nips nips2009 nips2009-55 knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Odalric Maillard, Rémi Munos
Abstract: We consider the problem of learning, from K data, a regression function in a linear space of high dimension N using projections onto a random subspace of lower dimension M . From any algorithm minimizing the (possibly penalized) empirical risk, we provide bounds on the excess risk of the estimate computed in the projected subspace (compressed domain) in terms of the excess risk of the estimate built in the high-dimensional space (initial domain). We show that solving the problem in the compressed domain instead of the initial domain reduces the estimation error at the price of an increased (but controlled) approximation error. We apply the analysis to Least-Squares (LS) regression and discuss the excess risk and numerical complexity of the resulting “Compressed Least Squares Re√ gression” (CLSR) in terms of N , K, and M . When we choose M = O( K), we √ show that CLSR has an estimation error of order O(log K/ K). 1 Problem setting We consider a regression problem where we observe data DK = ({xk , yk }k≤K ) (where xk ∈ X and yk ∈ R) are assumed to be independently and identically distributed (i.i.d.) from some distribution P , where xk ∼ PX and yk = f ∗ (xk ) + ηk (xk ), where f ∗ is the (unknown) target function, and ηk a centered independent noise of variance σ 2 (xk ). For a given class of functions F, and f ∈ F, we define the empirical (quadratic) error def LK (f ) = 1 K K [yk − f (xk )]2 , k=1 and the generalization (quadratic) error def L(f ) = E(X,Y )∼P [(Y − f (X))2 ]. Our goal is to return a regression function f ∈ F with lowest possible generalization error L(f ). Notations: In the sequel we will make use of the following notations about norms: for h : X → R, we write ||h||P for the L2 norm of h with respect to (w.r.t.) the measure P , ||h||PK for the L2 norm n 2 1/2 of h w.r.t. the empirical measure PK , and for u ∈ Rn , ||u|| denotes by default . i=1 ui The measurable function minimizing the generalization error is f ∗ , but it may be the case that f ∗ ∈ F. For any regression function f , we define the excess risk / L(f ) − L(f ∗ ) = ||f − f ∗ ||2 , P which decomposes as the sum of the estimation error L(f ) − inf f ∈F L(f ) and the approximation error inf f ∈F L(f ) − L(f ∗ ) = inf f ∈F ||f − f ∗ ||2 which measures the distance between f ∗ and the P function space F. 1 In this paper we consider a class of linear functions FN defined as the span of a set of N functions def def N {ϕn }1≤n≤N called features. Thus: FN = {fα = n=1 αn ϕn , α ∈ RN }. When the number of data K is larger than the number of features N , the ordinary Least-Squares Regression (LSR) provides the LS solution fα which is the minimizer of the empirical risk LK (f ) b 1 in FN . Note that here LK (fα ) rewrites K ||Φα − Y ||K where Φ is the K × N matrix with elements (ϕn (xk ))1≤n≤N,1≤k≤K and Y the K-vector with components (yk )1≤k≤K . Usual results provide bound on the estimation error as a function of the capacity of the function space and the number of data. In the case of linear approximation, the capacity measures (such as covering numbers [23] or the pseudo-dimension [16]) depend on the number of features (for example the pseudo-dimension is at most N + 1). For example, let fα be a LS estimate (minimizer of LK b in FN ), then (a more precise statement will be stated later in Subsection 3) the expected estimation error is bounded as: N log K E L(fα ) − inf L(f ) ≤ cσ2 , (1) b f ∈FN K def where c is a universal constant, σ = supx∈X σ(x), and the expectation is taken with respect to P . Now, the excess risk is the sum of this estimation error and the approximation error inf f ∈FN ||f − f ∗ ||P of the class FN . Since the later usually decreases when the number of features N increases [13] (e.g. when N FN is dense in L2 (P )), we see the usual tradeoff between small estimation error (low N ) and small approximation error (large N ). In this paper we are interested in the setting when N is large so that the approximation error is small. Whenever N is larger than K we face the overfitting problem since there are more parameters than actual data (more variables than constraints), which is illustrated in the bound (1) which provides no information about the generalization ability of any LS estimate. In addition, there are many minimizers (in fact a vector space of same dimension as the null space of ΦT Φ) of the empirical risk. To overcome the problem, several approaches have been proposed in the literature: • LS solution with minimal norm: The solution is the minimizer of the empirical error with minimal (l1 or l2 )-norm: α = arg minΦα=Y ||α||1 or 2 , (or a robust solution arg min||Φα−Y ||2 ≤ε ||α||1 ). The choice of 2 -norm yields the ordinary LS solution. The choice of 1 -norm has been used for generating sparse solutions (e.g. the Basis Pursuit [10]), and assuming that the target function admits a sparse decomposition, the field of Compressed Sensing [9, 21] provides sufficient conditions for recovering the exact solution. However, such conditions (e.g. that Φ possesses a Restricted Isometric Property (RIP)) does not hold in general in this regression setting. On another aspect, solving these problems (both for l1 or l2 -norm) when N is large is numerically expensive. • Regularization. The solution is the minimizer of the empirical error plus a penalty term, for example f = arg min LK (f ) + λ||f ||p , for p = 1 or 2. p f ∈FN where λ is a parameter and usual choices for the norm are 2 (ridge-regression [20]) and 1 (LASSO [19]). A close alternative is the Dantzig selector [8, 5] which solves: α = arg min||α||1 ≤λ ||ΦT (Y − Φα)||∞ . The numerical complexity and generalization bounds of those methods depend on the sparsity of the target function decomposition in FN . Now if we possess a sequence of function classes (FN )N ≥1 with increasing capacity, we may perform structural risk minimization [22] by solving in each model the empirical risk penalized by a term that depends on the size of the model: fN = arg minf ∈FN ,N ≥1 LK (f ) + pen(N, K), where the penalty term measures the capacity of the function space. In this paper we follow another approach where instead of searching in the large space FN (where N > K) for a solution that minimizes the empirical error plus a penalty term, we simply search for the empirical error minimizer in a (randomly generated) lower dimensional subspace GM ⊂ FN (where M < K). Our contribution: We consider a set of M random linear combinations of the initial N features and perform our favorite LS regression algorithm (possibly regularized) using those “compressed 2 features”. This is equivalent to projecting the K points {ϕ(xk ) ∈ RN , k = 1..K} from the initial domain (of size N ) onto a random subspace of dimension M , and then performing the regression in the “compressed domain” (i.e. span of the compressed features). This is made possible because random projections approximately preserve inner products between vectors (by a variant of the Johnson-Lindenstrauss Lemma stated in Proposition 1. Our main result is a bound on the excess risk of a linear estimator built in the compressed domain in terms of the excess risk of the linear estimator built in the initial domain (Section 2). We further detail the case of ordinary Least-Squares Regression (Section 3) and discuss, in terms of M , N , K, the different tradeoffs concerning the excess risk (reduced estimation error in the compressed domain versus increased approximation error introduced by the random projection) and the numerical complexity (reduced complexity of solving the LSR in the compressed domain versus the additional load of performing the projection). √ As a consequence, we show that by choosing M = O( K) projections we define a Compressed Least-Squares Regression which uses O(N K 3/2 ) elementary operations to compute a regression √ function with estimation error (relatively to the initial function space FN ) of order log K/ K up to a multiplicative factor which depends on the best approximation of f ∗ in FN . This is competitive with the best methods, up to our knowledge. Related works: Using dimension reduction and random projections in various learning areas has received considerable interest over the past few years. In [7], the authors use a SVM algorithm in a compressed space for the purpose of classification and show that their resulting algorithm has good generalization properties. In [25], the authors consider a notion of compressed linear regression. For data Y = Xβ + ε, where β is the target and ε a standard noise, they use compression of the set of data, thus considering AY = AXβ + Aε, where A has a Restricted Isometric Property. They provide an analysis of the LASSO estimator built from these compressed data, and discuss a property called sparsistency, i.e. the number of random projections needed to recover β (with high probability) when it is sparse. These works differ from our approach in the fact that we do not consider a compressed (input and/or output) data space but a compressed feature space instead. In [11], the authors discuss how compressed measurements may be useful to solve many detection, classification and estimation problems without having to reconstruct the signal ever. Interestingly, they make no assumption about the signal being sparse, like in our work. In [6, 17], the authors show how to map a kernel k(x, y) = ϕ(x) · ϕ(y) into a low-dimensional space, while still approximately preserving the inner products. Thus they build a low-dimensional feature space specific for (translation invariant) kernels. 2 Linear regression in the compressed domain We remind that the initial set of features is {ϕn : X → def N FN = {fα = n=1 αn ϕn , α ∈ components (ϕn (x))n≤N . Let us R, 1 ≤ n ≤ N } and the initial domain R } is the span of those features. We write ϕ(x) the N -vector of N now define the random projection. Let A be a M × N matrix of i.i.d. elements drawn for some distribution ρ. Examples of distributions are: • Gaussian random variables N (0, 1/M ), √ • ± Bernoulli distributions, i.e. which takes values ±1/ M with equal probability 1/2, • Distribution taking values ± 3/M with probability 1/6 and 0 with probability 2/3. The following result (proof in the supplementary material) states the property that inner-product are approximately preserved through random projections (this is a simple consequence of the JohnsonLindenstrauss Lemma): Proposition 1 Let (uk )1≤k≤K and v be vectors of RN . Let A be a M × N matrix of i.i.d. elements drawn from one of the previously defined distributions. For any ε > 0, δ > 0, for M ≥ ε2 1 ε3 log 4K , we have, with probability at least 1 − δ, for all k ≤ K, δ 4 − 6 |Auk · Av − uk · v| ≤ ε||uk || ||v||. 3 def We now introduce the set of M compressed features (ψm )1≤m≤M such that ψm (x) = N We also write ψ(x) the M -vector of components (ψm (x))m≤M . Thus n=1 Am,n ϕn (x). ψ(x) = Aϕ(x). We define the compressed domain GM = {gβ = m=1 βm ψm , β ∈ RM } the span of the compressed features (vector space of dimension at most M ). Note that each ψm ∈ FN , thus GM is a subspace of FN . def 2.1 M Approximation error We now compare the approximation error assessed in the compressed domain GM versus in the initial space FN . This applies to the linear algorithms mentioned in the introduction such as ordinary LS regression (analyzed in details in Section 3), but also its penalized versions, e.g. LASSO and ridge regression. Define α+ = arg minα∈RN L(fα ) − L(f ∗ ) the parameter of the best regression function in FN . Theorem 1 For any δ > 0, any M ≥ 15 log(8K/δ), let A be a random M × N matrix defined like in Proposition 1, and GM be the compressed domain resulting from this choice of A. Then with probability at least 1 − δ, inf ||g−f ∗ ||2 ≤ P g∈GM 8 log(8K/δ) + 2 ||α || M E ||ϕ(X)||2 +2 sup ||ϕ(x)||2 x∈X log 4/δ + inf ||f −f ∗ ||2 . P f ∈FN 2K (2) This theorem shows the tradeoff in terms of estimation and approximation errors for an estimator g obtained in the compressed domain compared to an estimator f obtained in the initial domain: • Bounds on the estimation error of g in GM are usually smaller than that of f in FN when M < N (since the capacity of FN is larger than that of GM ). • Theorem 1 says that the approximation error assessed in GM increases by at most O( log(K/δ) )||α+ ||2 E||ϕ(X)||2 compared to that in FN . M def def Proof: Let us write f + = fα+ = arg minf ∈FN ||f − f ∗ ||P and g + = gAα+ . The approximation error assessed in the compressed domain GM is bounded as inf ||g − f ∗ ||2 P g∈GM ≤ ||g + − f ∗ ||2 = ||g + − f + ||2 + ||f + − f ∗ ||2 , P P P (3) since f + is the orthogonal projection of f ∗ on FN and g + belongs to FN . We now bound ||g + − def def f + ||2 using concentration inequalities. Define Z(x) = Aα+ · Aϕ(x) − α+ · ϕ(x). Define ε2 = P log(8K/δ) 8 M log(8K/δ). For M ≥ 15 log(8K/δ) we have ε < 3/4 thus M ≥ ε2 /4−ε3 /6 . Proposition 1 applies and says that on an event E of probability at least 1 − δ/2, we have for all k ≤ K, def |Z(xk )| ≤ ε||α+ || ||ϕ(xk )|| ≤ ε||α+ || sup ||ϕ(x)|| = C (4) x∈X On the event E, we have with probability at least 1 − δ , ||g + − f + ||2 P = ≤ ≤ EX∼PX |Z(X)|2 ≤ ε2 ||α+ ||2 ε2 ||α+ ||2 1 K 1 K K |Z(xk )|2 + C 2 k=1 K ||ϕ(xk )||2 + sup ||ϕ(x)||2 x∈X k=1 E ||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x∈X log(2/δ ) 2K log(2/δ ) 2K log(2/δ ) . 