acl acl2010 acl2010-44 knowledge-graph by maker-knowledge-mining

44 acl-2010-BabelNet: Building a Very Large Multilingual Semantic Network


Source: pdf

Author: Roberto Navigli ; Simone Paolo Ponzetto

Abstract: In this paper we present BabelNet a very large, wide-coverage multilingual semantic network. The resource is automatically constructed by means of a methodology that integrates lexicographic and encyclopedic knowledge from WordNet and Wikipedia. In addition Machine Translation is also applied to enrich the resource with lexical information for all languages. We conduct experiments on new and existing gold-standard datasets to show the high quality and coverage of the resource. –

Reference: text


Summary: the most important sentenses genereted by tfidf model

sentIndex sentText sentNum sentScore

1 Abstract In this paper we present BabelNet a very large, wide-coverage multilingual semantic network. [sent-3, score-0.16]

2 The resource is automatically constructed by means of a methodology that integrates lexicographic and encyclopedic knowledge from WordNet and Wikipedia. [sent-4, score-0.293]

3 Second, such resources are typically lexicographic, and thus contain mainly concepts and only a few named entities. [sent-21, score-0.159]

4 Third, resources for non-English languages often have a much poorer coverage since the construction effort must be repeated for every language of interest. [sent-22, score-0.194]

5 Wikipedia represents the perfect complement to WordNet, as it provides multilingual lexical knowledge of a mostly encyclopedic nature. [sent-25, score-0.257]

6 In this paper, we make a major step towards the vision of a wide-coverage multilingual knowledge resource. [sent-30, score-0.164]

7 We present a novel methodology that produces a very large multilingual semantic network: BabelNet. [sent-31, score-0.223]

8 This resource is created by linking Wikipedia to WordNet via an automatic mapping and by integrating lexical gaps in resource1http : / / download . [sent-32, score-0.164]

9 The result is an “encyclopedic dictionary”, that provides concepts and named entities lexicalized in many languages and connected with large amounts of semantic relations. [sent-41, score-0.188]

10 concepts2 such as balloon and E ⊆ V R V is the set of edges connecting pairs ofconcepts. [sent-44, score-0.286]

11 w Importantly, eeasc ahn vertex v ∈ V contains a set of lexicalizations of the – – concept fVor cdoifnfteairnenst a languages, e. [sent-57, score-0.147]

12 We collect (a) from WordNet, all available word senses (as concepts) and all the semantic pointers between synsets (as relations); (b) from Wikipedia, all encyclopedic entries (i. [sent-66, score-0.535]

13 their concepts in common) by establishing a mapping between Wikipedia pages and WordNet senses (Section 3. [sent-71, score-0.369]

14 This avoids duplicate concepts and allows their inventories of concepts to complement each other. [sent-73, score-0.154]

15 Finally, to enable multilinguality, we collect the lexical realizations of the available concepts in different languages by 2Throughout the paper, unless otherwise stated, we use the general term concept to denote either a concept or a named entity. [sent-74, score-0.291]

16 using (a) the human-generated translations provided in Wikipedia (the so-called inter-language links), as well as (b) a machine translation system to translate occurrences of the concepts within sense-tagged corpora, namely SemCor (Miller et al. [sent-75, score-0.198]

17 , 1993) a corpus annotated with WordNet senses and Wikipedia itself (Section 3. [sent-76, score-0.167]

18 We call the resulting set of multilingual lexicalizations of a given concept a babel synset. [sent-78, score-0.465]

19 We use word senses to unambiguously denote the corresponding synsets (e. [sent-97, score-0.373]

20 Hereafter, we usef woro {rd a sirepnlsaen eand synset interchangea}bl)y. [sent-100, score-0.254]

21 For example, the gloss of the above synset is: “air moving from an area of high pressure to an area of low pressure”. [sent-104, score-0.293]

22 Wikipages also provide inter-language links to their counterparts in other languages (e. [sent-122, score-0.135]

23 2 Mapping Wikipedia to WordNet µ The first phase of our methodology aims to establish links between Wikipages and WordNet senses. [sent-129, score-0.183]

24 s ∈ SensesWN(w) ioeftsht a ebrl wisnihske d, c,an be where SensesWN(w) is the set of senses of the lemma of w in WordNet. [sent-131, score-0.198]

25 For example, if our mapping methodology linked BALLOON (AIRCRAFT) to the corresponding WordNet sense balloonn1, we would have µ(BALLOON (AIRCRAFT)) = balloonn1. [sent-132, score-0.302]

26 In order to establish a mapping between the two resources, we first identify the disambiguation contexts for Wikipages (Section 3. [sent-133, score-0.164]

27 2 Disambiguation Context of a WordNet Sense Given a WordNet sense s and its synset S, we collect the following information: • • • Synonymy: all synonyms of s in S. [sent-162, score-0.4]

28 d Fitso corresponding synset { airplanen1, aeroplanen1, prelsapnoenn1d }, gth sey nwseotrd {s acoirnptalainneed therein are included in} ,th teh eco wntoerxdst. [sent-164, score-0.254]

29 Hypernymy/Hyponymy: all synonyms in the synsets yHm syu/Hchy pthonaty mHy :is ellit shyenro a hypernym (i. [sent-165, score-0.206]

30 A sistSeirs synset dS:0 wiso rsudsch f rtohmat tSh ea snids Ser0s h oafv Se a common direct hypernym. [sent-174, score-0.254]

31 We thus define the disambiguation context Ctx(s) of sense s as the set of words obtained from all of the four sources above. [sent-179, score-0.179]

32 ), we assign the most likely sense to w based on the maximization of the conditional probabilities p(s|w) over the senses s ∈ SensesWN(w) (no mapping vise res tthaebl sisehnesdes sif s a ∈tie S occurs). [sent-190, score-0.372]

33 To find the mapping of a Wikipage w, we need to compute the conditional probability p(s|w) of selecting tthee t hWeo crdoNndeitt sense s given w. [sent-191, score-0.205]

34 As a result, determining the most appropriate sense s consists of finding the sense s that maximizes thejoint probability p(s, w). [sent-193, score-0.22]

35 Thus, )in| our wale- gorithm we determine the best sense s by computing the intersection of the disambiguation contexts of s and w, and normalizing by the scores summed over all senses of w in Wikipedia and WordNet. [sent-195, score-0.391]

36 For instance, given that µ(BALLOON) = balloonn1, the corresponding babel synset is { balloonEN, BalcloonrDreEs, aerostatoES, ybnasl o´ent sa e{ro baslt al´otiocnoES, . [sent-202, score-0.445]

37 However, two issues arise: first, a concept might be covered only in one of the two resources (either WordNet or Wikipedia), meaning that no link can be established (e. [sent-206, score-0.137]

38 , FERMI GAS or gasbag1n in Figure 1); second, even if covered in both resources, the Wikipage for the concept might not provide any translation for the language of interest (e. [sent-208, score-0.132]

39 In order to address the above issues and thus guarantee high coverage for all languages we developed a methodology for translating senses in the babel synset to missing languages. [sent-211, score-0.816]

40 Given a WordNet word sense in our babel synset of interest (e. [sent-212, score-0.555]

41 By repeating this step for each English lexicalization in a babel synset, we obtain a collection of sentences for the babel synset (see left part of Figure 1). [sent-217, score-0.636]

42 Given a specific term in the initial babel synset, we collect the set of its translations. [sent-219, score-0.227]

43 We then identify the most frequent translation in each language and add it to the babel synset. [sent-220, score-0.239]

44 In the first phase of our methodology we aim to find a mapping µ(BALLOON (AIRCRAFT)) to an appropriate WordNet sense of the word. [sent-226, score-0.302]

45 219 this end we construct the disambiguation context for the Wikipage by including words from its label, links and categories (cf. [sent-231, score-0.155]

46 We now construct the disambiguation context for the two WordNet senses of balloon (cf. [sent-236, score-0.522]

47 2), namely the aircraft (#1) and the toy (#2) senses. [sent-239, score-0.268]

48 The sense with the largest intersection is #1, so the following mapping is established: µ(BALLOON (AIRCRAFT)) = balloonn1. [sent-243, score-0.25]

49 After the first phase, our babel synset includes the following English words from WordNet plus the Wikipedia interlanguage links to other languages (we report German, Spanish and Italian): { balloonEN, BallonDE, aerostatoES, b anald o´n It aaliearno):st { a´t bicaolloESo, pallone aerostaticoIT }. [sent-244, score-0.654]

50 3), we collect all the sentences in SemCor and Wikipedia in which the above English word sense occurs. [sent-246, score-0.146]

51 As a result, we can enrich the initial babel synset with the following words: mongolfi e`reFR, globusCA, globoES, mongolfieraIT. [sent-248, score-0.445]

52 Note that we had no translation for Catalan and French in the first phase, because the inter-language link was not available, and we also obtain new lexicalizations for the Spanish and Italian languages. [sent-249, score-0.145]

53 To create a gold standard for evaluation we considered all lemmas whose senses are contained both in WordNet and Wikipedia: the intersection between the two resources contains 80,295 lemmas which correspond to 105,797 WordNet senses and 199,735 Wikipedia pages. [sent-252, score-0.494]

54 tion to provide the correct WordNet sense for each page (an empty sense label was given, if no correct mapping was possible). [sent-271, score-0.347]

55 In order to quantify the quality of the annotations and the difficulty of the task, a second annotator sense tagged a subset of 200 pages from the original sample. [sent-275, score-0.14]

56 As baselines we use the most frequent WordNet sense (MFS), and a random sense assignment. [sent-282, score-0.22]

57 The final mapping contains 81,533 pairs of Wikipages and word senses they map to, covering 55. [sent-284, score-0.262]

58 This is related to the random distribution of senses in our dataset and the Wikipedia unbiased coverage of WordNet senses. [sent-291, score-0.259]

59 So selecting the first WordNet sense rather than any other sense for each target page represents a choice as arbitrary as picking a sense at random. [sent-292, score-0.362]

60 This is assessed in terms of coverage against gold-standard resources (Section 5. [sent-294, score-0.145]

61 In Table 2 we report the number of synsets and word senses available in the gold-standard resources for the 5 languages. [sent-303, score-0.426]

62 w Aellll as eB gaboeldl-Net, are linked to the English WordNet: given a synset SF ∈ F, we denote its corresponding babel synset as SB Fan, dw iets d synset sin c othrree English g W boarbdelNet as SE. [sent-309, score-0.987]

63 We assess the coverage of BabelNet against our gold-standard wordnets both in terms of synsets and word senses. [sent-310, score-0.366]

64 For synsets, we calculate coverage as follows: SynsetCov(B,F) =PS|F{∈SFFδ∈(S FB,}S|F), where δ(SB, SF) = 1if the two synsets SB and SF have a synonym in common, 0 otherwise. [sent-311, score-0.298]

65 That is, synset coverage is determined as the percentage of synsets of F that share a term with the corresponding s ba obfe Fl synsets. [sent-312, score-0.552]

66 rFeo ar tweormrd senses we crarel-culate a similar measure of coverage: WordCov(B,F) =P|S{Fs∈FF∈P SsFF∈:S SFFδ0(∈sF F,}S|B), where sF is a word sense in synset SF and δ0(sF, SB) = 1 if sF ∈ SB, 0 otherwise. [sent-313, score-0.531]

67 That is we calculate the rat∈io oSf word senses in our gold-standard resource F that also occur in the corresponding synset SB Fto t thhaet oavlseoral olc ncuurmb iner t hoef senses in F. [sent-314, score-0.657]

68 However, our gold-standard resources cover only a portion of the English WordNet, whereas the overall coverage of BabelNet is much higher. [sent-315, score-0.145]

69 We calculate extra coverage for synsets as follows: SynsetExtraCov(B,F) =PSE|∈{ES\FF∈δ( FS}B|,SE). [sent-316, score-0.337]

70 Similarly, we calculate extra coverage for word senses in BabelNet corresponding to WordNet synsets not covered by the reference resource F. [sent-317, score-0.607]

71 We evaluate the coverage and extra coverage of word senses and synsets at different stages: (a) using only the interlanguage links from Wikipedia (WIKI Links); (b) and (c) using only the automatic translations of the sentences from Wikipedia (WIKI Transl. [sent-319, score-0.797]

72 The percentage of word senses covered by BabelNet ranges from 52. [sent-325, score-0.201]

73 As expected, synset coverage is higher, because a synset in the reference resource is considered to be covered if it shares at least one word with the corresponding synset in BabelNet. [sent-333, score-0.957]

74 Numbers for the extra coverage, which provides information about the percentage of word senses and synsets in BabelNet but not in the goldstandard resources, are given in Figure 2. [sent-334, score-0.412]

