though this practice improves translation by weakening independence assumptions in the translation model, it nevertheless results in huge, redundant grammars, making both training and decoding inefficient. Here, we take the opposite approach, where we only use minimal rules (those that cannot be formed out of other rules), and instead rely on a rule Markov model of the derivation history to capture dependencies between minimal rules. Large-scale experiments on a state-of-the-art tree-to-string translation system show that our approach leads to a slimmer model, a faster decoder, yet the same translation quality (measured using B ) as composed rules.

6 0.80545467 43 acl-2011-An Unsupervised Model for Joint Phrase Alignment and Extraction

7 0.63878942 180 acl-2011-Issues Concerning Decoding with Synchronous Context-free Grammar

8 0.62149453 30 acl-2011-Adjoining Tree-to-String Translation

9 0.58191723 87 acl-2011-Corpus Expansion for Statistical Machine Translation with Semantic Role Label Substitution Rules

10 0.5613063 32 acl-2011-Algorithm Selection and Model Adaptation for ESL Correction Tasks

11 0.55532992 296 acl-2011-Terminal-Aware Synchronous Binarization

12 0.55340362 141 acl-2011-Gappy Phrasal Alignment By Agreement

13 0.5357303 154 acl-2011-How to train your multi bottom-up tree transducer

14 0.53182524 61 acl-2011-Binarized Forest to String Translation

15 0.53004628 250 acl-2011-Prefix Probability for Probabilistic Synchronous Context-Free Grammars

16 0.52802885 277 acl-2011-Semi-supervised Relation Extraction with Large-scale Word Clustering

17 0.52454376 126 acl-2011-Exploiting Syntactico-Semantic Structures for Relation Extraction

18 0.50960201 176 acl-2011-Integrating surprisal and uncertain-input models in online sentence comprehension: formal techniques and empirical results

19 0.50774378 327 acl-2011-Using Bilingual Parallel Corpora for Cross-Lingual Textual Entailment

20 0.5076381 110 acl-2011-Effective Use of Function Words for Rule Generalization in Forest-Based Translation