2K where we applied two times Chernoff-Hoeffding’s inequality. Combining with (3), unconditioning, and setting δ = δ/2 then with probability at least (1 − δ/2)(1 − δ ) ≥ 1 − δ we have (2). 4 2.2 Computational issues We now discuss the relative computational costs of a given algorithm applied either in the initial or in the compressed domain. Let us write Cx(DK , FN , P ) the complexity (e.g. number of elementary operations) of an algorithm A to compute the regression function f when provided with the data DK and function space FN . We plot in the table below, both for the initial and the compressed versions of the algorithm A, the order of complexity for (i) the cost for building the feature matrix, (ii) the cost for computing the estimator, (iii) the cost for making one prediction (i.e. computing f (x) for any x): Construction of the feature matrix Computing the regression function Making one prediction Initial domain NK Cx(DK , FN , P ) N Compressed domain N KM Cx(DK , GM , P ) NM Note that the values mentioned for the compressed domain are upper-bounds on the real complexity and do not take into account the possible sparsity of the projection matrix A (which would speed up matrix computations, see e.g. [2, 1]). 3 Compressed Least-Squares Regression We now analyze the specific case of Least-Squares Regression. 3.1 Excess risk of ordinary Least Squares regression In order to bound the estimation error, we follow the approach of [13] which truncates (up to the level ±L where L is a bound, assumed to be known, on ||f ∗ ||∞ ) the prediction of the LS regression function. The ordinary LS regression provides the regression function fα where b α= argmin α∈argminα ∈ RN ||α||. ||Y −Φα || Note that ΦΦT α = ΦT Y , hence α = Φ† Y ∈ RN where Φ† is the Penrose pseudo-inverse of Φ1 . def Then the truncated predictor is: fL (x) = TL [fα (x)], where b def TL (u) = u if |u| ≤ L, L sign(u) otherwise. Truncation after the computation of the parameter α ∈ RN , which is the solution of an unconstrained optimization problem, is easier than solving an optimization problem under the constraint that ||α|| is small (which is the approach followed in [23]) and allows for consistency results and prediction bounds. Indeed, the excess risk of fL is bounded as 1 + log K E(||f − f ∗ ||2 ) ≤ c max{σ2 , L2 } N + 8 inf ||f − f ∗ ||2 (5) P P f ∈FN K where a bound on c is 9216 (see [13]). We have a simpler bound when we consider the expectation EY conditionally on the input data: N EY (||f − f ∗ ||2 K ) ≤ σ2 + inf ||f − f ∗ ||2 K (6) P P K f ∈F Remark: Note that because we use the quadratic loss function, by following the analysis in [3], or by deriving tight bounds on the Rademacher complexity [14] and following Theorem 5.2 of Koltchinskii’s Saint Flour course, it is actually possible to state assumptions under which we can remove the log K term in (5). We will not further detail such bounds since our motivation here is not to provide the tightest possible bounds, but rather to show how the excess risk bound for LS regression in the initial domain extends to the compressed domain. 1 In the full rank case, Φ† = (ΦT Φ)−1 ΦT when K ≥ N and Φ† = ΦT (ΦΦT )−1 when K ≤ N 5 3.2 Compressed Least-Squares Regression (CLSR) CLSR is defined as the ordinary LSR in the compressed domain. Let β = Ψ† Y ∈ RM , where Ψ is the K × M matrix with elements (ψm (xk ))1≤m≤M,1≤k≤K . The CLSR estimate is defined as def gL (x) = TL [gβ (x)]. From Theorem 1, (5) and (6), we deduce the following excess risk bounds for b the CLSR estimate: √ ||α+ || E||ϕ(X)||2 K log(8K/δ) Corollary 1 For any δ > 0, set M = 8 max(σ,L) c (1+log K) . Then whenever M ≥ 15 log(8K/δ), with probability at least 1 − δ, the expected excess risk of the CLSR estimate is bounded as √ E(||gL − f ∗ ||2 ) ≤ 16 c max{σ, L}||α+ || E||ϕ(X)||2 P × 1+ supx ||ϕ(x)||2 E||ϕ(X)||2 (1 + log K) log(8K/δ) K log 4/δ + 8 inf ||f − f ∗ ||2 . P f ∈FN 2K (7) √ ||α+ || E||ϕ(X)||2 Now set M = 8K log(8K/δ). Assume N > K and that the features (ϕk )1≤k≤K σ are linearly independent. Then whenever M ≥ 15 log(8K/δ), with probability at least 1 − δ, the expected excess risk of the CLSR estimate conditionally on the input samples is upper bounded as 2 log(8K/δ) supx ||ϕ(x)||2 1+ K E||ϕ(X)||2 EY (||gL − f ∗ ||2 K ) ≤ 4σ||α+ || E||ϕ(X)||2 P log 4/δ . 2K Proof: Whenever M ≥ 15 log(8K/δ) we deduce from Theorem 1 and (5) that the excess risk of gL is bounded as E(||gL − f ∗ ||2 ) ≤ c max{σ2 , L2 } P +8 8 log(8K/δ) + 2 ||α || M 1 + log K M K E||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x log 4/δ + inf ||f − f ∗ ||2 . P f ∈FN 2K By optimizing on M , we deduce (7). Similarly, using (6) we deduce the following bound on EY (||gL − f ∗ ||2 K ): P σ2 8 M + log(8K/δ)||α+ ||2 K M E||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x log 4/δ + inf ||f − f ∗ ||2 K . P f ∈FN 2K By optimizing on M and noticing that inf f ∈FN ||f − f ∗ ||2 K = 0 whenever N > K and the features P (ϕk )1≤k≤K are linearly independent, we deduce the second result. Remark 1 Note that the second term in the parenthesis of (7) is negligible whenever K Thus we have the expected excess risk log K/δ + inf ||f − f ∗ ||2 . P f ∈FN K E(||gL − f ∗ ||2 ) = O ||α+ || E||ϕ(X)||2 √ P log 1/δ. (8) The choice of M in the previous corollary depends on ||α+ || and E||ϕ(X)|| which are a priori unknown (since f ∗ and PX are unknown). If we set M independently of ||α+ ||, then an additional multiplicative factor of ||α+ || appears in the bound, and if we replace E||ϕ(X)|| by its bound supx ||ϕ(x)|| (which is known) then this latter factor will appear instead of the former in the bound. Complexity of CLSR: The complexity of LSR for computing the regression function in the compressed domain only depends on M and K, and is (see e.g. [4]) Cx(DK , GM , P ) = O(M K 2 ) which √ is of order O(K 5/2 ) when we choose the optimized number of projections M = O( K). However the leading term when using CLSR is the cost for building the Ψ matrix: O(N K 3/2 ). 6 4 4.1 Discussion The factor ||α+ || E||ϕ(X)||2 In light of Corollary 1, the important factor which will determine whether the CLSR provides low generalization error or not is ||α+ || E||ϕ(X)||2 . This factor indicates that a good set of features (for CLSR) should be such that the norm of those features as well as the norm of the parameter α+ of the projection of f ∗ onto the span of those features should be small. A natural question is whether this product can be made small for appropriate choices of features. We now provide two specific cases for which this is actually the case: (1) when the features are rescaled orthonormal basis functions, and (2) when the features are specific wavelet functions. In both cases, we relate the bound to an assumption of regularity on the function f ∗ , and show that the dependency w.r.t. N decreases when the regularity increases, and may even vanish. Rescaled Orthonormal Features: Consider a set of orthonormal functions (ηi )i≥1 w.r.t a measure µ, i.e. ηi , ηj µ = δi,j . In addition we assume that the law of the input data is dominated by µ, i.e. PX ≤ Cµ where C is a constant. For instance, this is the case when the set X is compact, µ is the uniform measure and PX has bounded density. def We define the set of N features as: ϕi = ci ηi , where ci > 0, for i ∈ {1, . . . , N }. Then any f ∈ FN decomposes as f = 2 we have: ||α|| = ||α+ ||2 E||ϕ||2 ≤ C N bi 2 i=1 ( ci ) N bi 2 i=1 ( ci ) and N i=1 N bi i=1 ci ϕi , where N 2 2 i=1 ci X ηi (x)dPX (x) f, ηi ηi = E||ϕ|| = 2 def bi = f, ηi . Thus ≤ C N 2 i=1 ci . Thus N 2 i=1 ci . Now, linear approximation theory (Jackson-type theorems) tells us that assuming a function f ∗ ∈ L2 (µ) is smooth, it may be decomposed onto the span of the N first (ηi )i∈{1,...,N } functions with decreasing coefficients |bi | ≤ i−λ for some λ ≥ 0 that depends on the smoothness of f ∗ . For example the class of functions with bounded total variation may be decomposed with Fourier basis (in dimension 1) with coefficients |bi | ≤ ||f ||V /(2πi). Thus here λ = 1. Other classes (such as Sobolev spaces) lead to larger values of λ related to the order of differentiability. √ N By choosing ci = i−λ/2 , we have ||α+ || E||ϕ||2 ≤ C i=1 i−λ . Thus if λ > 1, then this term is bounded by a constant that does not depend on N . If λ = 1 then it is bounded by O(log N ), and if 0 < λ < 1, then it is bounded by O(N 1−λ ). However any orthonormal basis, even rescaled, would not necessarily yield a small ||α+ || E||ϕ||2 term (this is all the more true when the dimension of X is large). The desired property that the coefficients (α+ )i of the decomposition of f ∗ rapidly decrease to 0 indicates that hierarchical bases, such as wavelets, that would decompose the function at different scales, may be interesting. Wavelets: Consider an infinite family of wavelets in [0, 1]: (ϕ0 ) = (ϕ0 ) (indexed by n ≥ 1 or n h,l equivalently by the scale h ≥ 0 and translation 0 ≤ l ≤ 2h − 1) where ϕ0 (x) = 2h/2 ϕ0 (2h x − l) h,l and ϕ0 is the mother wavelet. Then consider N = 2H features (ϕh,l )1≤h≤H defined as the rescaled def wavelets ϕh,l = ch 2−h/2 ϕ0 , where ch > 0 are some coefficients. Assume the mother wavelet h,l is C p (for p ≥ 1), has at least p vanishing moments, and that for all h ≥ 0, supx l ϕ0 (2h x − l)2 ≤ 1. Then the following result (proof in the supplementary material) provides a bound on supx∈X ||ϕ(x)||2 (thus on E||ϕ(X)||2 ) by a constant independent of N : Proposition 2 Assume that f ∗ is (L, γ)-Lipschitz (i.e. for all v ∈ X there exists a polynomial pv of degree γ such that for all u ∈ X , |f (u) − pv (u)| ≤ L|u − v|γ ) with 1/2 < γ ≤ p. Then setting γ 1 ch = 2h(1−2γ)/4 , we have ||α+ || supx ||ϕ(x)|| ≤ L 1−22 |ϕ0 |, which is independent of N . 1/2−γ 0 Notice that the Haar walevets has p = 1 vanishing moment but is not C 1 , thus the Proposition does not apply directly. However direct computations show that if f ∗ is L-Lipschitz (i.e. γ = 1) then L 0 αh,l ≤ L2−3h/2−2 , and thus ||α+ || supx ||ϕ(x)|| ≤ 4(1−2−1/2 ) with ch = 2−h/4 . 7 4.2 Comparison with other methods In the case when the factor ||α+ || E||ϕ(X)||2 does not depend on N (such as in the previous example), the bound (8) on the excess risk of CLSR states that the estimation error (assessed in √ √ terms of FN ) of CLSR is O(log K/ K). It is clear that whenever N > K (which is the case of interest here), this is better than the ordinary LSR in the initial domain, whose estimation error is O(N log K/K). It is difficult to compare this result with LASSO (or the Dantzig selector that has similar properties [5]) for which an important aspect is to design sparse regression functions or to recover a solution assumed to be sparse. From [12, 15, 24] one deduces that under some assumptions, the estimation error of LASSO is of order S log N where S is the sparsity (number of non-zero coefficients) of the K√ best regressor f + in FN . If S < K then LASSO is more interesting than CLSR in terms of excess risk. Otherwise CLSR may be an interesting alternative although this method does not make any assumption about the sparsity of f + and its goal is not to recover a possible sparse f + but only to make good predictions. However, in some sense our method finds a sparse solution in the fact that the regression function gL lies in a space GM of small dimension M N and can thus be expressed using only M coefficients. Now in terms of numerical complexity, CLSR requires O(N K 3/2 ) operations to build the matrix and compute the regression function, whereas according to [18], the (heuristical) complexity of the LASSO algorithm is O(N K 2 ) in the best cases (assuming that the number of steps required for convergence is O(K), which is not proved theoretically). Thus CLSR seems to be a good and simple competitor to LASSO. 