75 The results show that we provide for all languages a high extra coverage for both word senses between 340. [sent-335, score-0.347]

76 1% (Catalan) and 2,298% (German) and synsets between 102. [sent-336, score-0.206]

77 The relatively low word sense coverage for Italian (55. [sent-344, score-0.202]

78 – – – 221 Figure 2: Extra coverage against gold-standard wordnets: word senses (a) and synsets (b). [sent-347, score-0.465]

79 Given that our resource has displayed a remarkably high extra coverage ranging from 340% to 2,298% of the national wordnets (see Figure 2) we performed a second evaluation to assess its precision. [sent-368, score-0.268]

80 For each of our 5 languages, we selected a random set of 600 babel synsets composed as follows: 200 synsets whose senses exist in WordNet only, 200 synsets in the intersection between WordNet and Wikipedia (i. [sent-369, score-1.021]

81 Therefore, our dataset included 600 5 = 3,000 babel synsets. [sent-373, score-0.191]

82 None ofthe synsets was c×o5ve=re3d,0 by any eofl styhen sfievtse. [sent-374, score-0.206]

83 The babel synsets were manually validated by expert annotators who decided which senses (i. [sent-376, score-0.564]

84 In addition, some of the synsets in WordNet with no Wikipedia counterpart are very difficult to translate. [sent-388, score-0.206]

85 6 Related Work Previous attempts to manually build multilingual resources have led to the creation of a multitude of wordnets such as EuroWordNet (Vossen, 1998), MultiWordNet (Pianta et al. [sent-396, score-0.248]

86 , 2004), bilingual electronic dictionaries such as EDR (Yokoi, 1995), and fullyfledged frameworks for the development of multilingual lexicons (Lenci et al. [sent-400, score-0.162]

87 The disambiguation of bilingual dictionary glosses has also been proposed to create a bilingual semantic network from a machine readable dictionary (Navigli, 2009a). [sent-405, score-0.205]

88 (2009) presented methods to produce massive multilingual translation dictionaries from Web resources such as online lexicons and Wiktionaries. [sent-408, score-0.228]

89 However, while providing lexical resources on a very large scale for hundreds of thousands of language pairs, these do not encode semantic relations between concepts denoted by their lexical entries. [sent-409, score-0.163]

90 Our work goes one step further by (1) developing an even larger multilingual resource including both lexical semantic and encyclopedic knowledge, (2) enriching the structure of the ‘core’ semantic network (i. [sent-414, score-0.388]

91 These include associating Wikipedia pages with the most frequent WordNet sense (Suchanek et al. [sent-419, score-0.14]

92 , 2008), extracting domain information from Wikipedia and providing a manual mapping to WordNet concepts (Auer et al. [sent-420, score-0.172]

93 In contrast to previous work, BabelNet is the first proposal that integrates the relational structure of WordNet with the semi-structured information from Wikipedia into a unified, widecoverage, multilingual semantic network. [sent-424, score-0.16]

94 7 Conclusions In this paper we have presented a novel methodology for the automatic construction of a large multilingual lexical knowledge resource. [sent-425, score-0.227]

95 Key to our approach is the establishment of a mapping between a multilingual encyclopedic knowledge repository (Wikipedia) and a computational lexicon of English (WordNet). [sent-426, score-0.386]

96 Further, we contribute a large set of sense occurrences harvested from Wikipedia and SemCor, a corpus that we input to a state-ofthe-art machine translation system to fill in the gap between resource-rich languages such as English and resource-poorer ones. [sent-431, score-0.207]

97 The resource includes millions of semantic relations, mainly from Wikipedia (however, WordNet relations are labeled), and contains almost 3 million concepts (6. [sent-434, score-0.179]

98 As pointed out in Section – – 5, such coverage is much wider than that of existing wordnets in non-English languages. [sent-436, score-0.16]

99 Towards a universal wordnet by learning from combined evidence. [sent-496, score-0.285]

100 Building a sense-distinguished multilingual lexicon from monolingual corpora and bilingual lexicons. [sent-639, score-0.162]


similar papers computed by tfidf model

tfidf for this paper:

wordName wordTfidf (topN-words)

[('wikipedia', 0.306), ('balloon', 0.286), ('wordnet', 0.285), ('babelnet', 0.279), ('wikipage', 0.265), ('synset', 0.254), ('aircraft', 0.237), ('synsets', 0.206), ('babel', 0.191), ('senses', 0.167), ('wikipages', 0.153), ('multilingual', 0.127), ('sense', 0.11), ('lexicalizations', 0.097), ('mapping', 0.095), ('encyclopedic', 0.093), ('coverage', 0.092), ('links', 0.086), ('navigli', 0.083), ('ponzetto', 0.08), ('concepts', 0.077), ('sf', 0.075), ('translations', 0.073), ('disambiguation', 0.069), ('resource', 0.069), ('wordnets', 0.068), ('wind', 0.064), ('atserias', 0.064), ('methodology', 0.063), ('sb', 0.062), ('semcor', 0.06), ('roberto', 0.058), ('spanish', 0.056), ('multiwordnet', 0.056), ('ctx', 0.056), ('vossen', 0.056), ('catalan', 0.054), ('resources', 0.053), ('italian', 0.053), ('pianta', 0.051), ('concept', 0.05), ('languages', 0.049), ('aerostatoes', 0.048), ('ainkbielnetn', 0.048), ('talrilna', 0.048), ('translation', 0.048), ('intersection', 0.045), ('piek', 0.042), ('eurowordnet', 0.042), ('interlanguage', 0.042), ('redirections', 0.042), ('wiki', 0.04), ('extra', 0.039), ('simone', 0.039), ('gloss', 0.039), ('gas', 0.038), ('germanet', 0.038), ('paolo', 0.037), ('knowledge', 0.037), ('roma', 0.036), ('collect', 0.036), ('bilingual', 0.035), ('repository', 0.034), ('parentheses', 0.034), ('covered', 0.034), ('phase', 0.034), ('linked', 0.034), ('french', 0.034), ('semantic', 0.033), ('network', 0.033), ('unspecified', 0.032), ('aerostaticoit', 0.032), ('airship', 0.032), ('balkanet', 0.032), ('balloonen', 0.032), ('lefever', 0.032), ('pallone', 0.032), ('refr', 0.032), ('sammer', 0.032), ('sff', 0.032), ('uwn', 0.032), ('page', 0.032), ('lemmas', 0.031), ('lexicographic', 0.031), ('toy', 0.031), ('suchanek', 0.031), ('lemma', 0.031), ('pages', 0.03), ('ks', 0.03), ('named', 0.029), ('reiter', 0.028), ('pas', 0.028), ('auer', 0.028), ('beno', 0.028), ('cuadros', 0.028), ('lemnitzer', 0.028), ('medelyan', 0.028), ('melo', 0.028), ('rigau', 0.028), ('senseswn', 0.028)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.9999997 44 acl-2010-BabelNet: Building a Very Large Multilingual Semantic Network

Author: Roberto Navigli ; Simone Paolo Ponzetto

Abstract: In this paper we present BabelNet a very large, wide-coverage multilingual semantic network. The resource is automatically constructed by means of a methodology that integrates lexicographic and encyclopedic knowledge from WordNet and Wikipedia. In addition Machine Translation is also applied to enrich the resource with lexical information for all languages. We conduct experiments on new and existing gold-standard datasets to show the high quality and coverage of the resource. –

2 0.55704415 156 acl-2010-Knowledge-Rich Word Sense Disambiguation Rivaling Supervised Systems

Author: Simone Paolo Ponzetto ; Roberto Navigli

Abstract: One of the main obstacles to highperformance Word Sense Disambiguation (WSD) is the knowledge acquisition bottleneck. In this paper, we present a methodology to automatically extend WordNet with large amounts of semantic relations from an encyclopedic resource, namely Wikipedia. We show that, when provided with a vast amount of high-quality semantic relations, simple knowledge-lean disambiguation algorithms compete with state-of-the-art supervised WSD systems in a coarse-grained all-words setting and outperform them on gold-standard domain-specific datasets.

3 0.33854255 261 acl-2010-Wikipedia as Sense Inventory to Improve Diversity in Web Search Results