5 Conclusion We considered the case when the number of features N is larger than the number of data K. The result stated in Theorem 1 enables to analyze the excess risk of any linear regression algorithm (LS or its penalized versions) performed in the compressed domain GM versus in the initial space FN . In the compressed domain the estimation error is reduced but an additional (controlled) approximation error (when compared to the best regressor in FN ) comes into the picture. In the case of LS regression, when the term ||α+ || E||ϕ(X)||2 has a mild dependency on N , then by choosing a √ random subspace of dimension M = O( K), CLSR has an estimation error (assessed in terms of √ FN ) bounded by O(log K/ K) and has numerical complexity O(N K 3/2 ). In short, CLSR provides an alternative to usual penalization techniques where one first selects a random subspace of lower dimension and then performs an empirical risk minimizer in this subspace. Further work needs to be done to provide additional settings (when the space X is of dimension > 1) for which the term ||α+ || E||ϕ(X)||2 is small. Acknowledgements: The authors wish to thank Laurent Jacques for numerous comments and Alessandro Lazaric and Mohammad Ghavamzadeh for exciting discussions. This work has been supported by French National Research Agency (ANR) through COSINUS program (project EXPLO-RA, ANR-08-COSI-004). References [1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4):671–687, June 2003. [2] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast JohnsonLindenstrauss transform. In STOC ’06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 557–563, New York, NY, USA, 2006. ACM. [3] Jean-Yves Audibert and Olivier Catoni. Risk bounds in linear regression through pac-bayesian truncation. Technical Report HAL : hal-00360268, 2009. [4] David Bau III and Lloyd N. Trefethen. Numerical linear algebra. Philadelphia: Society for Industrial and Applied Mathematics, 1997. 8 [5] Peter J. Bickel, Ya’acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. To appear in Annals of Statistics, 2008. [6] Avrim Blum. Random projection, margins, kernels, and feature-selection. Subspace, Latent Structure and Feature Selection, pages 52–68, 2006. [7] Robert Calderbank, Sina Jafarpour, and Robert Schapire. Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain. Technical Report, 2009. [8] Emmanuel Candes and Terence Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 35:2313, 2007. [9] Emmanuel J. Candes and Justin K. Romberg. Signal recovery from random projections. volume 5674, pages 76–86. SPIE, 2005. [10] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20:33–61, 1998. [11] Mark A. Davenport, Michael B. Wakin, and Richard G. Baraniuk. Detection and estimation with compressive measurements. Technical Report TREE 0610, Department of Electrical and Computer Engineering, Rice University, 2006. [12] E. Greenshtein and Y. Ritov. Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization. Bernoulli, 10:971–988, 2004. [13] L. Gy¨ rfi, M. Kohler, A. Krzy˙ ak, and H. Walk. A distribution-free theory of nonparametric o z regression. Springer-Verlag, 2002. [14] Sham M. Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction: Risk bounds, margin bounds, and regularization. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Leon Bottou, editors, Neural Information Processing Systems, pages 793– 800. MIT Press, 2008. [15] Yuval Nardi and Alessandro Rinaldo. On the asymptotic properties of the group Lasso estimator for linear models. Electron. J. Statist., 2:605–633, 2008. [16] D. Pollard. Convergence of Stochastic Processes. Springer Verlag, New York, 1984. [17] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Neural Information Processing Systems, 2007. [18] Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths. Annals of Statistics, 35:1012, 2007. [19] Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B, 58:267–288, 1994. [20] A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4, pages 1035–1038, 1963. [21] Yaakov Tsaig and David L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289–1306, 2006. [22] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc., New York, NY, USA, 1995. [23] Tong Zhang. Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research, 2:527–550, 2002. [24] Tong Zhang. Some sharp performance bounds for least squares regression with L1 regularization. To appear in Annals of Statistics, 2009. [25] Shuheng Zhou, John D. Lafferty, and Larry A. Wasserman. Compressed regression. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors, Neural Information Processing Systems. MIT Press, 2007. 9
Reference: text
sentIndex sentText sentNum sentScore
1 fr Abstract We consider the problem of learning, from K data, a regression function in a linear space of high dimension N using projections onto a random subspace of lower dimension M . [sent-4, score-0.342]
2 From any algorithm minimizing the (possibly penalized) empirical risk, we provide bounds on the excess risk of the estimate computed in the projected subspace (compressed domain) in terms of the excess risk of the estimate built in the high-dimensional space (initial domain). [sent-5, score-1.038]
3 We show that solving the problem in the compressed domain instead of the initial domain reduces the estimation error at the price of an increased (but controlled) approximation error. [sent-6, score-0.762]
4 We apply the analysis to Least-Squares (LS) regression and discuss the excess risk and numerical complexity of the resulting “Compressed Least Squares Re√ gression” (CLSR) in terms of N , K, and M . [sent-7, score-0.63]
5 When we choose M = O( K), we √ show that CLSR has an estimation error of order O(log K/ K). [sent-8, score-0.11]
6 1 Problem setting We consider a regression problem where we observe data DK = ({xk , yk }k≤K ) (where xk ∈ X and yk ∈ R) are assumed to be independently and identically distributed (i. [sent-9, score-0.341]
7 ) from some distribution P , where xk ∼ PX and yk = f ∗ (xk ) + ηk (xk ), where f ∗ is the (unknown) target function, and ηk a centered independent noise of variance σ 2 (xk ). [sent-12, score-0.172]
8 For a given class of functions F, and f ∈ F, we define the empirical (quadratic) error def LK (f ) = 1 K K [yk − f (xk )]2 , k=1 and the generalization (quadratic) error def L(f ) = E(X,Y )∼P [(Y − f (X))2 ]. [sent-13, score-0.67]
9 Our goal is to return a regression function f ∈ F with lowest possible generalization error L(f ). [sent-14, score-0.198]
10 Notations: In the sequel we will make use of the following notations about norms: for h : X → R, we write ||h||P for the L2 norm of h with respect to (w. [sent-15, score-0.073]
11 i=1 ui The measurable function minimizing the generalization error is f ∗ , but it may be the case that f ∗ ∈ F. [sent-22, score-0.089]
12 1 In this paper we consider a class of linear functions FN defined as the span of a set of N functions def def N {ϕn }1≤n≤N called features. [sent-24, score-0.547]
13 When the number of data K is larger than the number of features N , the ordinary Least-Squares Regression (LSR) provides the LS solution fα which is the minimizer of the empirical risk LK (f ) b 1 in FN . [sent-26, score-0.393]
14 Usual results provide bound on the estimation error as a function of the capacity of the function space and the number of data. [sent-28, score-0.213]
15 In the case of linear approximation, the capacity measures (such as covering numbers [23] or the pseudo-dimension [16]) depend on the number of features (for example the pseudo-dimension is at most N + 1). [sent-29, score-0.09]
16 Now, the excess risk is the sum of this estimation error and the approximation error inf f ∈FN ||f − f ∗ ||P of the class FN . [sent-31, score-0.746]
17 when N FN is dense in L2 (P )), we see the usual tradeoff between small estimation error (low N ) and small approximation error (large N ). [sent-34, score-0.228]
18 In this paper we are interested in the setting when N is large so that the approximation error is small. [sent-35, score-0.09]
19 Whenever N is larger than K we face the overfitting problem since there are more parameters than actual data (more variables than constraints), which is illustrated in the bound (1) which provides no information about the generalization ability of any LS estimate. [sent-36, score-0.065]
20 In addition, there are many minimizers (in fact a vector space of same dimension as the null space of ΦT Φ) of the empirical risk. [sent-37, score-0.106]
21 To overcome the problem, several approaches have been proposed in the literature: • LS solution with minimal norm: The solution is the minimizer of the empirical error with minimal (l1 or l2 )-norm: α = arg minΦα=Y ||α||1 or 2 , (or a robust solution arg min||Φα−Y ||2 ≤ε ||α||1 ). [sent-38, score-0.248]
22 The choice of 2 -norm yields the ordinary LS solution. [sent-39, score-0.083]
23 that Φ possesses a Restricted Isometric Property (RIP)) does not hold in general in this regression setting. [sent-45, score-0.109]
24 The solution is the minimizer of the empirical error plus a penalty term, for example f = arg min LK (f ) + λ||f ||p , for p = 1 or 2. [sent-48, score-0.179]
25 A close alternative is the Dantzig selector [8, 5] which solves: α = arg min||α||1 ≤λ ||ΦT (Y − Φα)||∞ . [sent-50, score-0.066]
26 The numerical complexity and generalization bounds of those methods depend on the sparsity of the target function decomposition in FN . [sent-51, score-0.178]
27 Our contribution: We consider a set of M random linear combinations of the initial N features and perform our favorite LS regression algorithm (possibly regularized) using those “compressed 2 features”. [sent-54, score-0.207]
28 K} from the initial domain (of size N ) onto a random subspace of dimension M , and then performing the regression in the “compressed domain” (i. [sent-57, score-0.373]
29 This is made possible because random projections approximately preserve inner products between vectors (by a variant of the Johnson-Lindenstrauss Lemma stated in Proposition 1. [sent-60, score-0.079]
30 Our main result is a bound on the excess risk of a linear estimator built in the compressed domain in terms of the excess risk of the linear estimator built in the initial domain (Section 2). [sent-61, score-1.668]
31 Related works: Using dimension reduction and random projections in various learning areas has received considerable interest over the past few years. [sent-65, score-0.097]
32 In [7], the authors use a SVM algorithm in a compressed space for the purpose of classification and show that their resulting algorithm has good generalization properties. [sent-66, score-0.445]
33 In [25], the authors consider a notion of compressed linear regression. [sent-67, score-0.397]
34 They provide an analysis of the LASSO estimator built from these compressed data, and discuss a property called sparsistency, i. [sent-69, score-0.467]
35 These works differ from our approach in the fact that we do not consider a compressed (input and/or output) data space but a compressed feature space instead. [sent-72, score-0.798]
36 In [11], the authors discuss how compressed measurements may be useful to solve many detection, classification and estimation problems without having to reconstruct the signal ever. [sent-73, score-0.465]
37 2 Linear regression in the compressed domain We remind that the initial set of features is {ϕn : X → def N FN = {fα = n=1 αn ϕn , α ∈ components (ϕn (x))n≤N . [sent-77, score-0.93]
38 Let us R, 1 ≤ n ≤ N } and the initial domain R } is the span of those features. [sent-78, score-0.2]
39 For any ε > 0, δ > 0, for M ≥ ε2 1 ε3 log 4K , we have, with probability at least 1 − δ, for all k ≤ K, δ 4 − 6 |Auk · Av − uk · v| ≤ ε||uk || ||v||. [sent-92, score-0.095]
40 3 def We now introduce the set of M compressed features (ψm )1≤m≤M such that ψm (x) = N We also write ψ(x) the M -vector of components (ψm (x))m≤M . [sent-93, score-0.697]
41 We define the compressed domain GM = {gβ = m=1 βm ψm , β ∈ RM } the span of the compressed features (vector space of dimension at most M ). [sent-96, score-1.012]
42 1 M Approximation error We now compare the approximation error assessed in the compressed domain GM versus in the initial space FN . [sent-99, score-0.755]
43 This applies to the linear algorithms mentioned in the introduction such as ordinary LS regression (analyzed in details in Section 3), but also its penalized versions, e. [sent-100, score-0.228]
44 Define α+ = arg minα∈RN L(fα ) − L(f ∗ ) the parameter of the best regression function in FN . [sent-103, score-0.136]
45 Theorem 1 For any δ > 0, any M ≥ 15 log(8K/δ), let A be a random M × N matrix defined like in Proposition 1, and GM be the compressed domain resulting from this choice of A. [sent-104, score-0.475]
46 Then with probability at least 1 − δ, inf ||g−f ∗ ||2 ≤ P g∈GM 8 log(8K/δ) + 2 ||α || M E ||ϕ(X)||2 +2 sup ||ϕ(x)||2 x∈X log 4/δ + inf ||f −f ∗ ||2 . [sent-105, score-0.34]