Author: Celina Santamaria ; Julio Gonzalo ; Javier Artiles

Abstract: Is it possible to use sense inventories to improve Web search results diversity for one word queries? To answer this question, we focus on two broad-coverage lexical resources of a different nature: WordNet, as a de-facto standard used in Word Sense Disambiguation experiments; and Wikipedia, as a large coverage, updated encyclopaedic resource which may have a better coverage of relevant senses in Web pages. Our results indicate that (i) Wikipedia has a much better coverage of search results, (ii) the distribution of senses in search results can be estimated using the internal graph structure of the Wikipedia and the relative number of visits received by each sense in Wikipedia, and (iii) associating Web pages to Wikipedia senses with simple and efficient algorithms, we can produce modified rankings that cover 70% more Wikipedia senses than the original search engine rankings. 1 Motivation The application of Word Sense Disambiguation (WSD) to Information Retrieval (IR) has been subject of a significant research effort in the recent past. The essential idea is that, by indexing and matching word senses (or even meanings) , the retrieval process could better handle polysemy and synonymy problems (Sanderson, 2000). In practice, however, there are two main difficulties: (i) for long queries, IR models implicitly perform disambiguation, and thus there is little room for improvement. This is the case with most standard IR benchmarks, such as TREC (trec.nist.gov) or CLEF (www.clef-campaign.org) ad-hoc collections; (ii) for very short queries, disambiguation j ul io @ l i uned . e s j avart s . @bec . uned . e s may not be possible or even desirable. This is often the case with one word and even two word queries in Web search engines. In Web search, there are at least three ways of coping with ambiguity: • • • Promoting diversity in the search results (Clarke negt al., 2008): given th seea query s”uolatssis”, the search engine may try to include representatives for different senses of the word (such as the Oasis band, the Organization for the Advancement of Structured Information Standards, the online fashion store, etc.) among the top results. Search engines are supposed to handle diversity as one of the multiple factors that influence the ranking. Presenting the results as a set of (labelled) cPlruessteenrtsi nragth tehre eth reansu as a a rsan ake sde lti ostf (Carpineto et al., 2009). Complementing search results with search suggestions (e.g. e”oaracshis band”, ”woitahsis s fashion store”) that serve to refine the query in the intended way (Anick, 2003). All of them rely on the ability of the search engine to cluster search results, detecting topic similarities. In all of them, disambiguation is implicit, a side effect of the process but not its explicit target. Clustering may detect that documents about the Oasis band and the Oasis fashion store deal with unrelated topics, but it may as well detect a group of documents discussing why one of the Oasis band members is leaving the band, and another group of documents about Oasis band lyrics; both are different aspects of the broad topic Oasis band. A perfect hierarchical clustering should distinguish between the different Oasis senses at a first level, and then discover different topics within each of the senses. Is it possible to use sense inventories to improve search results for one word queries? To answer 1357 Proce dingUsp opfs thaela 4, 8Stwhe Adnen u,a 1l1- M16e Jtiunlgy o 2f0 t1h0e. A ?c s 2o0c1ia0ti Aosnso focria Ctio nm fpourta Ctoiomnpault Laitniognuaislt Licisn,g puaigsetisc 1s357–136 , this question, we will focus on two broad-coverage lexical resources of a different nature: WordNet (Miller et al., 1990), as a de-facto standard used in Word Sense Disambiguation experiments and many other Natural Language Processing research fields; and Wikipedia (www.wikipedia.org), as a large coverage and updated encyclopedic resource which may have a better coverage of relevant senses in Web pages. Our hypothesis is that, under appropriate conditions, any of the above mechanisms (clustering, search suggestions, diversity) might benefit from an explicit disambiguation (classification of pages in the top search results) using a wide-coverage sense inventory. Our research is focused on four relevant aspects of the problem: 1. Coverage: Are Wikipedia/Wordnet senses representative of search results? Otherwise, trying to make a disambiguation in terms of a fixed sense inventory would be meaningless. 2. If the answer to (1) is positive, the reverse question is also interesting: can we estimate search results diversity using our sense inven- tories? 3. Sense frequencies: knowing sense frequencies in (search results) Web pages is crucial to have a usable sense inventory. Is it possible to estimate Web sense frequencies from currently available information? 4. Classification: The association of Web pages to word senses must be done with some unsupervised algorithm, because it is not possible to hand-tag training material for every possible query word. Can this classification be done accurately? Can it be effective to promote diversity in search results? In order to provide an initial answer to these questions, we have built a corpus consisting of 40 nouns and 100 Google search results per noun, manually annotated with the most appropriate Wordnet and Wikipedia senses. Section 2 describes how this corpus has been created, and in Section 3 we discuss WordNet and Wikipedia coverage of search results according to our testbed. As this initial results clearly discard Wordnet as a sense inventory for the task, the rest of the paper mainly focuses on Wikipedia. In Section 4 we estimate search results diversity from our testbed, finding that the use of Wikipedia could substantially improve diversity in the top results. In Section 5 we use the Wikipedia internal link structure and the number of visits per page to estimate relative frequencies for Wikipedia senses, obtaining an estimation which is highly correlated with actual data in our testbed. Finally, in Section 6 we discuss a few strategies to classify Web pages into word senses, and apply the best classifier to enhance diversity in search results. The paper concludes with a discussion of related work (Section 7) and an overall discussion of our results in Section 8. 2 Test Set 2.1 Set of Words The most crucial step in building our test set is choosing the set of words to be considered. We are looking for words which are susceptible to form a one-word query for a Web search engine, and therefore we should focus on nouns which are used to denote one or more named entities. At the same time we want to have some degree of comparability with previous research on Word Sense Disambiguation, which points to noun sets used in Senseval/SemEval evaluation campaigns1 . Our budget for corpus annotation was enough for two persons-month, which limited us to handle 40 nouns (usually enough to establish statistically significant differences between WSD algorithms, although obviously limited to reach solid figures about the general behaviour of words in the Web). With these arguments in mind, we decided to choose: (i) 15 nouns from the Senseval-3 lexical sample dataset, which have been previously employed by (Mihalcea, 2007) in a related experiment (see Section 7); (ii) 25 additional words which satisfy two conditions: they are all ambiguous, and they are all names for music bands in one of their senses (not necessarily the most salient). The Senseval set is: {argument, arm, atmosphere, bank, degree, difference, disc, irmm-, age, paper, party, performance, plan, shelter, sort, source}. The bands set is {amazon, apple, camel, cell, columbia, cream, foreigner, fox, genesis, jaguar, oasis, pioneer, police, puma, rainbow, shell, skin, sun, tesla, thunder, total, traffic, trapeze, triumph, yes}. Fpoerz e,a trchiu noun, we looked up all its possible senses in WordNet 3.0 and in Wikipedia (using 1http://senseval.org 1358 Table 1: Coverage of Search Results: Wikipedia vs. WordNet Wikiped#ia documents # senses WordNe#t documents Senseval setava2il4a2b/1le0/u0sedassign8e7d7 to (5 s9o%me) senseavai9la2b/5le2/usedassigne6d96 to (4 s6o%m)e sense # senses BaTnodtsa lset868420//21774421323558 ((5546%%))17780/3/9911529995 (2 (342%%)) Wikipedia disambiguation pages). Wikipedia has an average of 22 senses per noun (25.2 in the Bands set and 16. 1in the Senseval set), and Wordnet a much smaller figure, 4.5 (3. 12 for the Bands set and 6.13 for the Senseval set). For a conventional dictionary, a higher ambiguity might indicate an excess of granularity; for an encyclopaedic resource such as Wikipedia, however, it is just an indication of larger coverage. Wikipedia en- tries for camel which are not in WordNet, for instance, include the Apache Camel routing and mediation engine, the British rock band, the brand of cigarettes, the river in Cornwall, and the World World War I fighter biplane. 2.2 Set of Documents We retrieved the 150 first ranked documents for each noun, by submitting the nouns as queries to a Web search engine (Google). Then, for each document, we stored both the snippet (small description of the contents of retrieved document) and the whole HTML document. This collection of documents contain an implicit new inventory of senses, based on Web search, as documents retrieved by a noun query are associated with some sense of the noun. Given that every document in the top Web search results is supposed to be highly relevant for the query word, we assume a ”one sense per document” scenario, although we allow annotators to assign more than one sense per document. In general this assumption turned out to be correct except in a few exceptional cases (such as Wikipedia disambiguation pages): only nine docu- ments received more than one WordNet sense, and 44 (1. 1% of all annotated pages) received more than one Wikipedia sense. 2.3 Manual Annotation We implemented an annotation interface which stored all documents and a short description for every Wordnet and Wikipedia sense. The annotators had to decide, for every document, whether there was one or more appropriate senses in each of the dictionaries. They were instructed to provide annotations for 100 documents per name; if an URL in the list was corrupt or not available, it had to be discarded. We provided 150 documents per name to ensure that the figure of 100 usable documents per name could be reached without problems. Each judge provided annotations for the 4,000 documents in the final data set. In a second round, they met and discussed their independent annotations together, reaching a consensus judgement for every document. 3 Coverage of Web Search Results: Wikipedia vs Wordnet Table 1 shows how Wikipedia and Wordnet cover the senses in search results. We report each noun subset separately (Senseval and bands subsets) as well as aggregated figures. The most relevant fact is that, unsurprisingly, Wikipedia senses cover much more search results (56%) than Wordnet (32%). If we focus on the top ten results, in the bands subset (which should be more representative of plausible web queries) Wikipedia covers 68% of the top ten documents. This is an indication that it can indeed be useful for promoting diversity or help clustering search results: even if 32% of the top ten documents are not covered by Wikipedia, it is still a representative source of senses in the top search results. We have manually examined all documents in the top ten results that are not covered by Wikipedia: a majority of the missing senses consists of names of (generally not well-known) companies (45%) and products or services (26%); the other frequent type (12%) of non annotated doc- ument is disambiguation pages (from Wikipedia and also from other dictionaries). It is also interesting to examine the degree of overlap between Wikipedia and Wordnet senses. Being two different types of lexical resource, they might have some degree of complementarity. Table 2 shows, however, that this is not the case: most of the (annotated) documents either fit Wikipedia senses (26%) or both Wikipedia and Wordnet (29%), and just 3% fit Wordnet only. 1359 Table 2: Overlap between Wikipedia and Wordnet in Search Results # documents annotated with Senseval setWikipe60di7a ( &40 W%o)rdnetWi2k7ip0e (d1i8a% on)lyWo8r9d (n6e%t o)nly534no (3n6e%) BaTnodtsa slet1517729 ( (2239%%))1708566 (3 (216%%))12176 ( (13%%))11614195 ( (4415%%)) Therefore, Wikipedia seems to extend the coverage of Wordnet rather than providing complementary sense information. If we wanted to extend the coverage of Wikipedia, the best strategy seems to be to consider lists ofcompanies, products and services, rather than complementing Wikipedia with additional sense inventories. 4 Diversity in Google Search Results Once we know that Wikipedia senses are a representative subset of actual Web senses (covering more than half of the documents retrieved by the search engine), we can test how well search results respect diversity in terms of this subset of senses. Table 3 displays the number of different senses found at different depths in the search results rank, and the average proportion of total senses that they represent. These results suggest that diversity is not a major priority for ranking results: the top ten results only cover, in average, 3 Wikipedia senses (while the average number of senses listed in Wikipedia is 22). When considering the first 100 documents, this number grows up to 6.85 senses per noun. Another relevant figure is the frequency of the most frequent sense for each word: in average, 63% of the pages in search results belong to the most frequent sense of the query word. This is roughly comparable with most frequent sense figures in standard annotated corpora such as Semcor (Miller et al., 1993) and the Senseval/Semeval data sets, which suggests that diversity may not play a major role in the current Google ranking algorithm. Of course this result must be taken with care, because variability between words is high and unpredictable, and we are using only 40 nouns for our experiment. But what we have is a positive indication that Wikipedia could be used to improve diversity or cluster search results: potentially the first top ten results could cover 6.15 different senses in average (see Section 6.5), which would be a substantial growth. 5 Sense Frequency Estimators for Wikipedia Wikipedia disambiguation pages contain no systematic information about the relative importance of senses for a given word. Such information, however, is crucial in a lexicon, because sense distributions tend to be skewed, and knowing them can help disambiguation algorithms. We have attempted to use two estimators of expected sense distribution: • • Internal relevance of a word sense, measured as incoming alinnckes o ffo ar wthoer U seRnLs o, fm a given sense in Wikipedia. External relevance of a word sense, measured as ttheren naulm rebleevr aonfc vei osifts a f woro trhde s eUnRsLe, mofe a given sense (as reported in http://stats.grok.se). The number of internal incoming links is expected to be relatively stable for Wikipedia articles. As for the number of visits, we performed a comparison of the number of visits received by the bands noun subset in May, June and July 2009, finding a stable-enough scenario with one notorious exception: the number of visits to the noun Tesla raised dramatically in July, because July 10 was the anniversary of the birth of Nicola Tesla, and a special Google logo directed users to the Wikipedia page for the scientist. We have measured correlation between the relative frequencies derived from these two indicators and the actual relative frequencies in our testbed. Therefore, for each noun w and for each sense wi, we consider three values: (i) proportion of documents retrieved for w which are manually assigned to each sense wi; (ii) inlinks(wi) : relative amount of incoming links to each sense wi; and (iii) visits(wi) : relative number of visits to the URL for each sense wi. We have measured the correlation between these three values using a linear regression correlation coefficient, which gives a correlation value of .54 for the number of visits and of .71 for the number of incoming links. Both estimators seem 1360 Table 3: Diversity in Search Results according to Wikipedia F ir s t 12570 docsBave6n425.rd9854a6 s8get#snSe 65sien43. v68a3s27elarcthesTu6543l.o t5083as5lBvaen.r3d2a73s81gectovrSaegnso. 4f32v615aWlsiketpdaTs.3oe249tn01asle to be positively correlated with real relative frequencies in our testbed, with a strong preference for the number of links. We have experimented with weighted combinations of both indicators, using weights of the form (k, 1 k) , k ∈ {0, 0.1, 0.2 . . . 1}, reaching a maxi(mk,a1l c−okrre),lkati ∈on { 0of, .07.13, f0o.r2 t.h.e. following weights: − freq(wi) = 0.9∗inlinks(wi) +0. 1∗visits(wi) (1) This weighted estimator provides a slight advantage over the use of incoming links only (.73 vs .71). Overall, we have an estimator which has a strong correlation with the distribution of senses in our testbed. In the next section we will test its utility for disambiguation purposes. 6 Association of Wikipedia Senses to Web Pages We want to test whether the information provided by Wikipedia can be used to classify search results accurately. Note that we do not want to consider approaches that involve a manual creation of training material, because they can’t be used in practice. Given a Web page p returned by the search engine for the query w, and the set of senses w1 . . . wn listed in Wikipedia, the task is to assign the best candidate sense to p. We consider two different techniques: • A basic Information Retrieval approach, wAhe breas tche I dfoocrmumateionnts Ranetdr tvhael Wikipedia pages are represented using a Vector Space Model (VSM) and compared with a standard cosine measure. This is a basic approach which, if successful, can be used efficiently to classify search results. An approach based on a state-of-the-art supervised oWacShD b system, extracting training examples automatically from Wikipedia content. We also compute two baselines: • • • A random assignment of senses (precision is computed as itghnem ienvnter osfe oenfs tehse ( pnruemcibsieorn o isf senses, for every test case). A most frequent sense heuristic which uses our eosstitm fraetiqoune otf s sense frequencies acnhd u assigns the same sense (the most frequent) to all documents. Both are naive baselines, but it must be noted that the most frequent sense heuristic is usually hard to beat for unsupervised WSD algorithms in most standard data sets. We now describe each of the two main approaches in detail. 6.1 VSM Approach For each word sense, we represent its Wikipedia page in a (unigram) vector space model, assigning standard tf*idf weights to the words in the document. idf weights are computed in two different ways: 1. Experiment VSM computes inverse document frequencies in the collection of retrieved documents (for the word being considered). 