47 • Theorem 1 says that the approximation error assessed in GM increases by at most O( log(K/δ) )||α+ ||2 E||ϕ(X)||2 compared to that in FN . [sent-107, score-0.165]
48 M def def Proof: Let us write f + = fα+ = arg minf ∈FN ||f − f ∗ ||P and g + = gAα+ . [sent-108, score-0.582]
49 The approximation error assessed in the compressed domain GM is bounded as inf ||g − f ∗ ||2 P g∈GM ≤ ||g + − f ∗ ||2 = ||g + − f + ||2 + ||f + − f ∗ ||2 , P P P (3) since f + is the orthogonal projection of f ∗ on FN and g + belongs to FN . [sent-109, score-0.806]
50 We now bound ||g + − def def f + ||2 using concentration inequalities. [sent-110, score-0.534]
51 2 Computational issues We now discuss the relative computational costs of a given algorithm applied either in the initial or in the compressed domain. [sent-118, score-0.45]
52 number of elementary operations) of an algorithm A to compute the regression function f when provided with the data DK and function space FN . [sent-121, score-0.152]
53 We plot in the table below, both for the initial and the compressed versions of the algorithm A, the order of complexity for (i) the cost for building the feature matrix, (ii) the cost for computing the estimator, (iii) the cost for making one prediction (i. [sent-122, score-0.487]
54 1 Excess risk of ordinary Least Squares regression In order to bound the estimation error, we follow the approach of [13] which truncates (up to the level ±L where L is a bound, assumed to be known, on ||f ∗ ||∞ ) the prediction of the LS regression function. [sent-129, score-0.561]
55 The ordinary LS regression provides the regression function fα where b α= argmin α∈argminα ∈ RN ||α||. [sent-130, score-0.301]
56 def Then the truncated predictor is: fL (x) = TL [fα (x)], where b def TL (u) = u if |u| ≤ L, L sign(u) otherwise. [sent-132, score-0.496]
57 Indeed, the excess risk of fL is bounded as 1 + log K E(||f − f ∗ ||2 ) ≤ c max{σ2 , L2 } N + 8 inf ||f − f ∗ ||2 (5) P P f ∈FN K where a bound on c is 9216 (see [13]). [sent-134, score-0.699]
58 2 of Koltchinskii’s Saint Flour course, it is actually possible to state assumptions under which we can remove the log K term in (5). [sent-136, score-0.072]
59 We will not further detail such bounds since our motivation here is not to provide the tightest possible bounds, but rather to show how the excess risk bound for LS regression in the initial domain extends to the compressed domain. [sent-137, score-1.152]
60 2 Compressed Least-Squares Regression (CLSR) CLSR is defined as the ordinary LSR in the compressed domain. [sent-139, score-0.461]
61 The CLSR estimate is defined as def gL (x) = TL [gβ (x)]. [sent-141, score-0.248]
62 From Theorem 1, (5) and (6), we deduce the following excess risk bounds for b the CLSR estimate: √ ||α+ || E||ϕ(X)||2 K log(8K/δ) Corollary 1 For any δ > 0, set M = 8 max(σ,L) c (1+log K) . [sent-142, score-0.541]
63 Then whenever M ≥ 15 log(8K/δ), with probability at least 1 − δ, the expected excess risk of the CLSR estimate is bounded as √ E(||gL − f ∗ ||2 ) ≤ 16 c max{σ, L}||α+ || E||ϕ(X)||2 P × 1+ supx ||ϕ(x)||2 E||ϕ(X)||2 (1 + log K) log(8K/δ) K log 4/δ + 8 inf ||f − f ∗ ||2 . [sent-143, score-0.878]
64 Then whenever M ≥ 15 log(8K/δ), with probability at least 1 − δ, the expected excess risk of the CLSR estimate conditionally on the input samples is upper bounded as 2 log(8K/δ) supx ||ϕ(x)||2 1+ K E||ϕ(X)||2 EY (||gL − f ∗ ||2 K ) ≤ 4σ||α+ || E||ϕ(X)||2 P log 4/δ . [sent-146, score-0.694]
65 2K Proof: Whenever M ≥ 15 log(8K/δ) we deduce from Theorem 1 and (5) that the excess risk of gL is bounded as E(||gL − f ∗ ||2 ) ≤ c max{σ2 , L2 } P +8 8 log(8K/δ) + 2 ||α || M 1 + log K M K E||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x log 4/δ + inf ||f − f ∗ ||2 . [sent-147, score-0.84]
66 Similarly, using (6) we deduce the following bound on EY (||gL − f ∗ ||2 K ): P σ2 8 M + log(8K/δ)||α+ ||2 K M E||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x log 4/δ + inf ||f − f ∗ ||2 K . [sent-149, score-0.329]
67 P f ∈FN 2K By optimizing on M and noticing that inf f ∈FN ||f − f ∗ ||2 K = 0 whenever N > K and the features P (ϕk )1≤k≤K are linearly independent, we deduce the second result. [sent-150, score-0.261]
68 Remark 1 Note that the second term in the parenthesis of (7) is negligible whenever K Thus we have the expected excess risk log K/δ + inf ||f − f ∗ ||2 . [sent-151, score-0.658]
69 P f ∈FN K E(||gL − f ∗ ||2 ) = O ||α+ || E||ϕ(X)||2 √ P log 1/δ. [sent-152, score-0.072]
70 If we set M independently of ||α+ ||, then an additional multiplicative factor of ||α+ || appears in the bound, and if we replace E||ϕ(X)|| by its bound supx ||ϕ(x)|| (which is known) then this latter factor will appear instead of the former in the bound. [sent-154, score-0.183]
71 Complexity of CLSR: The complexity of LSR for computing the regression function in the compressed domain only depends on M and K, and is (see e. [sent-155, score-0.62]
72 1 Discussion The factor ||α+ || E||ϕ(X)||2 In light of Corollary 1, the important factor which will determine whether the CLSR provides low generalization error or not is ||α+ || E||ϕ(X)||2 . [sent-160, score-0.129]
73 This factor indicates that a good set of features (for CLSR) should be such that the norm of those features as well as the norm of the parameter α+ of the projection of f ∗ onto the span of those features should be small. [sent-161, score-0.311]
74 We now provide two specific cases for which this is actually the case: (1) when the features are rescaled orthonormal basis functions, and (2) when the features are specific wavelet functions. [sent-163, score-0.198]
75 In both cases, we relate the bound to an assumption of regularity on the function f ∗ , and show that the dependency w. [sent-164, score-0.058]
76 def We define the set of N features as: ϕi = ci ηi , where ci > 0, for i ∈ {1, . [sent-177, score-0.448]
77 Then any f ∈ FN decomposes as f = 2 we have: ||α|| = ||α+ ||2 E||ϕ||2 ≤ C N bi 2 i=1 ( ci ) N bi 2 i=1 ( ci ) and N i=1 N bi i=1 ci ϕi , where N 2 2 i=1 ci X ηi (x)dPX (x) f, ηi ηi = E||ϕ|| = 2 def bi = f, ηi . [sent-181, score-0.756]
78 Now, linear approximation theory (Jackson-type theorems) tells us that assuming a function f ∗ ∈ L2 (µ) is smooth, it may be decomposed onto the span of the N first (ηi )i∈{1,. [sent-184, score-0.1]
79 For example the class of functions with bounded total variation may be decomposed with Fourier basis (in dimension 1) with coefficients |bi | ≤ ||f ||V /(2πi). [sent-188, score-0.084]
80 √ N By choosing ci = i−λ/2 , we have ||α+ || E||ϕ||2 ≤ C i=1 i−λ . [sent-191, score-0.077]
81 If λ = 1 then it is bounded by O(log N ), and if 0 < λ < 1, then it is bounded by O(N 1−λ ). [sent-193, score-0.086]
82 However any orthonormal basis, even rescaled, would not necessarily yield a small ||α+ || E||ϕ||2 term (this is all the more true when the dimension of X is large). [sent-194, score-0.079]
83 Wavelets: Consider an infinite family of wavelets in [0, 1]: (ϕ0 ) = (ϕ0 ) (indexed by n ≥ 1 or n h,l equivalently by the scale h ≥ 0 and translation 0 ≤ l ≤ 2h − 1) where ϕ0 (x) = 2h/2 ϕ0 (2h x − l) h,l and ϕ0 is the mother wavelet. [sent-196, score-0.089]
84 Then consider N = 2H features (ϕh,l )1≤h≤H defined as the rescaled def wavelets ϕh,l = ch 2−h/2 ϕ0 , where ch > 0 are some coefficients. [sent-197, score-0.503]
85 Assume the mother wavelet h,l is C p (for p ≥ 1), has at least p vanishing moments, and that for all h ≥ 0, supx l ϕ0 (2h x − l)2 ≤ 1. [sent-198, score-0.181]
86 for all v ∈ X there exists a polynomial pv of degree γ such that for all u ∈ X , |f (u) − pv (u)| ≤ L|u − v|γ ) with 1/2 < γ ≤ p. [sent-201, score-0.078]
87 Then setting γ 1 ch = 2h(1−2γ)/4 , we have ||α+ || supx ||ϕ(x)|| ≤ L 1−22 |ϕ0 |, which is independent of N . [sent-202, score-0.157]
88 γ = 1) then L 0 αh,l ≤ L2−3h/2−2 , and thus ||α+ || supx ||ϕ(x)|| ≤ 4(1−2−1/2 ) with ch = 2−h/4 . [sent-206, score-0.157]
89 2 Comparison with other methods In the case when the factor ||α+ || E||ϕ(X)||2 does not depend on N (such as in the previous example), the bound (8) on the excess risk of CLSR states that the estimation error (assessed in √ √ terms of FN ) of CLSR is O(log K/ K). [sent-208, score-0.602]
90 It is clear that whenever N > K (which is the case of interest here), this is better than the ordinary LSR in the initial domain, whose estimation error is O(N log K/K). [sent-209, score-0.357]
91 It is difficult to compare this result with LASSO (or the Dantzig selector that has similar properties [5]) for which an important aspect is to design sparse regression functions or to recover a solution assumed to be sparse. [sent-210, score-0.189]
92 From [12, 15, 24] one deduces that under some assumptions, the estimation error of LASSO is of order S log N where S is the sparsity (number of non-zero coefficients) of the K√ best regressor f + in FN . [sent-211, score-0.227]
93 If S < K then LASSO is more interesting than CLSR in terms of excess risk. [sent-212, score-0.26]
94 However, in some sense our method finds a sparse solution in the fact that the regression function gL lies in a space GM of small dimension M N and can thus be expressed using only M coefficients. [sent-214, score-0.212]
95 The result stated in Theorem 1 enables to analyze the excess risk of any linear regression algorithm (LS or its penalized versions) performed in the compressed domain GM versus in the initial space FN . [sent-218, score-1.15]
96 In the compressed domain the estimation error is reduced but an additional (controlled) approximation error (when compared to the best regressor in FN ) comes into the picture. [sent-219, score-0.7]
97 In the case of LS regression, when the term ||α+ || E||ϕ(X)||2 has a mild dependency on N , then by choosing a √ random subspace of dimension M = O( K), CLSR has an estimation error (assessed in terms of √ FN ) bounded by O(log K/ K) and has numerical complexity O(N K 3/2 ). [sent-220, score-0.314]
98 In short, CLSR provides an alternative to usual penalization techniques where one first selects a random subspace of lower dimension and then performs an empirical risk minimizer in this subspace. [sent-221, score-0.365]
99 Further work needs to be done to provide additional settings (when the space X is of dimension > 1) for which the term ||α+ || E||ϕ(X)||2 is small. [sent-222, score-0.062]
100 Some sharp performance bounds for least squares regression with L1 regularization. [sent-330, score-0.173]
wordName wordTfidf (topN-words)
[('fn', 0.469), ('clsr', 0.385), ('compressed', 0.378), ('excess', 0.26), ('def', 0.248), ('gm', 0.181), ('risk', 0.174), ('ls', 0.163), ('gl', 0.124), ('inf', 0.112), ('xk', 0.112), ('regression', 0.109), ('supx', 0.105), ('domain', 0.097), ('lsr', 0.084), ('ordinary', 0.083), ('ci', 0.077), ('log', 0.072), ('lk', 0.07), ('lasso', 0.068), ('deduce', 0.063), ('error', 0.062), ('yk', 0.06), ('dk', 0.058), ('wavelets', 0.058), ('projections', 0.056), ('assessed', 0.055), ('subspace', 0.053), ('ch', 0.052), ('initial', 0.052), ('span', 0.051), ('px', 0.051), ('dantzig', 0.05), ('cx', 0.05), ('bi', 0.05), ('estimation', 0.048), ('rescaled', 0.047), ('minimizer', 0.046), ('features', 0.046), ('capacity', 0.044), ('bounds', 0.044), ('sup', 0.044), ('tl', 0.043), ('bounded', 0.043), ('ey', 0.043), ('dimension', 0.041), ('whenever', 0.04), ('proposition', 0.04), ('estimator', 0.04), ('selector', 0.039), ('johnsonlindenstrauss', 0.039), ('pv', 0.039), ('bound', 0.038), ('orthonormal', 0.038), ('rn', 0.037), ('penalized', 0.036), ('complexity', 0.036), ('minf', 0.034), ('numerical', 0.031), ('fl', 0.031), ('alessandro', 0.031), ('isometric', 0.031), ('mother', 0.031), ('projection', 0.031), ('emmanuel', 0.029), ('coef', 0.029), ('built', 0.029), ('usual', 0.028), ('approximation', 0.028), ('arg', 0.027), ('generalization', 0.027), ('regressor', 0.025), ('write', 0.025), ('norm', 0.025), ('vanishing', 0.024), ('tong', 0.024), ('cients', 0.023), ('uk', 0.023), ('empirical', 0.023), ('stated', 0.023), ('sequel', 0.023), ('elementary', 0.022), ('candes', 0.022), ('annals', 0.022), ('solution', 0.021), ('wavelet', 0.021), ('space', 0.021), ('versions', 0.021), ('onto', 0.021), ('daphne', 0.021), ('sparse', 0.02), ('says', 0.02), ('regularity', 0.02), ('decomposition', 0.02), ('robert', 0.02), ('discuss', 0.02), ('squares', 0.02), ('sparsity', 0.02), ('factor', 0.02), ('authors', 0.019)]
simIndex simValue paperId paperTitle
same-paper 1 0.9999994 55 nips-2009-Compressed Least-Squares Regression
Author: Odalric Maillard, Rémi Munos
Abstract: We consider the problem of learning, from K data, a regression function in a linear space of high dimension N using projections onto a random subspace of lower dimension M . From any algorithm minimizing the (possibly penalized) empirical risk, we provide bounds on the excess risk of the estimate computed in the projected subspace (compressed domain) in terms of the excess risk of the estimate built in the high-dimensional space (initial domain). We show that solving the problem in the compressed domain instead of the initial domain reduces the estimation error at the price of an increased (but controlled) approximation error. We apply the analysis to Least-Squares (LS) regression and discuss the excess risk and numerical complexity of the resulting “Compressed Least Squares Re√ gression” (CLSR) in terms of N , K, and M . When we choose M = O( K), we √ show that CLSR has an estimation error of order O(log K/ K). 1 Problem setting We consider a regression problem where we observe data DK = ({xk , yk }k≤K ) (where xk ∈ X and yk ∈ R) are assumed to be independently and identically distributed (i.i.d.) from some distribution P , where xk ∼ PX and yk = f ∗ (xk ) + ηk (xk ), where f ∗ is the (unknown) target function, and ηk a centered independent noise of variance σ 2 (xk ). For a given class of functions F, and f ∈ F, we define the empirical (quadratic) error def LK (f ) = 1 K K [yk − f (xk )]2 , k=1 and the generalization (quadratic) error def L(f ) = E(X,Y )∼P [(Y − f (X))2 ]. Our goal is to return a regression function f ∈ F with lowest possible generalization error L(f ). Notations: In the sequel we will make use of the following notations about norms: for h : X → R, we write ||h||P for the L2 norm of h with respect to (w.r.t.) the measure P , ||h||PK for the L2 norm n 2 1/2 of h w.r.t. the empirical measure PK , and for u ∈ Rn , ||u|| denotes by default . i=1 ui The measurable function minimizing the generalization error is f ∗ , but it may be the case that f ∗ ∈ F. For any regression function f , we define the excess risk / L(f ) − L(f ∗ ) = ||f − f ∗ ||2 , P which decomposes as the sum of the estimation error L(f ) − inf f ∈F L(f ) and the approximation error inf f ∈F L(f ) − L(f ∗ ) = inf f ∈F ||f − f ∗ ||2 which measures the distance between f ∗ and the P function space F. 1 In this paper we consider a class of linear functions FN defined as the span of a set of N functions def def N {ϕn }1≤n≤N called features. Thus: FN = {fα = n=1 αn ϕn , α ∈ RN }. When the number of data K is larger than the number of features N , the ordinary Least-Squares Regression (LSR) provides the LS solution fα which is the minimizer of the empirical risk LK (f ) b 1 in FN . Note that here LK (fα ) rewrites K ||Φα − Y ||K where Φ is the K × N matrix with elements (ϕn (xk ))1≤n≤N,1≤k≤K and Y the K-vector with components (yk )1≤k≤K . Usual results provide bound on the estimation error as a function of the capacity of the function space and the number of data. In the case of linear approximation, the capacity measures (such as covering numbers [23] or the pseudo-dimension [16]) depend on the number of features (for example the pseudo-dimension is at most N + 1). For example, let fα be a LS estimate (minimizer of LK b in FN ), then (a more precise statement will be stated later in Subsection 3) the expected estimation error is bounded as: N log K E L(fα ) − inf L(f ) ≤ cσ2 , (1) b f ∈FN K def where c is a universal constant, σ = supx∈X σ(x), and the expectation is taken with respect to P . Now, the excess risk is the sum of this estimation error and the approximation error inf f ∈FN ||f − f ∗ ||P of the class FN . Since the later usually decreases when the number of features N increases [13] (e.g. when N FN is dense in L2 (P )), we see the usual tradeoff between small estimation error (low N ) and small approximation error (large N ). In this paper we are interested in the setting when N is large so that the approximation error is small. Whenever N is larger than K we face the overfitting problem since there are more parameters than actual data (more variables than constraints), which is illustrated in the bound (1) which provides no information about the generalization ability of any LS estimate. In addition, there are many minimizers (in fact a vector space of same dimension as the null space of ΦT Φ) of the empirical risk. To overcome the problem, several approaches have been proposed in the literature: • LS solution with minimal norm: The solution is the minimizer of the empirical error with minimal (l1 or l2 )-norm: α = arg minΦα=Y ||α||1 or 2 , (or a robust solution arg min||Φα−Y ||2 ≤ε ||α||1 ). The choice of 2 -norm yields the ordinary LS solution. The choice of 1 -norm has been used for generating sparse solutions (e.g. the Basis Pursuit [10]), and assuming that the target function admits a sparse decomposition, the field of Compressed Sensing [9, 21] provides sufficient conditions for recovering the exact solution. However, such conditions (e.g. that Φ possesses a Restricted Isometric Property (RIP)) does not hold in general in this regression setting. On another aspect, solving these problems (both for l1 or l2 -norm) when N is large is numerically expensive. • Regularization. The solution is the minimizer of the empirical error plus a penalty term, for example f = arg min LK (f ) + λ||f ||p , for p = 1 or 2. p f ∈FN where λ is a parameter and usual choices for the norm are 2 (ridge-regression [20]) and 1 (LASSO [19]). A close alternative is the Dantzig selector [8, 5] which solves: α = arg min||α||1 ≤λ ||ΦT (Y − Φα)||∞ . The numerical complexity and generalization bounds of those methods depend on the sparsity of the target function decomposition in FN . Now if we possess a sequence of function classes (FN )N ≥1 with increasing capacity, we may perform structural risk minimization [22] by solving in each model the empirical risk penalized by a term that depends on the size of the model: fN = arg minf ∈FN ,N ≥1 LK (f ) + pen(N, K), where the penalty term measures the capacity of the function space. In this paper we follow another approach where instead of searching in the large space FN (where N > K) for a solution that minimizes the empirical error plus a penalty term, we simply search for the empirical error minimizer in a (randomly generated) lower dimensional subspace GM ⊂ FN (where M < K). Our contribution: We consider a set of M random linear combinations of the initial N features and perform our favorite LS regression algorithm (possibly regularized) using those “compressed 2 features”. This is equivalent to projecting the K points {ϕ(xk ) ∈ RN , k = 1..K} from the initial domain (of size N ) onto a random subspace of dimension M , and then performing the regression in the “compressed domain” (i.e. span of the compressed features). This is made possible because random projections approximately preserve inner products between vectors (by a variant of the Johnson-Lindenstrauss Lemma stated in Proposition 1. Our main result is a bound on the excess risk of a linear estimator built in the compressed domain in terms of the excess risk of the linear estimator built in the initial domain (Section 2). We further detail the case of ordinary Least-Squares Regression (Section 3) and discuss, in terms of M , N , K, the different tradeoffs concerning the excess risk (reduced estimation error in the compressed domain versus increased approximation error introduced by the random projection) and the numerical complexity (reduced complexity of solving the LSR in the compressed domain versus the additional load of performing the projection). √ As a consequence, we show that by choosing M = O( K) projections we define a Compressed Least-Squares Regression which uses O(N K 3/2 ) elementary operations to compute a regression √ function with estimation error (relatively to the initial function space FN ) of order log K/ K up to a multiplicative factor which depends on the best approximation of f ∗ in FN . This is competitive with the best methods, up to our knowledge. Related works: Using dimension reduction and random projections in various learning areas has received considerable interest over the past few years. In [7], the authors use a SVM algorithm in a compressed space for the purpose of classification and show that their resulting algorithm has good generalization properties. In [25], the authors consider a notion of compressed linear regression. For data Y = Xβ + ε, where β is the target and ε a standard noise, they use compression of the set of data, thus considering AY = AXβ + Aε, where A has a Restricted Isometric Property. They provide an analysis of the LASSO estimator built from these compressed data, and discuss a property called sparsistency, i.e. the number of random projections needed to recover β (with high probability) when it is sparse. These works differ from our approach in the fact that we do not consider a compressed (input and/or output) data space but a compressed feature space instead. In [11], the authors discuss how compressed measurements may be useful to solve many detection, classification and estimation problems without having to reconstruct the signal ever. Interestingly, they make no assumption about the signal being sparse, like in our work. In [6, 17], the authors show how to map a kernel k(x, y) = ϕ(x) · ϕ(y) into a low-dimensional space, while still approximately preserving the inner products. Thus they build a low-dimensional feature space specific for (translation invariant) kernels. 2 Linear regression in the compressed domain We remind that the initial set of features is {ϕn : X → def N FN = {fα = n=1 αn ϕn , α ∈ components (ϕn (x))n≤N . Let us R, 1 ≤ n ≤ N } and the initial domain R } is the span of those features. We write ϕ(x) the N -vector of N now define the random projection. Let A be a M × N matrix of i.i.d. elements drawn for some distribution ρ. Examples of distributions are: • Gaussian random variables N (0, 1/M ), √ • ± Bernoulli distributions, i.e. which takes values ±1/ M with equal probability 1/2, • Distribution taking values ± 3/M with probability 1/6 and 0 with probability 2/3. The following result (proof in the supplementary material) states the property that inner-product are approximately preserved through random projections (this is a simple consequence of the JohnsonLindenstrauss Lemma): Proposition 1 Let (uk )1≤k≤K and v be vectors of RN . Let A be a M × N matrix of i.i.d. elements drawn from one of the previously defined distributions. For any ε > 0, δ > 0, for M ≥ ε2 1 ε3 log 4K , we have, with probability at least 1 − δ, for all k ≤ K, δ 4 − 6 |Auk · Av − uk · v| ≤ ε||uk || ||v||. 3 def We now introduce the set of M compressed features (ψm )1≤m≤M such that ψm (x) = N We also write ψ(x) the M -vector of components (ψm (x))m≤M . Thus n=1 Am,n ϕn (x). ψ(x) = Aϕ(x). We define the compressed domain GM = {gβ = m=1 βm ψm , β ∈ RM } the span of the compressed features (vector space of dimension at most M ). Note that each ψm ∈ FN , thus GM is a subspace of FN . def 2.1 M Approximation error We now compare the approximation error assessed in the compressed domain GM versus in the initial space FN . This applies to the linear algorithms mentioned in the introduction such as ordinary LS regression (analyzed in details in Section 3), but also its penalized versions, e.g. LASSO and ridge regression. Define α+ = arg minα∈RN L(fα ) − L(f ∗ ) the parameter of the best regression function in FN . Theorem 1 For any δ > 0, any M ≥ 15 log(8K/δ), let A be a random M × N matrix defined like in Proposition 1, and GM be the compressed domain resulting from this choice of A. Then with probability at least 1 − δ, inf ||g−f ∗ ||2 ≤ P g∈GM 8 log(8K/δ) + 2 ||α || M E ||ϕ(X)||2 +2 sup ||ϕ(x)||2 x∈X log 4/δ + inf ||f −f ∗ ||2 . P f ∈FN 2K (2) This theorem shows the tradeoff in terms of estimation and approximation errors for an estimator g obtained in the compressed domain compared to an estimator f obtained in the initial domain: • Bounds on the estimation error of g in GM are usually smaller than that of f in FN when M < N (since the capacity of FN is larger than that of GM ). • Theorem 1 says that the approximation error assessed in GM increases by at most O( log(K/δ) )||α+ ||2 E||ϕ(X)||2 compared to that in FN . M def def Proof: Let us write f + = fα+ = arg minf ∈FN ||f − f ∗ ||P and g + = gAα+ . The approximation error assessed in the compressed domain GM is bounded as inf ||g − f ∗ ||2 P g∈GM ≤ ||g + − f ∗ ||2 = ||g + − f + ||2 + ||f + − f ∗ ||2 , P P P (3) since f + is the orthogonal projection of f ∗ on FN and g + belongs to FN . We now bound ||g + − def def f + ||2 using concentration inequalities. Define Z(x) = Aα+ · Aϕ(x) − α+ · ϕ(x). Define ε2 = P log(8K/δ) 8 M log(8K/δ). For M ≥ 15 log(8K/δ) we have ε < 3/4 thus M ≥ ε2 /4−ε3 /6 . Proposition 1 applies and says that on an event E of probability at least 1 − δ/2, we have for all k ≤ K, def |Z(xk )| ≤ ε||α+ || ||ϕ(xk )|| ≤ ε||α+ || sup ||ϕ(x)|| = C (4) x∈X On the event E, we have with probability at least 1 − δ , ||g + − f + ||2 P = ≤ ≤ EX∼PX |Z(X)|2 ≤ ε2 ||α+ ||2 ε2 ||α+ ||2 1 K 1 K K |Z(xk )|2 + C 2 k=1 K ||ϕ(xk )||2 + sup ||ϕ(x)||2 x∈X k=1 E ||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x∈X log(2/δ ) 2K log(2/δ ) 2K log(2/δ ) . 