2. Experiment VSM-GT uses the statistics provided by the Google Terabyte collection (Brants and Franz, 2006), i.e. it replaces the collection of documents with statistics from a representative snapshot of the Web. 3. Experiment VSM-mixed combines statistics from the collection and from the Google Terabyte collection, following (Chen et al., 2009). The document p is represented in the same vector space as the Wikipedia senses, and it is compared with each of the candidate senses wi via the cosine similarity metric (we have experimented 1361 with other similarity metrics such as χ2, but differences are irrelevant). The sense with the highest similarity to p is assigned to the document. In case of ties (which are rare), we pick the first sense in the Wikipedia disambiguation page (which in practice is like a random decision, because senses in disambiguation pages do not seem to be ordered according to any clear criteria). We have also tested a variant of this approach which uses the estimation of sense frequencies presented above: once the similarities are computed, we consider those cases where two or more senses have a similar score (in particular, all senses with a score greater or equal than 80% of the highest score). In that cases, instead of using the small similarity differences to select a sense, we pick up the one which has the largest frequency according to our estimator. We have applied this strategy to the best performing system, VSM-GT, resulting in experiment VSM-GT+freq. 6.2 WSD Approach We have used TiMBL (Daelemans et al., 2001), a state-of-the-art supervised WSD system which uses Memory-Based Learning. The key, in this case, is how to extract learning examples from the Wikipedia automatically. For each word sense, we basically have three sources of examples: (i) occurrences of the word in the Wikipedia page for the word sense; (ii) occurrences of the word in Wikipedia pages pointing to the page for the word sense; (iii) occurrences of the word in external pages linked in the Wikipedia page for the word sense. After an initial manual inspection, we decided to discard external pages for being too noisy, and we focused on the first two options. We tried three alternatives: • • • TiMBL-core uses only the examples found Tini MtheB page rfoer u tshees sense being atrmaipneleds. TiMBL-inlinks uses the examples found in Wikipedia pages pointing etxoa mthep sense being trained. TiMBL-all uses both sources of examples. In order to classify a page p with respect to the senses for a word w, we first disambiguate all occurrences of w in the page p. Then we choose the sense which appears most frequently in the page according to TiMBL results. In case of ties we pick up the first sense listed in the Wikipedia disambiguation page. We have also experimented with a variant of the approach that uses our estimation of sense frequencies, similarly to what we did with the VSM approach. In this case, (i) when there is a tie between two or more senses (which is much more likely than in the VSM approach), we pick up the sense with the highest frequency according to our estimator; and (ii) when no sense reaches 30% of the cases in the page to be disambiguated, we also resort to the most frequent sense heuristic (among the candidates for the page). This experiment is called TiMBL-core+freq (we discarded ”inlinks” and ”all” versions because they were clearly worse than ”core”). 6.3 Classification Results Table 4 shows classification results. The accuracy of systems is reported as precision, i.e. the number of pages correctly classified divided by the total number of predictions. This is approximately the same as recall (correctly classified pages divided by total number of pages) for our systems, because the algorithms provide an answer for every page containing text (actual coverage is 94% because some pages only contain text as part of an image file such as photographs and logotypes). Table 4: Classification Results Experiment Precision random most frequent sense (estimation) .19 .46 TiMBL-core TiMBL-inlinks TiMBL-all TiMBL-core+freq .60 .50 .58 .67 VSM VSM-GT VSM-mixed VSM-GT+freq .67 .68 .67 .69 All systems are significantly better than the random and most frequent sense baselines (using p < 0.05 for a standard t-test). Overall, both approaches (using TiMBL WSD machinery and using VSM) lead to similar results (.67 vs. .69), which would make VSM preferable because it is a simpler and more efficient approach. Taking a 1362 Figure 1: Precision/Coverage curves for VSM-GT+freq classification algorithm closer look at the results with TiMBL, there are a couple of interesting facts: • There is a substantial difference between using only examples itaalke dnif fferroemnc tehe b Wikipedia Web page for the sense being trained (TiMBL-core, .60) and using examples from the Wikipedia pages pointing to that page (TiMBL-inlinks, .50). Examples taken from related pages (even if the relationship is close as in this case) seem to be too noisy for the task. This result is compatible with findings in (Santamar ı´a et al., 2003) using the Open Directory Project to extract examples automatically. • Our estimation of sense frequencies turns oOuutr rto e tbiem very helpful sfeor f cases wcihesere t our TiMBL-based algorithm cannot provide an answer: precision rises from .60 (TiMBLcore) to .67 (TiMBL-core+freq). The difference is statistically significant (p < 0.05) according to the t-test. As for the experiments with VSM, the variations tested do not provide substantial improvements to the baseline (which is .67). Using idf frequencies obtained from the Google Terabyte corpus (instead of frequencies obtained from the set of retrieved documents) provides only a small improvement (VSM-GT, .68), and adding the estimation of sense frequencies gives another small improvement (.69). Comparing the baseline VSM with the optimal setting (VSM-GT+freq), the difference is small (.67 vs .69) but relatively robust (p = 0.066 according to the t-test). Remarkably, the use of frequency estimations is very helpful for the WSD approach but not for the SVM one, and they both end up with similar performance figures; this might indicate that using frequency estimations is only helpful up to certain precision ceiling. 6.4 Precision/Coverage Trade-off All the above experiments are done at maximal coverage, i.e., all systems assign a sense for every document in the test collection (at least for every document with textual content). But it is possible to enhance search results diversity without annotating every document (in fact, not every document can be assigned to a Wikipedia sense, as we have discussed in Section 3). Thus, it is useful to investigate which is the precision/coverage trade-off in our dataset. We have experimented with the best performing system (VSM-GT+freq), introducing a similarity threshold: assignment of a document to a sense is only done if the similarity of the document to the Wikipedia page for the sense exceeds the similarity threshold. We have computed precision and coverage for every threshold in the range [0.00 −0.90] (beyond 0e.v9e0ry coverage was null) anngde represented 0th] e(b breeysuolntds in Figure 1 (solid line). The graph shows that we 1363 can classify around 20% of the documents with a precision above .90, and around 60% of the documents with a precision of .80. Note that we are reporting disambiguation results using a conventional WSD test set, i.e., one in which every test case (every document) has been manually assigned to some Wikipedia sense. But in our Web Search scenario, 44% of the documents were not assigned to any Wikipedia sense: in practice, our classification algorithm would have to cope with all this noise as well. Figure 1 (dotted line) shows how the precision/coverage curve is affected when the algorithm attempts to disambiguate all documents retrieved by Google, whether they can in fact be assigned to a Wikipedia sense or not. At a coverage of 20%, precision drops approximately from .90 to .70, and at a coverage of 60% it drops from .80 to .50. We now address the question of whether this performance is good enough to improve search re- sults diversity in practice. 6.5 Using Classification to Promote Diversity We now want to estimate how the reported classification accuracy may perform in practice to enhance diversity in search results. In order to provide an initial answer to this question, we have re-ranked the documents for the 40 nouns in our testbed, using our best classifier (VSM-GT+freq) and making a list of the top-ten documents with the primary criterion of maximising the number of senses represented in the set, and the secondary criterion of maximising the similarity scores of the documents to their assigned senses. The algorithm proceeds as follows: we fill each position in the rank (starting at rank 1), with the document which has the highest similarity to some of the senses which are not yet represented in the rank; once all senses are represented, we start choosing a second representative for each sense, following the same criterion. The process goes on until the first ten documents are selected. We have also produced a number of alternative rankings for comparison purposes: clustering (centroids): this method applies eHriiengrarc (hciecnatlr Agglomerative Clustering which proved to be the most competitive clustering algorithm in a similar task (Artiles et al., 2009) to the set of search results, forcing the algorithm to create ten clusters. The centroid of each cluster is then selected Table 5: Enhancement of Search Results Diversity • – – rank@10 # senses coverage Original rank2.8049% Wikipedia 4.75 77% clustering (centroids) 2.50 42% clustering (top ranked) 2.80 46% random 2.45 43% upper bound6.1597% as one of the top ten documents in the new rank. • clustering (top ranked): Applies the same clustering algorithm, db u)t: tAhpisp lti emse t tehe s top ranked document (in the original Google rank) of each cluster is selected. • • random: Randomly selects ten documents frraonmd otmhe: :se Rt aofn dreomtrielyve sde lreecstuslts te. upper bound: This is the maximal diversity tuhpapt can o beu nodb:tai Tnheids iins our mteasxtbiemda. lN doivteer tshitayt coverage is not 100%, because some words have more than ten meanings in Wikipedia and we are only considering the top ten documents. All experiments have been applied on the full set of documents in the testbed, including those which could not be annotated with any Wikipedia sense. Coverage is computed as the ratio of senses that appear in the top ten results compared to the number of senses that appear in all search results. Results are presented in Table 5. Note that diversity in the top ten documents increases from an average of 2.80 Wikipedia senses represented in the original search engine rank, to 4.75 in the modified rank (being 6.15 the upper bound), with the coverage of senses going from 49% to 77%. With a simple VSM algorithm, the coverage of Wikipedia senses in the top ten results is 70% larger than in the original ranking. Using Wikipedia to enhance diversity seems to work much better than clustering: both strategies to select a representative from each cluster are unable to improve the diversity of the original ranking. Note, however, that our evaluation has a bias towards using Wikipedia, because only Wikipedia senses are considered to estimate diversity. Of course our results do not imply that the Wikipedia modified rank is better than the original 1364 Google rank: there are many other factors that influence the final ranking provided by a search engine. What our results indicate is that, with simple and efficient algorithms, Wikipedia can be used as a reference to improve search results diversity for one-word queries. 7 Related Work Web search results clustering and diversity in search results are topics that receive an increasing attention from the research community. Diversity is used both to represent sub-themes in a broad topic, or to consider alternative interpretations for ambiguous queries (Agrawal et al., 2009), which is our interest here. Standard IR test collections do not usually consider ambiguous queries, and are thus inappropriate to test systems that promote diversity (Sanderson, 2008); it is only recently that appropriate test collections are being built, such as (Paramita et al., 2009) for image search and (Artiles et al., 2009) for person name search. We see our testbed as complementary to these ones, and expect that it can contribute to foster research on search results diversity. To our knowledge, Wikipedia has not explicitly been used before to promote diversity in search results; but in (Gollapudi and Sharma, 2009), it is used as a gold standard to evaluate diversification algorithms: given a query with a Wikipedia disambiguation page, an algorithm is evaluated as promoting diversity when different documents in the search results are semantically similar to different Wikipedia pages (describing the alternative senses of the query). Although semantic similarity is measured automatically in this work, our results confirm that this evaluation strategy is sound, because Wikipedia senses are indeed representative of search results. (Clough et al., 2009) analyses query diversity in a Microsoft Live Search, using click entropy and query reformulation as diversity indicators. It was found that at least 9.5% - 16.2% of queries could benefit from diversification, although no correlation was found between the number of senses of a word in Wikipedia and the indicators used to discover diverse queries. This result does not discard, however, that queries where applying diversity is useful cannot benefit from Wikipedia as a sense inventory. In the context of clustering, (Carmel et al., 2009) successfully employ Wikipedia to enhance automatic cluster labeling, finding that Wikipedia labels agree with manual labels associated by humans to a cluster, much more than with signif- icant terms that are extracted directly from the text. In a similar line, both (Gabrilovich and Markovitch, 2007) and (Syed et al., 2008) provide evidence suggesting that categories of Wikipedia articles can successfully describe common concepts in documents. In the field of Natural Language Processing, there has been successful attempts to connect Wikipedia entries to Wordnet senses: (RuizCasado et al., 2005) reports an algorithm that provides an accuracy of 84%. (Mihalcea, 2007) uses internal Wikipedia hyperlinks to derive sensetagged examples. But instead of using Wikipedia directly as sense inventory, Mihalcea then manually maps Wikipedia senses into Wordnet senses (claiming that, at the time of writing the paper, Wikipedia did not consistently report ambiguity in disambiguation pages) and shows that a WSD system based on acquired sense-tagged examples reaches an accuracy well beyond an (informed) most frequent sense heuristic. 8 Conclusions We have investigated whether generic lexical resources can be used to promote diversity in Web search results for one-word, ambiguous queries. We have compared WordNet and Wikipedia and arrived to a number of conclusions: (i) unsurprisingly, Wikipedia has a much better coverage of senses in search results, and is therefore more appropriate for the task; (ii) the distribution of senses in search results can be estimated using the internal graph structure of the Wikipedia and the relative number of visits received by each sense in Wikipedia, and (iii) associating Web pages to Wikipedia senses with simple and efficient algorithms, we can produce modified rankings that cover 70% more Wikipedia senses than the original search engine rankings. We expect that the testbed created for this research will complement the - currently short - set of benchmarking test sets to explore search results diversity and query ambiguity. Our testbed is publicly available for research purposes at http://nlp.uned.es. Our results endorse further investigation on the use of Wikipedia to organize search results. Some limitations of our research, however, must be 1365 noted: (i) the nature of our testbed (with every search result manually annotated in terms of two sense inventories) makes it too small to extract solid conclusions on Web searches (ii) our work does not involve any study of diversity from the point of view of Web users (i.e. when a Web query addresses many different use needs in practice); research in (Clough et al., 2009) suggests that word ambiguity in Wikipedia might not be related with diversity of search needs; (iii) we have tested our classifiers with a simple re-ordering of search results to test how much diversity can be improved, but a search results ranking depends on many other factors, some of them more crucial than diversity; it remains to be tested how can we use document/Wikipedia associations to improve search results clustering (for instance, providing seeds for the clustering process) and to provide search suggestions. Acknowledgments This work has been partially funded by the Spanish Government (project INES/Text-Mess) and the Xunta de Galicia. References R. Agrawal, S. Gollapudi, A. Halverson, and S. Leong. 2009. Diversifying Search Results. In Proc. of WSDM’09. ACM. P. Anick. 2003. Using Terminological Feedback for Web Search Refinement : a Log-based Study. In Proc. ACM SIGIR 2003, pages 88–95. ACM New York, NY, USA. J. Artiles, J. Gonzalo, and S. Sekine. 2009. WePS 2 Evaluation Campaign: overview of the Web People Search Clustering Task. In 2nd Web People Search Evaluation Workshop (WePS 2009), 18th WWW Conference. 2009. T. Brants and A. Franz. 2006. Web 1T 5-gram, version 1. Philadelphia: Linguistic Data Consortium. D. Carmel, H. Roitman, and N. Zwerdling. 2009. Enhancing Cluster Labeling using Wikipedia. In Pro- ceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 139–146. ACM. C. Carpineto, S. Osinski, G. Romano, and Dawid Weiss. 2009. A Survey of Web Clustering Engines. ACM Computing Surveys, 41(3). Y. Chen, S. Yat Mei Lee, and C. Huang. 2009. PolyUHK: A Robust Information Extraction System for Web Personal Names. In Proc. WWW’09 (WePS2 Workshop). ACM. C. Clarke, M. Kolla, G. Cormack, O. Vechtomova, A. Ashkan, S. B ¨uttcher, and I. MacKinnon. 2008. Novelty and Diversity in Information Retrieval Evaluation. In Proc. SIGIR ’08, pages 659–666. ACM. P. Clough, M. Sanderson, M. Abouammoh, S. Navarro, and M. Paramita. 2009. Multiple Approaches to Analysing Query Diversity. In Proc. of SIGIR 2009. ACM. W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den Bosch. 2001 . TiMBL: Tilburg Memory Based Learner, version 4.0, Reference Guide. Technical report, University of Antwerp. E. Gabrilovich and S. Markovitch. 2007. Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis. In Proceedings of The 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India. S. Gollapudi and A. Sharma. 2009. An Axiomatic Approach for Result Diversification. In Proc. WWW 2009, pages 381–390. ACM New York, NY, USA. R. Mihalcea. 2007. Using Wikipedia for Automatic Word Sense Disambiguation. In Proceedings of NAACL HLT, volume 2007. G. Miller, C. R. Beckwith, D. Fellbaum, Gross, and K. Miller. 1990. Wordnet: An on-line lexical database. International Journal of Lexicograph, 3(4). G.A Miller, C. Leacock, R. Tengi, and Bunker R. T. 1993. A Semantic Concordance. In Proceedings of the ARPA WorkShop on Human Language Technology. San Francisco, Morgan Kaufman. M. Paramita, M. Sanderson, and P. Clough. 2009. Diversity in Photo Retrieval: Overview of the ImageCLEFPhoto task 2009. CLEF working notes, 2009. M. Ruiz-Casado, E. Alfonseca, and P. Castells. 2005. Automatic Assignment of Wikipedia Encyclopaedic Entries to Wordnet Synsets. Advances in Web Intelligence, 3528:380–386. M. Sanderson. 2000. Retrieving with Good Sense. Information Retrieval, 2(1):49–69. M. Sanderson. 2008. Ambiguous Queries: Test Collections Need More Sense. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pages 499–506. ACM New York, NY, USA. C. Santamar ı´a, J. Gonzalo, and F. Verdejo. 2003. Automatic Association of Web Directories to Word Senses. Computational Linguistics, 29(3):485–502. Z. S. Syed, T. Finin, and Joshi. A. 2008. Wikipedia as an Ontology for Describing Documents. In Proc. ICWSM’08. 1366