2K where we applied two times Chernoff-Hoeffding’s inequality. Combining with (3), unconditioning, and setting δ = δ/2 then with probability at least (1 − δ/2)(1 − δ ) ≥ 1 − δ we have (2). 4 2.2 Computational issues We now discuss the relative computational costs of a given algorithm applied either in the initial or in the compressed domain. Let us write Cx(DK , FN , P ) the complexity (e.g. number of elementary operations) of an algorithm A to compute the regression function f when provided with the data DK and function space FN . We plot in the table below, both for the initial and the compressed versions of the algorithm A, the order of complexity for (i) the cost for building the feature matrix, (ii) the cost for computing the estimator, (iii) the cost for making one prediction (i.e. computing f (x) for any x): Construction of the feature matrix Computing the regression function Making one prediction Initial domain NK Cx(DK , FN , P ) N Compressed domain N KM Cx(DK , GM , P ) NM Note that the values mentioned for the compressed domain are upper-bounds on the real complexity and do not take into account the possible sparsity of the projection matrix A (which would speed up matrix computations, see e.g. [2, 1]). 3 Compressed Least-Squares Regression We now analyze the specific case of Least-Squares Regression. 3.1 Excess risk of ordinary Least Squares regression In order to bound the estimation error, we follow the approach of [13] which truncates (up to the level ±L where L is a bound, assumed to be known, on ||f ∗ ||∞ ) the prediction of the LS regression function. The ordinary LS regression provides the regression function fα where b α= argmin α∈argminα ∈ RN ||α||. ||Y −Φα || Note that ΦΦT α = ΦT Y , hence α = Φ† Y ∈ RN where Φ† is the Penrose pseudo-inverse of Φ1 . def Then the truncated predictor is: fL (x) = TL [fα (x)], where b def TL (u) = u if |u| ≤ L, L sign(u) otherwise. Truncation after the computation of the parameter α ∈ RN , which is the solution of an unconstrained optimization problem, is easier than solving an optimization problem under the constraint that ||α|| is small (which is the approach followed in [23]) and allows for consistency results and prediction bounds. Indeed, the excess risk of fL is bounded as 1 + log K E(||f − f ∗ ||2 ) ≤ c max{σ2 , L2 } N + 8 inf ||f − f ∗ ||2 (5) P P f ∈FN K where a bound on c is 9216 (see [13]). We have a simpler bound when we consider the expectation EY conditionally on the input data: N EY (||f − f ∗ ||2 K ) ≤ σ2 + inf ||f − f ∗ ||2 K (6) P P K f ∈F Remark: Note that because we use the quadratic loss function, by following the analysis in [3], or by deriving tight bounds on the Rademacher complexity [14] and following Theorem 5.2 of Koltchinskii’s Saint Flour course, it is actually possible to state assumptions under which we can remove the log K term in (5). We will not further detail such bounds since our motivation here is not to provide the tightest possible bounds, but rather to show how the excess risk bound for LS regression in the initial domain extends to the compressed domain. 1 In the full rank case, Φ† = (ΦT Φ)−1 ΦT when K ≥ N and Φ† = ΦT (ΦΦT )−1 when K ≤ N 5 3.2 Compressed Least-Squares Regression (CLSR) CLSR is defined as the ordinary LSR in the compressed domain. Let β = Ψ† Y ∈ RM , where Ψ is the K × M matrix with elements (ψm (xk ))1≤m≤M,1≤k≤K . The CLSR estimate is defined as def gL (x) = TL [gβ (x)]. From Theorem 1, (5) and (6), we deduce the following excess risk bounds for b the CLSR estimate: √ ||α+ || E||ϕ(X)||2 K log(8K/δ) Corollary 1 For any δ > 0, set M = 8 max(σ,L) c (1+log K) . Then whenever M ≥ 15 log(8K/δ), with probability at least 1 − δ, the expected excess risk of the CLSR estimate is bounded as √ E(||gL − f ∗ ||2 ) ≤ 16 c max{σ, L}||α+ || E||ϕ(X)||2 P × 1+ supx ||ϕ(x)||2 E||ϕ(X)||2 (1 + log K) log(8K/δ) K log 4/δ + 8 inf ||f − f ∗ ||2 . P f ∈FN 2K (7) √ ||α+ || E||ϕ(X)||2 Now set M = 8K log(8K/δ). Assume N > K and that the features (ϕk )1≤k≤K σ are linearly independent. Then whenever M ≥ 15 log(8K/δ), with probability at least 1 − δ, the expected excess risk of the CLSR estimate conditionally on the input samples is upper bounded as 2 log(8K/δ) supx ||ϕ(x)||2 1+ K E||ϕ(X)||2 EY (||gL − f ∗ ||2 K ) ≤ 4σ||α+ || E||ϕ(X)||2 P log 4/δ . 2K Proof: Whenever M ≥ 15 log(8K/δ) we deduce from Theorem 1 and (5) that the excess risk of gL is bounded as E(||gL − f ∗ ||2 ) ≤ c max{σ2 , L2 } P +8 8 log(8K/δ) + 2 ||α || M 1 + log K M K E||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x log 4/δ + inf ||f − f ∗ ||2 . P f ∈FN 2K By optimizing on M , we deduce (7). Similarly, using (6) we deduce the following bound on EY (||gL − f ∗ ||2 K ): P σ2 8 M + log(8K/δ)||α+ ||2 K M E||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x log 4/δ + inf ||f − f ∗ ||2 K . P f ∈FN 2K By optimizing on M and noticing that inf f ∈FN ||f − f ∗ ||2 K = 0 whenever N > K and the features P (ϕk )1≤k≤K are linearly independent, we deduce the second result. Remark 1 Note that the second term in the parenthesis of (7) is negligible whenever K Thus we have the expected excess risk log K/δ + inf ||f − f ∗ ||2 . P f ∈FN K E(||gL − f ∗ ||2 ) = O ||α+ || E||ϕ(X)||2 √ P log 1/δ. (8) The choice of M in the previous corollary depends on ||α+ || and E||ϕ(X)|| which are a priori unknown (since f ∗ and PX are unknown). If we set M independently of ||α+ ||, then an additional multiplicative factor of ||α+ || appears in the bound, and if we replace E||ϕ(X)|| by its bound supx ||ϕ(x)|| (which is known) then this latter factor will appear instead of the former in the bound. Complexity of CLSR: The complexity of LSR for computing the regression function in the compressed domain only depends on M and K, and is (see e.g. [4]) Cx(DK , GM , P ) = O(M K 2 ) which √ is of order O(K 5/2 ) when we choose the optimized number of projections M = O( K). However the leading term when using CLSR is the cost for building the Ψ matrix: O(N K 3/2 ). 6 4 4.1 Discussion The factor ||α+ || E||ϕ(X)||2 In light of Corollary 1, the important factor which will determine whether the CLSR provides low generalization error or not is ||α+ || E||ϕ(X)||2 . This factor indicates that a good set of features (for CLSR) should be such that the norm of those features as well as the norm of the parameter α+ of the projection of f ∗ onto the span of those features should be small. A natural question is whether this product can be made small for appropriate choices of features. We now provide two specific cases for which this is actually the case: (1) when the features are rescaled orthonormal basis functions, and (2) when the features are specific wavelet functions. In both cases, we relate the bound to an assumption of regularity on the function f ∗ , and show that the dependency w.r.t. N decreases when the regularity increases, and may even vanish. Rescaled Orthonormal Features: Consider a set of orthonormal functions (ηi )i≥1 w.r.t a measure µ, i.e. ηi , ηj µ = δi,j . In addition we assume that the law of the input data is dominated by µ, i.e. PX ≤ Cµ where C is a constant. For instance, this is the case when the set X is compact, µ is the uniform measure and PX has bounded density. def We define the set of N features as: ϕi = ci ηi , where ci > 0, for i ∈ {1, . . . , N }. Then any f ∈ FN decomposes as f = 2 we have: ||α|| = ||α+ ||2 E||ϕ||2 ≤ C N bi 2 i=1 ( ci ) N bi 2 i=1 ( ci ) and N i=1 N bi i=1 ci ϕi , where N 2 2 i=1 ci X ηi (x)dPX (x) f, ηi ηi = E||ϕ|| = 2 def bi = f, ηi . Thus ≤ C N 2 i=1 ci . Thus N 2 i=1 ci . Now, linear approximation theory (Jackson-type theorems) tells us that assuming a function f ∗ ∈ L2 (µ) is smooth, it may be decomposed onto the span of the N first (ηi )i∈{1,...,N } functions with decreasing coefficients |bi | ≤ i−λ for some λ ≥ 0 that depends on the smoothness of f ∗ . For example the class of functions with bounded total variation may be decomposed with Fourier basis (in dimension 1) with coefficients |bi | ≤ ||f ||V /(2πi). Thus here λ = 1. Other classes (such as Sobolev spaces) lead to larger values of λ related to the order of differentiability. √ N By choosing ci = i−λ/2 , we have ||α+ || E||ϕ||2 ≤ C i=1 i−λ . Thus if λ > 1, then this term is bounded by a constant that does not depend on N . If λ = 1 then it is bounded by O(log N ), and if 0 < λ < 1, then it is bounded by O(N 1−λ ). However any orthonormal basis, even rescaled, would not necessarily yield a small ||α+ || E||ϕ||2 term (this is all the more true when the dimension of X is large). The desired property that the coefficients (α+ )i of the decomposition of f ∗ rapidly decrease to 0 indicates that hierarchical bases, such as wavelets, that would decompose the function at different scales, may be interesting. Wavelets: Consider an infinite family of wavelets in [0, 1]: (ϕ0 ) = (ϕ0 ) (indexed by n ≥ 1 or n h,l equivalently by the scale h ≥ 0 and translation 0 ≤ l ≤ 2h − 1) where ϕ0 (x) = 2h/2 ϕ0 (2h x − l) h,l and ϕ0 is the mother wavelet. Then consider N = 2H features (ϕh,l )1≤h≤H defined as the rescaled def wavelets ϕh,l = ch 2−h/2 ϕ0 , where ch > 0 are some coefficients. Assume the mother wavelet h,l is C p (for p ≥ 1), has at least p vanishing moments, and that for all h ≥ 0, supx l ϕ0 (2h x − l)2 ≤ 1. Then the following result (proof in the supplementary material) provides a bound on supx∈X ||ϕ(x)||2 (thus on E||ϕ(X)||2 ) by a constant independent of N : Proposition 2 Assume that f ∗ is (L, γ)-Lipschitz (i.e. for all v ∈ X there exists a polynomial pv of degree γ such that for all u ∈ X , |f (u) − pv (u)| ≤ L|u − v|γ ) with 1/2 < γ ≤ p. Then setting γ 1 ch = 2h(1−2γ)/4 , we have ||α+ || supx ||ϕ(x)|| ≤ L 1−22 |ϕ0 |, which is independent of N . 1/2−γ 0 Notice that the Haar walevets has p = 1 vanishing moment but is not C 1 , thus the Proposition does not apply directly. However direct computations show that if f ∗ is L-Lipschitz (i.e. γ = 1) then L 0 αh,l ≤ L2−3h/2−2 , and thus ||α+ || supx ||ϕ(x)|| ≤ 4(1−2−1/2 ) with ch = 2−h/4 . 7 4.2 Comparison with other methods In the case when the factor ||α+ || E||ϕ(X)||2 does not depend on N (such as in the previous example), the bound (8) on the excess risk of CLSR states that the estimation error (assessed in √ √ terms of FN ) of CLSR is O(log K/ K). It is clear that whenever N > K (which is the case of interest here), this is better than the ordinary LSR in the initial domain, whose estimation error is O(N log K/K). It is difficult to compare this result with LASSO (or the Dantzig selector that has similar properties [5]) for which an important aspect is to design sparse regression functions or to recover a solution assumed to be sparse. From [12, 15, 24] one deduces that under some assumptions, the estimation error of LASSO is of order S log N where S is the sparsity (number of non-zero coefficients) of the K√ best regressor f + in FN . If S < K then LASSO is more interesting than CLSR in terms of excess risk. Otherwise CLSR may be an interesting alternative although this method does not make any assumption about the sparsity of f + and its goal is not to recover a possible sparse f + but only to make good predictions. However, in some sense our method finds a sparse solution in the fact that the regression function gL lies in a space GM of small dimension M N and can thus be expressed using only M coefficients. Now in terms of numerical complexity, CLSR requires O(N K 3/2 ) operations to build the matrix and compute the regression function, whereas according to [18], the (heuristical) complexity of the LASSO algorithm is O(N K 2 ) in the best cases (assuming that the number of steps required for convergence is O(K), which is not proved theoretically). Thus CLSR seems to be a good and simple competitor to LASSO. 