4 0.19154981 237 acl-2010-Topic Models for Word Sense Disambiguation and Token-Based Idiom Detection

Author: Linlin Li ; Benjamin Roth ; Caroline Sporleder

Abstract: This paper presents a probabilistic model for sense disambiguation which chooses the best sense based on the conditional probability of sense paraphrases given a context. We use a topic model to decompose this conditional probability into two conditional probabilities with latent variables. We propose three different instantiations of the model for solving sense disambiguation problems with different degrees of resource availability. The proposed models are tested on three different tasks: coarse-grained word sense disambiguation, fine-grained word sense disambiguation, and detection of literal vs. nonliteral usages of potentially idiomatic expressions. In all three cases, we outper- form state-of-the-art systems either quantitatively or statistically significantly.

5 0.16476913 218 acl-2010-Structural Semantic Relatedness: A Knowledge-Based Method to Named Entity Disambiguation

Author: Xianpei Han ; Jun Zhao

Abstract: Name ambiguity problem has raised urgent demands for efficient, high-quality named entity disambiguation methods. In recent years, the increasing availability of large-scale, rich semantic knowledge sources (such as Wikipedia and WordNet) creates new opportunities to enhance the named entity disambiguation by developing algorithms which can exploit these knowledge sources at best. The problem is that these knowledge sources are heterogeneous and most of the semantic knowledge within them is embedded in complex structures, such as graphs and networks. This paper proposes a knowledge-based method, called Structural Semantic Relatedness (SSR), which can enhance the named entity disambiguation by capturing and leveraging the structural semantic knowledge in multiple knowledge sources. Empirical results show that, in comparison with the classical BOW based methods and social network based methods, our method can significantly improve the disambiguation performance by respectively 8.7% and 14.7%. 1

6 0.16196766 126 acl-2010-GernEdiT - The GermaNet Editing Tool

7 0.13830219 62 acl-2010-Combining Orthogonal Monolingual and Multilingual Sources of Evidence for All Words WSD

8 0.10994754 152 acl-2010-It Makes Sense: A Wide-Coverage Word Sense Disambiguation System for Free Text

9 0.10691186 26 acl-2010-All Words Domain Adapted WSD: Finding a Middle Ground between Supervision and Unsupervision

10 0.10232564 185 acl-2010-Open Information Extraction Using Wikipedia

11 0.096385799 15 acl-2010-A Semi-Supervised Key Phrase Extraction Approach: Learning from Title Phrases through a Document Semantic Network

12 0.094311878 250 acl-2010-Untangling the Cross-Lingual Link Structure of Wikipedia

13 0.090060346 166 acl-2010-Learning Word-Class Lattices for Definition and Hypernym Extraction

14 0.082875349 70 acl-2010-Contextualizing Semantic Representations Using Syntactically Enriched Vector Models

15 0.082236975 141 acl-2010-Identifying Text Polarity Using Random Walks

16 0.081902049 121 acl-2010-Generating Entailment Rules from FrameNet

17 0.080728747 257 acl-2010-WSD as a Distributed Constraint Optimization Problem

18 0.080463044 27 acl-2010-An Active Learning Approach to Finding Related Terms

19 0.079719827 159 acl-2010-Learning 5000 Relational Extractors

20 0.07761202 50 acl-2010-Bilingual Lexicon Generation Using Non-Aligned Signatures


similar papers computed by lsi model

lsi for this paper:

topicId topicWeight

[(0, -0.202), (1, 0.099), (2, -0.108), (3, -0.003), (4, 0.416), (5, 0.065), (6, 0.223), (7, 0.142), (8, -0.1), (9, 0.079), (10, 0.121), (11, -0.199), (12, -0.065), (13, 0.073), (14, -0.111), (15, -0.04), (16, 0.001), (17, 0.104), (18, -0.037), (19, -0.026), (20, -0.202), (21, -0.022), (22, -0.034), (23, -0.079), (24, 0.027), (25, 0.016), (26, 0.046), (27, -0.003), (28, -0.019), (29, -0.027), (30, -0.007), (31, -0.042), (32, 0.09), (33, 0.013), (34, 0.027), (35, -0.055), (36, 0.023), (37, -0.002), (38, 0.033), (39, -0.016), (40, 0.021), (41, -0.121), (42, -0.107), (43, -0.042), (44, -0.063), (45, 0.09), (46, -0.109), (47, -0.027), (48, -0.066), (49, 0.011)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.97041386 44 acl-2010-BabelNet: Building a Very Large Multilingual Semantic Network

Author: Roberto Navigli ; Simone Paolo Ponzetto

Abstract: In this paper we present BabelNet a very large, wide-coverage multilingual semantic network. The resource is automatically constructed by means of a methodology that integrates lexicographic and encyclopedic knowledge from WordNet and Wikipedia. In addition Machine Translation is also applied to enrich the resource with lexical information for all languages. We conduct experiments on new and existing gold-standard datasets to show the high quality and coverage of the resource. –

2 0.92603475 156 acl-2010-Knowledge-Rich Word Sense Disambiguation Rivaling Supervised Systems

Author: Simone Paolo Ponzetto ; Roberto Navigli

Abstract: One of the main obstacles to highperformance Word Sense Disambiguation (WSD) is the knowledge acquisition bottleneck. In this paper, we present a methodology to automatically extend WordNet with large amounts of semantic relations from an encyclopedic resource, namely Wikipedia. We show that, when provided with a vast amount of high-quality semantic relations, simple knowledge-lean disambiguation algorithms compete with state-of-the-art supervised WSD systems in a coarse-grained all-words setting and outperform them on gold-standard domain-specific datasets.

3 0.85522866 261 acl-2010-Wikipedia as Sense Inventory to Improve Diversity in Web Search Results

Author: Celina Santamaria ; Julio Gonzalo ; Javier Artiles

Abstract: Is it possible to use sense inventories to improve Web search results diversity for one word queries? To answer this question, we focus on two broad-coverage lexical resources of a different nature: WordNet, as a de-facto standard used in Word Sense Disambiguation experiments; and Wikipedia, as a large coverage, updated encyclopaedic resource which may have a better coverage of relevant senses in Web pages. Our results indicate that (i) Wikipedia has a much better coverage of search results, (ii) the distribution of senses in search results can be estimated using the internal graph structure of the Wikipedia and the relative number of visits received by each sense in Wikipedia, and (iii) associating Web pages to Wikipedia senses with simple and efficient algorithms, we can produce modified rankings that cover 70% more Wikipedia senses than the original search engine rankings. 1 Motivation The application of Word Sense Disambiguation (WSD) to Information Retrieval (IR) has been subject of a significant research effort in the recent past. The essential idea is that, by indexing and matching word senses (or even meanings) , the retrieval process could better handle polysemy and synonymy problems (Sanderson, 2000). In practice, however, there are two main difficulties: (i) for long queries, IR models implicitly perform disambiguation, and thus there is little room for improvement. This is the case with most standard IR benchmarks, such as TREC (trec.nist.gov) or CLEF (www.clef-campaign.org) ad-hoc collections; (ii) for very short queries, disambiguation j ul io @ l i uned . e s j avart s . @bec . uned . e s may not be possible or even desirable. This is often the case with one word and even two word queries in Web search engines. In Web search, there are at least three ways of coping with ambiguity: • • • Promoting diversity in the search results (Clarke negt al., 2008): given th seea query s”uolatssis”, the search engine may try to include representatives for different senses of the word (such as the Oasis band, the Organization for the Advancement of Structured Information Standards, the online fashion store, etc.) among the top results. Search engines are supposed to handle diversity as one of the multiple factors that influence the ranking. Presenting the results as a set of (labelled) cPlruessteenrtsi nragth tehre eth reansu as a a rsan ake sde lti ostf (Carpineto et al., 2009). Complementing search results with search suggestions (e.g. e”oaracshis band”, ”woitahsis s fashion store”) that serve to refine the query in the intended way (Anick, 2003). All of them rely on the ability of the search engine to cluster search results, detecting topic similarities. In all of them, disambiguation is implicit, a side effect of the process but not its explicit target. Clustering may detect that documents about the Oasis band and the Oasis fashion store deal with unrelated topics, but it may as well detect a group of documents discussing why one of the Oasis band members is leaving the band, and another group of documents about Oasis band lyrics; both are different aspects of the broad topic Oasis band. A perfect hierarchical clustering should distinguish between the different Oasis senses at a first level, and then discover different topics within each of the senses. Is it possible to use sense inventories to improve search results for one word queries? To answer 1357 Proce dingUsp opfs thaela 4, 8Stwhe Adnen u,a 1l1- M16e Jtiunlgy o 2f0 t1h0e. A ?c s 2o0c1ia0ti Aosnso focria Ctio nm fpourta Ctoiomnpault Laitniognuaislt Licisn,g puaigsetisc 1s357–136 , this question, we will focus on two broad-coverage lexical resources of a different nature: WordNet (Miller et al., 1990), as a de-facto standard used in Word Sense Disambiguation experiments and many other Natural Language Processing research fields; and Wikipedia (www.wikipedia.org), as a large coverage and updated encyclopedic resource which may have a better coverage of relevant senses in Web pages. Our hypothesis is that, under appropriate conditions, any of the above mechanisms (clustering, search suggestions, diversity) might benefit from an explicit disambiguation (classification of pages in the top search results) using a wide-coverage sense inventory. Our research is focused on four relevant aspects of the problem: 1. Coverage: Are Wikipedia/Wordnet senses representative of search results? Otherwise, trying to make a disambiguation in terms of a fixed sense inventory would be meaningless. 2. If the answer to (1) is positive, the reverse question is also interesting: can we estimate search results diversity using our sense inven- tories? 3. Sense frequencies: knowing sense frequencies in (search results) Web pages is crucial to have a usable sense inventory. Is it possible to estimate Web sense frequencies from currently available information? 4. Classification: The association of Web pages to word senses must be done with some unsupervised algorithm, because it is not possible to hand-tag training material for every possible query word. Can this classification be done accurately? Can it be effective to promote diversity in search results? In order to provide an initial answer to these questions, we have built a corpus consisting of 40 nouns and 100 Google search results per noun, manually annotated with the most appropriate Wordnet and Wikipedia senses. Section 2 describes how this corpus has been created, and in Section 3 we discuss WordNet and Wikipedia coverage of search results according to our testbed. As this initial results clearly discard Wordnet as a sense inventory for the task, the rest of the paper mainly focuses on Wikipedia. In Section 4 we estimate search results diversity from our testbed, finding that the use of Wikipedia could substantially improve diversity in the top results. In Section 5 we use the Wikipedia internal link structure and the number of visits per page to estimate relative frequencies for Wikipedia senses, obtaining an estimation which is highly correlated with actual data in our testbed. Finally, in Section 6 we discuss a few strategies to classify Web pages into word senses, and apply the best classifier to enhance diversity in search results. The paper concludes with a discussion of related work (Section 7) and an overall discussion of our results in Section 8. 2 Test Set 2.1 Set of Words The most crucial step in building our test set is choosing the set of words to be considered. We are looking for words which are susceptible to form a one-word query for a Web search engine, and therefore we should focus on nouns which are used to denote one or more named entities. At the same time we want to have some degree of comparability with previous research on Word Sense Disambiguation, which points to noun sets used in Senseval/SemEval evaluation campaigns1 . Our budget for corpus annotation was enough for two persons-month, which limited us to handle 40 nouns (usually enough to establish statistically significant differences between WSD algorithms, although obviously limited to reach solid figures about the general behaviour of words in the Web). With these arguments in mind, we decided to choose: (i) 15 nouns from the Senseval-3 lexical sample dataset, which have been previously employed by (Mihalcea, 2007) in a related experiment (see Section 7); (ii) 25 additional words which satisfy two conditions: they are all ambiguous, and they are all names for music bands in one of their senses (not necessarily the most salient). The Senseval set is: {argument, arm, atmosphere, bank, degree, difference, disc, irmm-, age, paper, party, performance, plan, shelter, sort, source}. The bands set is {amazon, apple, camel, cell, columbia, cream, foreigner, fox, genesis, jaguar, oasis, pioneer, police, puma, rainbow, shell, skin, sun, tesla, thunder, total, traffic, trapeze, triumph, yes}. Fpoerz e,a trchiu noun, we looked up all its possible senses in WordNet 3.0 and in Wikipedia (using 1http://senseval.org 1358 Table 1: Coverage of Search Results: Wikipedia vs. WordNet Wikiped#ia documents # senses WordNe#t documents Senseval setava2il4a2b/1le0/u0sedassign8e7d7 to (5 s9o%me) senseavai9la2b/5le2/usedassigne6d96 to (4 s6o%m)e sense # senses BaTnodtsa lset868420//21774421323558 ((5546%%))17780/3/9911529995 (2 (342%%)) Wikipedia disambiguation pages). Wikipedia has an average of 22 senses per noun (25.2 in the Bands set and 16. 1in the Senseval set), and Wordnet a much smaller figure, 4.5 (3. 12 for the Bands set and 6.13 for the Senseval set). For a conventional dictionary, a higher ambiguity might indicate an excess of granularity; for an encyclopaedic resource such as Wikipedia, however, it is just an indication of larger coverage. Wikipedia en- tries for camel which are not in WordNet, for instance, include the Apache Camel routing and mediation engine, the British rock band, the brand of cigarettes, the river in Cornwall, and the World World War I fighter biplane. 2.2 Set of Documents We retrieved the 150 first ranked documents for each noun, by submitting the nouns as queries to a Web search engine (Google). Then, for each document, we stored both the snippet (small description of the contents of retrieved document) and the whole HTML document. This collection of documents contain an implicit new inventory of senses, based on Web search, as documents retrieved by a noun query are associated with some sense of the noun. Given that every document in the top Web search results is supposed to be highly relevant for the query word, we assume a ”one sense per document” scenario, although we allow annotators to assign more than one sense per document. In general this assumption turned out to be correct except in a few exceptional cases (such as Wikipedia disambiguation pages): only nine docu- ments received more than one WordNet sense, and 44 (1. 1% of all annotated pages) received more than one Wikipedia sense. 2.3 Manual Annotation We implemented an annotation interface which stored all documents and a short description for every Wordnet and Wikipedia sense. The annotators had to decide, for every document, whether there was one or more appropriate senses in each of the dictionaries. They were instructed to provide annotations for 100 documents per name; if an URL in the list was corrupt or not available, it had to be discarded. We provided 150 documents per name to ensure that the figure of 100 usable documents per name could be reached without problems. Each judge provided annotations for the 4,000 documents in the final data set. In a second round, they met and discussed their independent annotations together, reaching a consensus judgement for every document. 3 Coverage of Web Search Results: Wikipedia vs Wordnet Table 1 shows how Wikipedia and Wordnet cover the senses in search results. We report each noun subset separately (Senseval and bands subsets) as well as aggregated figures. The most relevant fact is that, unsurprisingly, Wikipedia senses cover much more search results (56%) than Wordnet (32%). If we focus on the top ten results, in the bands subset (which should be more representative of plausible web queries) Wikipedia covers 68% of the top ten documents. This is an indication that it can indeed be useful for promoting diversity or help clustering search results: even if 32% of the top ten documents are not covered by Wikipedia, it is still a representative source of senses in the top search results. We have manually examined all documents in the top ten results that are not covered by Wikipedia: a majority of the missing senses consists of names of (generally not well-known) companies (45%) and products or services (26%); the other frequent type (12%) of non annotated doc- ument is disambiguation pages (from Wikipedia and also from other dictionaries). It is also interesting to examine the degree of overlap between Wikipedia and Wordnet senses. Being two different types of lexical resource, they might have some degree of complementarity. Table 2 shows, however, that this is not the case: most of the (annotated) documents either fit Wikipedia senses (26%) or both Wikipedia and Wordnet (29%), and just 3% fit Wordnet only. 1359 Table 2: Overlap between Wikipedia and Wordnet in Search Results # documents annotated with Senseval setWikipe60di7a ( &40 W%o)rdnetWi2k7ip0e (d1i8a% on)lyWo8r9d (n6e%t o)nly534no (3n6e%) BaTnodtsa slet1517729 ( (2239%%))1708566 (3 (216%%))12176 ( (13%%))11614195 ( (4415%%)) Therefore, Wikipedia seems to extend the coverage of Wordnet rather than providing complementary sense information. If we wanted to extend the coverage of Wikipedia, the best strategy seems to be to consider lists ofcompanies, products and services, rather than complementing Wikipedia with additional sense inventories. 4 Diversity in Google Search Results Once we know that Wikipedia senses are a representative subset of actual Web senses (covering more than half of the documents retrieved by the search engine), we can test how well search results respect diversity in terms of this subset of senses. Table 3 displays the number of different senses found at different depths in the search results rank, and the average proportion of total senses that they represent. These results suggest that diversity is not a major priority for ranking results: the top ten results only cover, in average, 3 Wikipedia senses (while the average number of senses listed in Wikipedia is 22). When considering the first 100 documents, this number grows up to 6.85 senses per noun. Another relevant figure is the frequency of the most frequent sense for each word: in average, 63% of the pages in search results belong to the most frequent sense of the query word. This is roughly comparable with most frequent sense figures in standard annotated corpora such as Semcor (Miller et al., 1993) and the Senseval/Semeval data sets, which suggests that diversity may not play a major role in the current Google ranking algorithm. Of course this result must be taken with care, because variability between words is high and unpredictable, and we are using only 40 nouns for our experiment. But what we have is a positive indication that Wikipedia could be used to improve diversity or cluster search results: potentially the first top ten results could cover 6.15 different senses in average (see Section 6.5), which would be a substantial growth. 5 Sense Frequency Estimators for Wikipedia Wikipedia disambiguation pages contain no systematic information about the relative importance of senses for a given word. Such information, however, is crucial in a lexicon, because sense distributions tend to be skewed, and knowing them can help disambiguation algorithms. We have attempted to use two estimators of expected sense distribution: • • Internal relevance of a word sense, measured as incoming alinnckes o ffo ar wthoer U seRnLs o, fm a given sense in Wikipedia. External relevance of a word sense, measured as ttheren naulm rebleevr aonfc vei osifts a f woro trhde s eUnRsLe, mofe a given sense (as reported in http://stats.grok.se). The number of internal incoming links is expected to be relatively stable for Wikipedia articles. As for the number of visits, we performed a comparison of the number of visits received by the bands noun subset in May, June and July 2009, finding a stable-enough scenario with one notorious exception: the number of visits to the noun Tesla raised dramatically in July, because July 10 was the anniversary of the birth of Nicola Tesla, and a special Google logo directed users to the Wikipedia page for the scientist. We have measured correlation between the relative frequencies derived from these two indicators and the actual relative frequencies in our testbed. Therefore, for each noun w and for each sense wi, we consider three values: (i) proportion of documents retrieved for w which are manually assigned to each sense wi; (ii) inlinks(wi) : relative amount of incoming links to each sense wi; and (iii) visits(wi) : relative number of visits to the URL for each sense wi. We have measured the correlation between these three values using a linear regression correlation coefficient, which gives a correlation value of .54 for the number of visits and of .71 for the number of incoming links. Both estimators seem 1360 Table 3: Diversity in Search Results according to Wikipedia F ir s t 12570 docsBave6n425.rd9854a6 s8get#snSe 65sien43. v68a3s27elarcthesTu6543l.o t5083as5lBvaen.r3d2a73s81gectovrSaegnso. 4f32v615aWlsiketpdaTs.3oe249tn01asle to be positively correlated with real relative frequencies in our testbed, with a strong preference for the number of links. We have experimented with weighted combinations of both indicators, using weights of the form (k, 1 k) , k ∈ {0, 0.1, 0.2 . . . 1}, reaching a maxi(mk,a1l c−okrre),lkati ∈on { 0of, .07.13, f0o.r2 t.h.e. following weights: − freq(wi) = 0.9∗inlinks(wi) +0. 1∗visits(wi) (1) This weighted estimator provides a slight advantage over the use of incoming links only (.73 vs .71). Overall, we have an estimator which has a strong correlation with the distribution of senses in our testbed. In the next section we will test its utility for disambiguation purposes. 6 Association of Wikipedia Senses to Web Pages We want to test whether the information provided by Wikipedia can be used to classify search results accurately. Note that we do not want to consider approaches that involve a manual creation of training material, because they can’t be used in practice. Given a Web page p returned by the search engine for the query w, and the set of senses w1 . . . wn listed in Wikipedia, the task is to assign the best candidate sense to p. We consider two different techniques: • A basic Information Retrieval approach, wAhe breas tche I dfoocrmumateionnts Ranetdr tvhael Wikipedia pages are represented using a Vector Space Model (VSM) and compared with a standard cosine measure. This is a basic approach which, if successful, can be used efficiently to classify search results. An approach based on a state-of-the-art supervised oWacShD b system, extracting training examples automatically from Wikipedia content. We also compute two baselines: • • • A random assignment of senses (precision is computed as itghnem ienvnter osfe oenfs tehse ( pnruemcibsieorn o isf senses, for every test case). A most frequent sense heuristic which uses our eosstitm fraetiqoune otf s sense frequencies acnhd u assigns the same sense (the most frequent) to all documents. Both are naive baselines, but it must be noted that the most frequent sense heuristic is usually hard to beat for unsupervised WSD algorithms in most standard data sets. We now describe each of the two main approaches in detail. 6.1 VSM Approach For each word sense, we represent its Wikipedia page in a (unigram) vector space model, assigning standard tf*idf weights to the words in the document. idf weights are computed in two different ways: 1. Experiment VSM computes inverse document frequencies in the collection of retrieved documents (for the word being considered). 