5 Conclusion We considered the case when the number of features N is larger than the number of data K. The result stated in Theorem 1 enables to analyze the excess risk of any linear regression algorithm (LS or its penalized versions) performed in the compressed domain GM versus in the initial space FN . In the compressed domain the estimation error is reduced but an additional (controlled) approximation error (when compared to the best regressor in FN ) comes into the picture. In the case of LS regression, when the term ||α+ || E||ϕ(X)||2 has a mild dependency on N , then by choosing a √ random subspace of dimension M = O( K), CLSR has an estimation error (assessed in terms of √ FN ) bounded by O(log K/ K) and has numerical complexity O(N K 3/2 ). In short, CLSR provides an alternative to usual penalization techniques where one first selects a random subspace of lower dimension and then performs an empirical risk minimizer in this subspace. Further work needs to be done to provide additional settings (when the space X is of dimension > 1) for which the term ||α+ || E||ϕ(X)||2 is small. Acknowledgements: The authors wish to thank Laurent Jacques for numerous comments and Alessandro Lazaric and Mohammad Ghavamzadeh for exciting discussions. This work has been supported by French National Research Agency (ANR) through COSINUS program (project EXPLO-RA, ANR-08-COSI-004). References [1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4):671–687, June 2003. [2] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast JohnsonLindenstrauss transform. In STOC ’06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 557–563, New York, NY, USA, 2006. ACM. [3] Jean-Yves Audibert and Olivier Catoni. Risk bounds in linear regression through pac-bayesian truncation. Technical Report HAL : hal-00360268, 2009. [4] David Bau III and Lloyd N. Trefethen. Numerical linear algebra. Philadelphia: Society for Industrial and Applied Mathematics, 1997. 8 [5] Peter J. Bickel, Ya’acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. To appear in Annals of Statistics, 2008. [6] Avrim Blum. Random projection, margins, kernels, and feature-selection. Subspace, Latent Structure and Feature Selection, pages 52–68, 2006. [7] Robert Calderbank, Sina Jafarpour, and Robert Schapire. Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain. Technical Report, 2009. [8] Emmanuel Candes and Terence Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 35:2313, 2007. [9] Emmanuel J. Candes and Justin K. Romberg. Signal recovery from random projections. volume 5674, pages 76–86. SPIE, 2005. [10] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20:33–61, 1998. [11] Mark A. Davenport, Michael B. Wakin, and Richard G. Baraniuk. Detection and estimation with compressive measurements. Technical Report TREE 0610, Department of Electrical and Computer Engineering, Rice University, 2006. [12] E. Greenshtein and Y. Ritov. Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization. Bernoulli, 10:971–988, 2004. [13] L. Gy¨ rfi, M. Kohler, A. Krzy˙ ak, and H. Walk. A distribution-free theory of nonparametric o z regression. Springer-Verlag, 2002. [14] Sham M. Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction: Risk bounds, margin bounds, and regularization. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Leon Bottou, editors, Neural Information Processing Systems, pages 793– 800. MIT Press, 2008. [15] Yuval Nardi and Alessandro Rinaldo. On the asymptotic properties of the group Lasso estimator for linear models. Electron. J. Statist., 2:605–633, 2008. [16] D. Pollard. Convergence of Stochastic Processes. Springer Verlag, New York, 1984. [17] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Neural Information Processing Systems, 2007. [18] Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths. Annals of Statistics, 35:1012, 2007. [19] Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B, 58:267–288, 1994. [20] A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4, pages 1035–1038, 1963. [21] Yaakov Tsaig and David L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289–1306, 2006. [22] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc., New York, NY, USA, 1995. [23] Tong Zhang. Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research, 2:527–550, 2002. [24] Tong Zhang. Some sharp performance bounds for least squares regression with L1 regularization. To appear in Annals of Statistics, 2009. [25] Shuheng Zhou, John D. Lafferty, and Larry A. Wasserman. Compressed regression. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors, Neural Information Processing Systems. MIT Press, 2007. 9
2 0.19298208 157 nips-2009-Multi-Label Prediction via Compressed Sensing
Author: John Langford, Tong Zhang, Daniel J. Hsu, Sham M. Kakade
Abstract: We consider multi-label prediction problems with large output spaces under the assumption of output sparsity – that the target (label) vectors have small support. We develop a general theory for a variant of the popular error correcting output code scheme, using ideas from compressed sensing for exploiting this sparsity. The method can be regarded as a simple reduction from multi-label regression problems to binary regression problems. We show that the number of subproblems need only be logarithmic in the total number of possible labels, making this approach radically more efficient than others. We also state and prove robustness guarantees for this method in the form of regret transform bounds (in general), and also provide a more detailed analysis for the linear prediction setting. 1
3 0.17561083 37 nips-2009-Asymptotically Optimal Regularization in Smooth Parametric Models
Author: Percy Liang, Guillaume Bouchard, Francis R. Bach, Michael I. Jordan
Abstract: Many types of regularization schemes have been employed in statistical learning, each motivated by some assumption about the problem domain. In this paper, we present a unified asymptotic analysis of smooth regularizers, which allows us to see how the validity of these assumptions impacts the success of a particular regularizer. In addition, our analysis motivates an algorithm for optimizing regularization parameters, which in turn can be analyzed within our framework. We apply our analysis to several examples, including hybrid generative-discriminative learning and multi-task learning. 1
4 0.13528626 98 nips-2009-From PAC-Bayes Bounds to KL Regularization
Author: Pascal Germain, Alexandre Lacasse, Mario Marchand, Sara Shanian, François Laviolette
Abstract: We show that convex KL-regularized objective functions are obtained from a PAC-Bayes risk bound when using convex loss functions for the stochastic Gibbs classifier that upper-bound the standard zero-one loss used for the weighted majority vote. By restricting ourselves to a class of posteriors, that we call quasi uniform, we propose a simple coordinate descent learning algorithm to minimize the proposed KL-regularized cost function. We show that standard p -regularized objective functions currently used, such as ridge regression and p -regularized boosting, are obtained from a relaxation of the KL divergence between the quasi uniform posterior and the uniform prior. We present numerical experiments where the proposed learning algorithm generally outperforms ridge regression and AdaBoost. 1
5 0.12867059 91 nips-2009-Fast, smooth and adaptive regression in metric spaces
Author: Samory Kpotufe
Abstract: It was recently shown that certain nonparametric regressors can escape the curse of dimensionality when the intrinsic dimension of data is low ([1, 2]). We prove some stronger results in more general settings. In particular, we consider a regressor which, by combining aspects of both tree-based regression and kernel regression, adapts to intrinsic dimension, operates on general metrics, yields a smooth function, and evaluates in time O(log n). We derive a tight convergence rate of the form n−2/(2+d) where d is the Assouad dimension of the input space. 1
6 0.12581357 101 nips-2009-Generalization Errors and Learning Curves for Regression with Multi-task Gaussian Processes
7 0.11134188 67 nips-2009-Directed Regression
8 0.10596824 245 nips-2009-Thresholding Procedures for High Dimensional Variable Selection and Statistical Estimation
9 0.09528438 20 nips-2009-A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers
10 0.092654251 64 nips-2009-Data-driven calibration of linear estimators with minimal penalties
11 0.079782687 144 nips-2009-Lower bounds on minimax rates for nonparametric regression with additive sparsity and smoothness
12 0.072432116 225 nips-2009-Sparsistent Learning of Varying-coefficient Models with Structural Changes
13 0.065495238 36 nips-2009-Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing
14 0.06234229 147 nips-2009-Matrix Completion from Noisy Entries
15 0.061024446 116 nips-2009-Information-theoretic lower bounds on the oracle complexity of convex optimization
16 0.06074268 142 nips-2009-Locality-sensitive binary codes from shift-invariant kernels
17 0.060562216 207 nips-2009-Robust Nonparametric Regression with Metric-Space Valued Output
18 0.058867391 112 nips-2009-Human Rademacher Complexity
19 0.05723748 213 nips-2009-Semi-supervised Learning using Sparse Eigenfunction Bases
20 0.056855384 228 nips-2009-Speeding up Magnetic Resonance Image Acquisition by Bayesian Multi-Slice Adaptive Compressed Sensing
topicId topicWeight
[(0, -0.175), (1, 0.147), (2, 0.006), (3, 0.088), (4, 0.008), (5, -0.052), (6, 0.038), (7, -0.127), (8, 0.105), (9, 0.076), (10, 0.058), (11, -0.011), (12, -0.028), (13, -0.05), (14, 0.189), (15, 0.112), (16, 0.031), (17, 0.066), (18, 0.175), (19, -0.028), (20, 0.07), (21, 0.029), (22, 0.126), (23, 0.004), (24, 0.052), (25, 0.009), (26, -0.064), (27, -0.056), (28, 0.01), (29, 0.037), (30, 0.082), (31, 0.071), (32, -0.05), (33, -0.078), (34, 0.105), (35, 0.011), (36, 0.081), (37, 0.007), (38, -0.061), (39, -0.024), (40, -0.054), (41, -0.06), (42, 0.058), (43, 0.004), (44, 0.029), (45, 0.062), (46, 0.165), (47, 0.005), (48, -0.002), (49, -0.142)]
simIndex simValue paperId paperTitle
same-paper 1 0.93399781 55 nips-2009-Compressed Least-Squares Regression
Author: Odalric Maillard, Rémi Munos
Abstract: We consider the problem of learning, from K data, a regression function in a linear space of high dimension N using projections onto a random subspace of lower dimension M . From any algorithm minimizing the (possibly penalized) empirical risk, we provide bounds on the excess risk of the estimate computed in the projected subspace (compressed domain) in terms of the excess risk of the estimate built in the high-dimensional space (initial domain). We show that solving the problem in the compressed domain instead of the initial domain reduces the estimation error at the price of an increased (but controlled) approximation error. We apply the analysis to Least-Squares (LS) regression and discuss the excess risk and numerical complexity of the resulting “Compressed Least Squares Re√ gression” (CLSR) in terms of N , K, and M . When we choose M = O( K), we √ show that CLSR has an estimation error of order O(log K/ K). 1 Problem setting We consider a regression problem where we observe data DK = ({xk , yk }k≤K ) (where xk ∈ X and yk ∈ R) are assumed to be independently and identically distributed (i.i.d.) from some distribution P , where xk ∼ PX and yk = f ∗ (xk ) + ηk (xk ), where f ∗ is the (unknown) target function, and ηk a centered independent noise of variance σ 2 (xk ). For a given class of functions F, and f ∈ F, we define the empirical (quadratic) error def LK (f ) = 1 K K [yk − f (xk )]2 , k=1 and the generalization (quadratic) error def L(f ) = E(X,Y )∼P [(Y − f (X))2 ]. Our goal is to return a regression function f ∈ F with lowest possible generalization error L(f ). Notations: In the sequel we will make use of the following notations about norms: for h : X → R, we write ||h||P for the L2 norm of h with respect to (w.r.t.) the measure P , ||h||PK for the L2 norm n 2 1/2 of h w.r.t. the empirical measure PK , and for u ∈ Rn , ||u|| denotes by default . i=1 ui The measurable function minimizing the generalization error is f ∗ , but it may be the case that f ∗ ∈ F. For any regression function f , we define the excess risk / L(f ) − L(f ∗ ) = ||f − f ∗ ||2 , P which decomposes as the sum of the estimation error L(f ) − inf f ∈F L(f ) and the approximation error inf f ∈F L(f ) − L(f ∗ ) = inf f ∈F ||f − f ∗ ||2 which measures the distance between f ∗ and the P function space F. 1 In this paper we consider a class of linear functions FN defined as the span of a set of N functions def def N {ϕn }1≤n≤N called features. Thus: FN = {fα = n=1 αn ϕn , α ∈ RN }. When the number of data K is larger than the number of features N , the ordinary Least-Squares Regression (LSR) provides the LS solution fα which is the minimizer of the empirical risk LK (f ) b 1 in FN . Note that here LK (fα ) rewrites K ||Φα − Y ||K where Φ is the K × N matrix with elements (ϕn (xk ))1≤n≤N,1≤k≤K and Y the K-vector with components (yk )1≤k≤K . Usual results provide bound on the estimation error as a function of the capacity of the function space and the number of data. In the case of linear approximation, the capacity measures (such as covering numbers [23] or the pseudo-dimension [16]) depend