2. Experiment VSM-GT uses the statistics provided by the Google Terabyte collection (Brants and Franz, 2006), i.e. it replaces the collection of documents with statistics from a representative snapshot of the Web. 3. Experiment VSM-mixed combines statistics from the collection and from the Google Terabyte collection, following (Chen et al., 2009). The document p is represented in the same vector space as the Wikipedia senses, and it is compared with each of the candidate senses wi via the cosine similarity metric (we have experimented 1361 with other similarity metrics such as χ2, but differences are irrelevant). The sense with the highest similarity to p is assigned to the document. In case of ties (which are rare), we pick the first sense in the Wikipedia disambiguation page (which in practice is like a random decision, because senses in disambiguation pages do not seem to be ordered according to any clear criteria). We have also tested a variant of this approach which uses the estimation of sense frequencies presented above: once the similarities are computed, we consider those cases where two or more senses have a similar score (in particular, all senses with a score greater or equal than 80% of the highest score). In that cases, instead of using the small similarity differences to select a sense, we pick up the one which has the largest frequency according to our estimator. We have applied this strategy to the best performing system, VSM-GT, resulting in experiment VSM-GT+freq. 6.2 WSD Approach We have used TiMBL (Daelemans et al., 2001), a state-of-the-art supervised WSD system which uses Memory-Based Learning. The key, in this case, is how to extract learning examples from the Wikipedia automatically. For each word sense, we basically have three sources of examples: (i) occurrences of the word in the Wikipedia page for the word sense; (ii) occurrences of the word in Wikipedia pages pointing to the page for the word sense; (iii) occurrences of the word in external pages linked in the Wikipedia page for the word sense. After an initial manual inspection, we decided to discard external pages for being too noisy, and we focused on the first two options. We tried three alternatives: • • • TiMBL-core uses only the examples found Tini MtheB page rfoer u tshees sense being atrmaipneleds. TiMBL-inlinks uses the examples found in Wikipedia pages pointing etxoa mthep sense being trained. TiMBL-all uses both sources of examples. In order to classify a page p with respect to the senses for a word w, we first disambiguate all occurrences of w in the page p. Then we choose the sense which appears most frequently in the page according to TiMBL results. In case of ties we pick up the first sense listed in the Wikipedia disambiguation page. We have also experimented with a variant of the approach that uses our estimation of sense frequencies, similarly to what we did with the VSM approach. In this case, (i) when there is a tie between two or more senses (which is much more likely than in the VSM approach), we pick up the sense with the highest frequency according to our estimator; and (ii) when no sense reaches 30% of the cases in the page to be disambiguated, we also resort to the most frequent sense heuristic (among the candidates for the page). This experiment is called TiMBL-core+freq (we discarded ”inlinks” and ”all” versions because they were clearly worse than ”core”). 6.3 Classification Results Table 4 shows classification results. The accuracy of systems is reported as precision, i.e. the number of pages correctly classified divided by the total number of predictions. This is approximately the same as recall (correctly classified pages divided by total number of pages) for our systems, because the algorithms provide an answer for every page containing text (actual coverage is 94% because some pages only contain text as part of an image file such as photographs and logotypes). Table 4: Classification Results Experiment Precision random most frequent sense (estimation) .19 .46 TiMBL-core TiMBL-inlinks TiMBL-all TiMBL-core+freq .60 .50 .58 .67 VSM VSM-GT VSM-mixed VSM-GT+freq .67 .68 .67 .69 All systems are significantly better than the random and most frequent sense baselines (using p < 0.05 for a standard t-test). Overall, both approaches (using TiMBL WSD machinery and using VSM) lead to similar results (.67 vs. .69), which would make VSM preferable because it is a simpler and more efficient approach. Taking a 1362 Figure 1: Precision/Coverage curves for VSM-GT+freq classification algorithm closer look at the results with TiMBL, there are a couple of interesting facts: • There is a substantial difference between using only examples itaalke dnif fferroemnc tehe b Wikipedia Web page for the sense being trained (TiMBL-core, .60) and using examples from the Wikipedia pages pointing to that page (TiMBL-inlinks, .50). Examples taken from related pages (even if the relationship is close as in this case) seem to be too noisy for the task. This result is compatible with findings in (Santamar ı´a et al., 2003) using the Open Directory Project to extract examples automatically. • Our estimation of sense frequencies turns oOuutr rto e tbiem very helpful sfeor f cases wcihesere t our TiMBL-based algorithm cannot provide an answer: precision rises from .60 (TiMBLcore) to .67 (TiMBL-core+freq). The difference is statistically significant (p < 0.05) according to the t-test. As for the experiments with VSM, the variations tested do not provide substantial improvements to the baseline (which is .67). Using idf frequencies obtained from the Google Terabyte corpus (instead of frequencies obtained from the set of retrieved documents) provides only a small improvement (VSM-GT, .68), and adding the estimation of sense frequencies gives another small improvement (.69). Comparing the baseline VSM with the optimal setting (VSM-GT+freq), the difference is small (.67 vs .69) but relatively robust (p = 0.066 according to the t-test). Remarkably, the use of frequency estimations is very helpful for the WSD approach but not for the SVM one, and they both end up with similar performance figures; this might indicate that using frequency estimations is only helpful up to certain precision ceiling. 6.4 Precision/Coverage Trade-off All the above experiments are done at maximal coverage, i.e., all systems assign a sense for every document in the test collection (at least for every document with textual content). But it is possible to enhance search results diversity without annotating every document (in fact, not every document can be assigned to a Wikipedia sense, as we have discussed in Section 3). Thus, it is useful to investigate which is the precision/coverage trade-off in our dataset. We have experimented with the best performing system (VSM-GT+freq), introducing a similarity threshold: assignment of a document to a sense is only done if the similarity of the document to the Wikipedia page for the sense exceeds the similarity threshold. We have computed precision and coverage for every threshold in the range [0.00 −0.90] (beyond 0e.v9e0ry coverage was null) anngde represented 0th] e(b breeysuolntds in Figure 1 (solid line). The graph shows that we 1363 can classify around 20% of the documents with a precision above .90, and around 60% of the documents with a precision of .80. Note that we are reporting disambiguation results using a conventional WSD test set, i.e., one in which every test case (every document) has been manually assigned to some Wikipedia sense. But in our Web Search scenario, 44% of the documents were not assigned to any Wikipedia sense: in practice, our classification algorithm would have to cope with all this noise as well. Figure 1 (dotted line) shows how the precision/coverage curve is affected when the algorithm attempts to disambiguate all documents retrieved by Google, whether they can in fact be assigned to a Wikipedia sense or not. At a coverage of 20%, precision drops approximately from .90 to .70, and at a coverage of 60% it drops from .80 to .50. We now address the question of whether this performance is good enough to improve search re- sults diversity in practice. 6.5 Using Classification to Promote Diversity We now want to estimate how the reported classification accuracy may perform in practice to enhance diversity in search results. In order to provide an initial answer to this question, we have re-ranked the documents for the 40 nouns in our testbed, using our best classifier (VSM-GT+freq) and making a list of the top-ten documents with the primary criterion of maximising the number of senses represented in the set, and the secondary criterion of maximising the similarity scores of the documents to their assigned senses. The algorithm proceeds as follows: we fill each position in the rank (starting at rank 1), with the document which has the highest similarity to some of the senses which are not yet represented in the rank; once all senses are represented, we start choosing a second representative for each sense, following the same criterion. The process goes on until the first ten documents are selected. We have also produced a number of alternative rankings for comparison purposes: clustering (centroids): this method applies eHriiengrarc (hciecnatlr Agglomerative Clustering which proved to be the most competitive clustering algorithm in a similar task (Artiles et al., 2009) to the set of search results, forcing the algorithm to create ten clusters. The centroid of each cluster is then selected Table 5: Enhancement of Search Results Diversity • – – rank@10 # senses coverage Original rank2.8049% Wikipedia 4.75 77% clustering (centroids) 2.50 42% clustering (top ranked) 2.80 46% random 2.45 43% upper bound6.1597% as one of the top ten documents in the new rank. • clustering (top ranked): Applies the same clustering algorithm, db u)t: tAhpisp lti emse t tehe s top ranked document (in the original Google rank) of each cluster is selected. • • random: Randomly selects ten documents frraonmd otmhe: :se Rt aofn dreomtrielyve sde lreecstuslts te. upper bound: This is the maximal diversity tuhpapt can o beu nodb:tai Tnheids iins our mteasxtbiemda. lN doivteer tshitayt coverage is not 100%, because some words have more than ten meanings in Wikipedia and we are only considering the top ten documents. All experiments have been applied on the full set of documents in the testbed, including those which could not be annotated with any Wikipedia sense. Coverage is computed as the ratio of senses that appear in the top ten results compared to the number of senses that appear in all search results. Results are presented in Table 5. Note that diversity in the top ten documents increases from an average of 2.80 Wikipedia senses represented in the original search engine rank, to 4.75 in the modified rank (being 6.15 the upper bound), with the coverage of senses going from 49% to 77%. With a simple VSM algorithm, the coverage of Wikipedia senses in the top ten results is 70% larger than in the original ranking. Using Wikipedia to enhance diversity seems to work much better than clustering: both strategies to select a representative from each cluster are unable to improve the diversity of the original ranking. Note, however, that our evaluation has a bias towards using Wikipedia, because only Wikipedia senses are considered to estimate diversity. Of course our results do not imply that the Wikipedia modified rank is better than the original 1364 Google rank: there are many other factors that influence the final ranking provided by a search engine. What our results indicate is that, with simple and efficient algorithms, Wikipedia can be used as a reference to improve search results diversity for one-word queries. 7 Related Work Web search results clustering and diversity in search results are topics that receive an increasing attention from the research community. Diversity is used both to represent sub-themes in a broad topic, or to consider alternative interpretations for ambiguous queries (Agrawal et al., 2009), which is our interest here. Standard IR test collections do not usually consider ambiguous queries, and are thus inappropriate to test systems that promote diversity (Sanderson, 2008); it is only recently that appropriate test collections are being built, such as (Paramita et al., 2009) for image search and (Artiles et al., 2009) for person name search. We see our testbed as complementary to these ones, and expect that it can contribute to foster research on search results diversity. To our knowledge, Wikipedia has not explicitly been used before to promote diversity in search results; but in (Gollapudi and Sharma, 2009), it is used as a gold standard to evaluate diversification algorithms: given a query with a Wikipedia disambiguation page, an algorithm is evaluated as promoting diversity when different documents in the search results are semantically similar to different Wikipedia pages (describing the alternative senses of the query). Although semantic similarity is measured automatically in this work, our results confirm that this evaluation strategy is sound, because Wikipedia senses are indeed representative of search results. (Clough et al., 2009) analyses query diversity in a Microsoft Live Search, using click entropy and query reformulation as diversity indicators. It was found that at least 9.5% - 16.2% of queries could benefit from diversification, although no correlation was found between the number of senses of a word in Wikipedia and the indicators used to discover diverse queries. This result does not discard, however, that queries where applying diversity is useful cannot benefit from Wikipedia as a sense inventory. In the context of clustering, (Carmel et al., 2009) successfully employ Wikipedia to enhance automatic cluster labeling, finding that Wikipedia labels agree with manual labels associated by humans to a cluster, much more than with signif- icant terms that are extracted directly from the text. In a similar line, both (Gabrilovich and Markovitch, 2007) and (Syed et al., 2008) provide evidence suggesting that categories of Wikipedia articles can successfully describe common concepts in documents. In the field of Natural Language Processing, there has been successful attempts to connect Wikipedia entries to Wordnet senses: (RuizCasado et al., 2005) reports an algorithm that provides an accuracy of 84%. (Mihalcea, 2007) uses internal Wikipedia hyperlinks to derive sensetagged examples. But instead of using Wikipedia directly as sense inventory, Mihalcea then manually maps Wikipedia senses into Wordnet senses (claiming that, at the time of writing the paper, Wikipedia did not consistently report ambiguity in disambiguation pages) and shows that a WSD system based on acquired sense-tagged examples reaches an accuracy well beyond an (informed) most frequent sense heuristic. 8 Conclusions We have investigated whether generic lexical resources can be used to promote diversity in Web search results for one-word, ambiguous queries. We have compared WordNet and Wikipedia and arrived to a number of conclusions: (i) unsurprisingly, Wikipedia has a much better coverage of senses in search results, and is therefore more appropriate for the task; (ii) the distribution of senses in search results can be estimated using the internal graph structure of the Wikipedia and the relative number of visits received by each sense in Wikipedia, and (iii) associating Web pages to Wikipedia senses with simple and efficient algorithms, we can produce modified rankings that cover 70% more Wikipedia senses than the original search engine rankings. We expect that the testbed created for this research will complement the - currently short - set of benchmarking test sets to explore search results diversity and query ambiguity. Our testbed is publicly available for research purposes at http://nlp.uned.es. Our results endorse further investigation on the use of Wikipedia to organize search results. Some limitations of our research, however, must be 1365 noted: (i) the nature of our testbed (with every search result manually annotated in terms of two sense inventories) makes it too small to extract solid conclusions on Web searches (ii) our work does not involve any study of diversity from the point of view of Web users (i.e. when a Web query addresses many different use needs in practice); research in (Clough et al., 2009) suggests that word ambiguity in Wikipedia might not be related with diversity of search needs; (iii) we have tested our classifiers with a simple re-ordering of search results to test how much diversity can be improved, but a search results ranking depends on many other factors, some of them more crucial than diversity; it remains to be tested how can we use document/Wikipedia associations to improve search results clustering (for instance, providing seeds for the clustering process) and to provide search suggestions. Acknowledgments This work has been partially funded by the Spanish Government (project INES/Text-Mess) and the Xunta de Galicia. References R. Agrawal, S. Gollapudi, A. Halverson, and S. Leong. 2009. Diversifying Search Results. In Proc. of WSDM’09. ACM. P. Anick. 2003. Using Terminological Feedback for Web Search Refinement : a Log-based Study. In Proc. ACM SIGIR 2003, pages 88–95. ACM New York, NY, USA. J. Artiles, J. Gonzalo, and S. Sekine. 2009. WePS 2 Evaluation Campaign: overview of the Web People Search Clustering Task. In 2nd Web People Search Evaluation Workshop (WePS 2009), 18th WWW Conference. 2009. T. Brants and A. Franz. 2006. Web 1T 5-gram, version 1. Philadelphia: Linguistic Data Consortium. D. Carmel, H. Roitman, and N. Zwerdling. 2009. Enhancing Cluster Labeling using Wikipedia. In Pro- ceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 139–146. ACM. C. Carpineto, S. Osinski, G. Romano, and Dawid Weiss. 2009. A Survey of Web Clustering Engines. ACM Computing Surveys, 41(3). Y. Chen, S. Yat Mei Lee, and C. Huang. 2009. PolyUHK: A Robust Information Extraction System for Web Personal Names. In Proc. WWW’09 (WePS2 Workshop). ACM. C. Clarke, M. Kolla, G. Cormack, O. Vechtomova, A. Ashkan, S. B ¨uttcher, and I. MacKinnon. 2008. Novelty and Diversity in Information Retrieval Evaluation. In Proc. SIGIR ’08, pages 659–666. ACM. P. Clough, M. Sanderson, M. Abouammoh, S. Navarro, and M. Paramita. 2009. Multiple Approaches to Analysing Query Diversity. In Proc. of SIGIR 2009. ACM. W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den Bosch. 2001 . TiMBL: Tilburg Memory Based Learner, version 4.0, Reference Guide. Technical report, University of Antwerp. E. Gabrilovich and S. Markovitch. 2007. Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis. In Proceedings of The 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India. S. Gollapudi and A. Sharma. 2009. An Axiomatic Approach for Result Diversification. In Proc. WWW 2009, pages 381–390. ACM New York, NY, USA. R. Mihalcea. 2007. Using Wikipedia for Automatic Word Sense Disambiguation. In Proceedings of NAACL HLT, volume 2007. G. Miller, C. R. Beckwith, D. Fellbaum, Gross, and K. Miller. 1990. Wordnet: An on-line lexical database. International Journal of Lexicograph, 3(4). G.A Miller, C. Leacock, R. Tengi, and Bunker R. T. 1993. A Semantic Concordance. In Proceedings of the ARPA WorkShop on Human Language Technology. San Francisco, Morgan Kaufman. M. Paramita, M. Sanderson, and P. Clough. 2009. Diversity in Photo Retrieval: Overview of the ImageCLEFPhoto task 2009. CLEF working notes, 2009. M. Ruiz-Casado, E. Alfonseca, and P. Castells. 2005. Automatic Assignment of Wikipedia Encyclopaedic Entries to Wordnet Synsets. Advances in Web Intelligence, 3528:380–386. M. Sanderson. 2000. Retrieving with Good Sense. Information Retrieval, 2(1):49–69. M. Sanderson. 2008. Ambiguous Queries: Test Collections Need More Sense. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pages 499–506. ACM New York, NY, USA. C. Santamar ı´a, J. Gonzalo, and F. Verdejo. 2003. Automatic Association of Web Directories to Word Senses. Computational Linguistics, 29(3):485–502. Z. S. Syed, T. Finin, and Joshi. A. 2008. Wikipedia as an Ontology for Describing Documents. In Proc. ICWSM’08. 1366

4 0.62406659 126 acl-2010-GernEdiT - The GermaNet Editing Tool

Author: Verena Henrich ; Erhard Hinrichs

Abstract: GernEdiT (short for: GermaNet Editing Tool) offers a graphical interface for the lexicographers and developers of GermaNet to access and modify the underlying GermaNet resource. GermaNet is a lexical-semantic wordnet that is modeled after the Princeton WordNet for English. The traditional lexicographic development of GermaNet was error prone and time-consuming, mainly due to a complex underlying data format and no opportunity of automatic consistency checks. GernEdiT replaces the earlier development by a more userfriendly tool, which facilitates automatic checking of internal consistency and correctness of the linguistic resource. This paper pre- sents all these core functionalities of GernEdiT along with details about its usage and usability. 1

5 0.58717871 250 acl-2010-Untangling the Cross-Lingual Link Structure of Wikipedia

Author: Gerard de Melo ; Gerhard Weikum

Abstract: Wikipedia articles in different languages are connected by interwiki links that are increasingly being recognized as a valuable source of cross-lingual information. Unfortunately, large numbers of links are imprecise or simply wrong. In this paper, techniques to detect such problems are identified. We formalize their removal as an optimization task based on graph repair operations. We then present an algorithm with provable properties that uses linear programming and a region growing technique to tackle this challenge. This allows us to transform Wikipedia into a much more consistent multilingual register of the world’s entities and concepts.

6 0.56223947 218 acl-2010-Structural Semantic Relatedness: A Knowledge-Based Method to Named Entity Disambiguation

7 0.51277959 237 acl-2010-Topic Models for Word Sense Disambiguation and Token-Based Idiom Detection

8 0.49906415 62 acl-2010-Combining Orthogonal Monolingual and Multilingual Sources of Evidence for All Words WSD

9 0.48512316 257 acl-2010-WSD as a Distributed Constraint Optimization Problem

10 0.45941383 26 acl-2010-All Words Domain Adapted WSD: Finding a Middle Ground between Supervision and Unsupervision

11 0.43340746 166 acl-2010-Learning Word-Class Lattices for Definition and Hypernym Extraction

12 0.42180017 152 acl-2010-It Makes Sense: A Wide-Coverage Word Sense Disambiguation System for Free Text

13 0.41316536 185 acl-2010-Open Information Extraction Using Wikipedia

14 0.37726149 5 acl-2010-A Framework for Figurative Language Detection Based on Sense Differentiation

15 0.3528147 121 acl-2010-Generating Entailment Rules from FrameNet

16 0.34235856 15 acl-2010-A Semi-Supervised Key Phrase Extraction Approach: Learning from Title Phrases through a Document Semantic Network

17 0.32762399 41 acl-2010-Automatic Selectional Preference Acquisition for Latin Verbs

18 0.32653859 159 acl-2010-Learning 5000 Relational Extractors

19 0.32514998 141 acl-2010-Identifying Text Polarity Using Random Walks

20 0.30706465 113 acl-2010-Extraction and Approximation of Numerical Attributes from the Web


similar papers computed by lda model

lda for this paper:

topicId topicWeight

[(14, 0.027), (16, 0.016), (25, 0.073), (33, 0.013), (42, 0.026), (44, 0.02), (59, 0.147), (68, 0.264), (72, 0.015), (73, 0.039), (76, 0.01), (78, 0.042), (80, 0.019), (83, 0.063), (84, 0.047), (98, 0.079)]

similar papers list:

simIndex simValue paperId paperTitle

1 0.86927563 236 acl-2010-Top-Down K-Best A* Parsing

Author: Adam Pauls ; Dan Klein ; Chris Quirk

Abstract: We propose a top-down algorithm for extracting k-best lists from a parser. Our algorithm, TKA∗ is a variant of the kbest A∗ (KA∗) algorithm of Pauls and Klein (2009). In contrast to KA∗, which performs an inside and outside pass before performing k-best extraction bottom up, TKA∗ performs only the inside pass before extracting k-best lists top down. TKA∗ maintains the same optimality and efficiency guarantees of KA∗, but is simpler to both specify and implement.

same-paper 2 0.78879958 44 acl-2010-BabelNet: Building a Very Large Multilingual Semantic Network

Author: Roberto Navigli ; Simone Paolo Ponzetto

Abstract: In this paper we present BabelNet a very large, wide-coverage multilingual semantic network. The resource is automatically constructed by means of a methodology that integrates lexicographic and encyclopedic knowledge from WordNet and Wikipedia. In addition Machine Translation is also applied to enrich the resource with lexical information for all languages. We conduct experiments on new and existing gold-standard datasets to show the high quality and coverage of the resource. –

3 0.72046483 131 acl-2010-Hierarchical A* Parsing with Bridge Outside Scores

Author: Adam Pauls ; Dan Klein

Abstract: Hierarchical A∗ (HA∗) uses of a hierarchy of coarse grammars to speed up parsing without sacrificing optimality. HA∗ prioritizes search in refined grammars using Viterbi outside costs computed in coarser grammars. We present Bridge Hierarchical A∗ (BHA∗), a modified Hierarchial A∗ algorithm which computes a novel outside cost called a bridge outside cost. These bridge costs mix finer outside scores with coarser inside scores, and thus constitute tighter heuristics than entirely coarse scores. We show that BHA∗ substantially outperforms HA∗ when the hierarchy contains only very coarse grammars, while achieving comparable performance on more refined hierarchies.

4 0.6607734 156 acl-2010-Knowledge-Rich Word Sense Disambiguation Rivaling Supervised Systems

Author: Simone Paolo Ponzetto ; Roberto Navigli

Abstract: One of the main obstacles to highperformance Word Sense Disambiguation (WSD) is the knowledge acquisition bottleneck. In this paper, we present a methodology to automatically extend WordNet with large amounts of semantic relations from an encyclopedic resource, namely Wikipedia. We show that, when provided with a vast amount of high-quality semantic relations, simple knowledge-lean disambiguation algorithms compete with state-of-the-art supervised WSD systems in a coarse-grained all-words setting and outperform them on gold-standard domain-specific datasets.

5 0.57904255 254 acl-2010-Using Speech to Reply to SMS Messages While Driving: An In-Car Simulator User Study

Author: Yun-Cheng Ju ; Tim Paek

Abstract: Speech recognition affords automobile drivers a hands-free, eyes-free method of replying to Short Message Service (SMS) text messages. Although a voice search approach based on template matching has been shown to be more robust to the challenging acoustic environment of automobiles than using dictation, users may have difficulties verifying whether SMS response templates match their intended meaning, especially while driving. Using a high-fidelity driving simulator, we compared dictation for SMS replies versus voice search in increasingly difficult driving conditions. Although the two approaches did not differ in terms of driving performance measures, users made about six times more errors on average using dictation than voice search. 1

6 0.57791448 114 acl-2010-Faster Parsing by Supertagger Adaptation

7 0.57568502 172 acl-2010-Minimized Models and Grammar-Informed Initialization for Supertagging with Highly Ambiguous Lexicons

8 0.57549477 169 acl-2010-Learning to Translate with Source and Target Syntax

9 0.57247877 160 acl-2010-Learning Arguments and Supertypes of Semantic Relations Using Recursive Patterns

10 0.5719983 148 acl-2010-Improving the Use of Pseudo-Words for Evaluating Selectional Preferences

11 0.57193613 120 acl-2010-Fully Unsupervised Core-Adjunct Argument Classification

12 0.57035691 158 acl-2010-Latent Variable Models of Selectional Preference

13 0.56923676 26 acl-2010-All Words Domain Adapted WSD: Finding a Middle Ground between Supervision and Unsupervision

14 0.56691891 15 acl-2010-A Semi-Supervised Key Phrase Extraction Approach: Learning from Title Phrases through a Document Semantic Network

15 0.56667972 218 acl-2010-Structural Semantic Relatedness: A Knowledge-Based Method to Named Entity Disambiguation

16 0.56656456 184 acl-2010-Open-Domain Semantic Role Labeling by Modeling Word Spans

17 0.56576955 162 acl-2010-Learning Common Grammar from Multilingual Corpus

18 0.56503153 211 acl-2010-Simple, Accurate Parsing with an All-Fragments Grammar

19 0.56449187 59 acl-2010-Cognitively Plausible Models of Human Language Processing

20 0.56360221 121 acl-2010-Generating Entailment Rules from FrameNet