on the number of features (for example the pseudo-dimension is at most N + 1). For example, let fα be a LS estimate (minimizer of LK b in FN ), then (a more precise statement will be stated later in Subsection 3) the expected estimation error is bounded as: N log K E L(fα ) − inf L(f ) ≤ cσ2 , (1) b f ∈FN K def where c is a universal constant, σ = supx∈X σ(x), and the expectation is taken with respect to P . Now, the excess risk is the sum of this estimation error and the approximation error inf f ∈FN ||f − f ∗ ||P of the class FN . Since the later usually decreases when the number of features N increases [13] (e.g. when N FN is dense in L2 (P )), we see the usual tradeoff between small estimation error (low N ) and small approximation error (large N ). In this paper we are interested in the setting when N is large so that the approximation error is small. Whenever N is larger than K we face the overfitting problem since there are more parameters than actual data (more variables than constraints), which is illustrated in the bound (1) which provides no information about the generalization ability of any LS estimate. In addition, there are many minimizers (in fact a vector space of same dimension as the null space of ΦT Φ) of the empirical risk. To overcome the problem, several approaches have been proposed in the literature: • LS solution with minimal norm: The solution is the minimizer of the empirical error with minimal (l1 or l2 )-norm: α = arg minΦα=Y ||α||1 or 2 , (or a robust solution arg min||Φα−Y ||2 ≤ε ||α||1 ). The choice of 2 -norm yields the ordinary LS solution. The choice of 1 -norm has been used for generating sparse solutions (e.g. the Basis Pursuit [10]), and assuming that the target function admits a sparse decomposition, the field of Compressed Sensing [9, 21] provides sufficient conditions for recovering the exact solution. However, such conditions (e.g. that Φ possesses a Restricted Isometric Property (RIP)) does not hold in general in this regression setting. On another aspect, solving these problems (both for l1 or l2 -norm) when N is large is numerically expensive. • Regularization. The solution is the minimizer of the empirical error plus a penalty term, for example f = arg min LK (f ) + λ||f ||p , for p = 1 or 2. p f ∈FN where λ is a parameter and usual choices for the norm are 2 (ridge-regression [20]) and 1 (LASSO [19]). A close alternative is the Dantzig selector [8, 5] which solves: α = arg min||α||1 ≤λ ||ΦT (Y − Φα)||∞ . The numerical complexity and generalization bounds of those methods depend on the sparsity of the target function decomposition in FN . Now if we possess a sequence of function classes (FN )N ≥1 with increasing capacity, we may perform structural risk minimization [22] by solving in each model the empirical risk penalized by a term that depends on the size of the model: fN = arg minf ∈FN ,N ≥1 LK (f ) + pen(N, K), where the penalty term measures the capacity of the function space. In this paper we follow another approach where instead of searching in the large space FN (where N > K) for a solution that minimizes the empirical error plus a penalty term, we simply search for the empirical error minimizer in a (randomly generated) lower dimensional subspace GM ⊂ FN (where M < K). Our contribution: We consider a set of M random linear combinations of the initial N features and perform our favorite LS regression algorithm (possibly regularized) using those “compressed 2 features”. This is equivalent to projecting the K points {ϕ(xk ) ∈ RN , k = 1..K} from the initial domain (of size N ) onto a random subspace of dimension M , and then performing the regression in the “compressed domain” (i.e. span of the compressed features). This is made possible because random projections approximately preserve inner products between vectors (by a variant of the Johnson-Lindenstrauss Lemma stated in Proposition 1. Our main result is a bound on the excess risk of a linear estimator built in the compressed domain in terms of the excess risk of the linear estimator built in the initial domain (Section 2). We further detail the case of ordinary Least-Squares Regression (Section 3) and discuss, in terms of M , N , K, the different tradeoffs concerning the excess risk (reduced estimation error in the compressed domain versus increased approximation error introduced by the random projection) and the numerical complexity (reduced complexity of solving the LSR in the compressed domain versus the additional load of performing the projection). √ As a consequence, we show that by choosing M = O( K) projections we define a Compressed Least-Squares Regression which uses O(N K 3/2 ) elementary operations to compute a regression √ function with estimation error (relatively to the initial function space FN ) of order log K/ K up to a multiplicative factor which depends on the best approximation of f ∗ in FN . This is competitive with the best methods, up to our knowledge. Related works: Using dimension reduction and random projections in various learning areas has received considerable interest over the past few years. In [7], the authors use a SVM algorithm in a compressed space for the purpose of classification and show that their resulting algorithm has good generalization properties. In [25], the authors consider a notion of compressed linear regression. For data Y = Xβ + ε, where β is the target and ε a standard noise, they use compression of the set of data, thus considering AY = AXβ + Aε, where A has a Restricted Isometric Property. They provide an analysis of the LASSO estimator built from these compressed data, and discuss a property called sparsistency, i.e. the number of random projections needed to recover β (with high probability) when it is sparse. These works differ from our approach in the fact that we do not consider a compressed (input and/or output) data space but a compressed feature space instead. In [11], the authors discuss how compressed measurements may be useful to solve many detection, classification and estimation problems without having to reconstruct the signal ever. Interestingly, they make no assumption about the signal being sparse, like in our work. In [6, 17], the authors show how to map a kernel k(x, y) = ϕ(x) · ϕ(y) into a low-dimensional space, while still approximately preserving the inner products. Thus they build a low-dimensional feature space specific for (translation invariant) kernels. 2 Linear regression in the compressed domain We remind that the initial set of features is {ϕn : X → def N FN = {fα = n=1 αn ϕn , α ∈ components (ϕn (x))n≤N . Let us R, 1 ≤ n ≤ N } and the initial domain R } is the span of those features. We write ϕ(x) the N -vector of N now define the random projection. Let A be a M × N matrix of i.i.d. elements drawn for some distribution ρ. Examples of distributions are: • Gaussian random variables N (0, 1/M ), √ • ± Bernoulli distributions, i.e. which takes values ±1/ M with equal probability 1/2, • Distribution taking values ± 3/M with probability 1/6 and 0 with probability 2/3. The following result (proof in the supplementary material) states the property that inner-product are approximately preserved through random projections (this is a simple consequence of the JohnsonLindenstrauss Lemma): Proposition 1 Let (uk )1≤k≤K and v be vectors of RN . Let A be a M × N matrix of i.i.d. elements drawn from one of the previously defined distributions. For any ε > 0, δ > 0, for M ≥ ε2 1 ε3 log 4K , we have, with probability at least 1 − δ, for all k ≤ K, δ 4 − 6 |Auk · Av − uk · v| ≤ ε||uk || ||v||. 3 def We now introduce the set of M compressed features (ψm )1≤m≤M such that ψm (x) = N We also write ψ(x) the M -vector of components (ψm (x))m≤M . Thus n=1 Am,n ϕn (x). ψ(x) = Aϕ(x). We define the compressed domain GM = {gβ = m=1 βm ψm , β ∈ RM } the span of the compressed features (vector space of dimension at most M ). Note that each ψm ∈ FN , thus GM is a subspace of FN . def 2.1 M Approximation error We now compare the approximation error assessed in the compressed domain GM versus in the initial space FN . This applies to the linear algorithms mentioned in the introduction such as ordinary LS regression (analyzed in details in Section 3), but also its penalized versions, e.g. LASSO and ridge regression. Define α+ = arg minα∈RN L(fα ) − L(f ∗ ) the parameter of the best regression function in FN . Theorem 1 For any δ > 0, any M ≥ 15 log(8K/δ), let A be a random M × N matrix defined like in Proposition 1, and GM be the compressed domain resulting from this choice of A. Then with probability at least 1 − δ, inf ||g−f ∗ ||2 ≤ P g∈GM 8 log(8K/δ) + 2 ||α || M E ||ϕ(X)||2 +2 sup ||ϕ(x)||2 x∈X log 4/δ + inf ||f −f ∗ ||2 . P f ∈FN 2K (2) This theorem shows the tradeoff in terms of estimation and approximation errors for an estimator g obtained in the compressed domain compared to an estimator f obtained in the initial domain: • Bounds on the estimation error of g in GM are usually smaller than that of f in FN when M < N (since the capacity of FN is larger than that of GM ). • Theorem 1 says that the approximation error assessed in GM increases by at most O( log(K/δ) )||α+ ||2 E||ϕ(X)||2 compared to that in FN . M def def Proof: Let us write f + = fα+ = arg minf ∈FN ||f − f ∗ ||P and g + = gAα+ . The approximation error assessed in the compressed domain GM is bounded as inf ||g − f ∗ ||2 P g∈GM ≤ ||g + − f ∗ ||2 = ||g + − f + ||2 + ||f + − f ∗ ||2 , P P P (3) since f + is the orthogonal projection of f ∗ on FN and g + belongs to FN . We now bound ||g + − def def f + ||2 using concentration inequalities. Define Z(x) = Aα+ · Aϕ(x) − α+ · ϕ(x). Define ε2 = P log(8K/δ) 8 M log(8K/δ). For M ≥ 15 log(8K/δ) we have ε < 3/4 thus M ≥ ε2 /4−ε3 /6 . Proposition 1 applies and says that on an event E of probability at least 1 − δ/2, we have for all k ≤ K, def |Z(xk )| ≤ ε||α+ || ||ϕ(xk )|| ≤ ε||α+ || sup ||ϕ(x)|| = C (4) x∈X On the event E, we have with probability at least 1 − δ , ||g + − f + ||2 P = ≤ ≤ EX∼PX |Z(X)|2 ≤ ε2 ||α+ ||2 ε2 ||α+ ||2 1 K 1 K K |Z(xk )|2 + C 2 k=1 K ||ϕ(xk )||2 + sup ||ϕ(x)||2 x∈X k=1 E ||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x∈X log(2/δ ) 2K log(2/δ ) 2K log(2/δ ) . 2K where we applied two times Chernoff-Hoeffding’s inequality. Combining with (3), unconditioning, and setting δ = δ/2 then with probability at least (1 − δ/2)(1 − δ ) ≥ 1 − δ we have (2). 4 2.2 Computational issues We now discuss the relative computational costs of a given algorithm applied either in the initial or in the compressed domain. Let us write Cx(DK , FN , P ) the complexity (e.g. number of elementary operations) of an algorithm A to compute the regression function f when provided with the data DK and function space FN . We plot in the table below, both for the initial and the compressed versions of the algorithm A, the order of complexity for (i) the cost for building the feature matrix, (ii) the cost for computing the estimator, (iii) the cost for making one prediction (i.e. computing f (x) for any x): Construction of the feature matrix Computing the regression function Making one prediction Initial domain NK Cx(DK , FN , P ) N Compressed domain N KM Cx(DK , GM , P ) NM Note that the values mentioned for the compressed domain are upper-bounds on the real complexity and do not take into account the possible sparsity of the projection matrix A (which would speed up matrix computations, see e.g. [2, 1]). 3 Compressed Least-Squares Regression We now analyze the specific case of Least-Squares Regression. 3.1 Excess risk of ordinary Least Squares regression In order to bound the estimation error, we follow the approach of [13] which truncates (up to the level ±L where L is a bound, assumed to be known, on ||f ∗ ||∞ ) the prediction of the LS regression function. The ordinary LS regression provides the regression function fα where b α= argmin α∈argminα ∈ RN ||α||. ||Y −Φα || Note that ΦΦT α = ΦT Y , hence α = Φ† Y ∈ RN where Φ† is the Penrose pseudo-inverse of Φ1 . def Then the truncated predictor is: fL (x) = TL [fα (x)], where b def TL (u) = u if |u| ≤ L, L sign(u) otherwise. Truncation after the computation of the parameter α ∈ RN , which is the solution of an unconstrained optimization problem, is easier than solving an optimization problem under the constraint that ||α|| is small (which is the approach followed in [23]) and allows for consistency results and prediction bounds. Indeed, the excess risk of fL is bounded as 1 + log K E(||f − f ∗ ||2 ) ≤ c max{σ2 , L2 } N + 8 inf ||f − f ∗ ||2 (5) P P f ∈FN K where a bound on c is 9216 (see [13]). We have a simpler bound when we consider the expectation EY conditionally on the input data: N EY (||f − f ∗ ||2 K ) ≤ σ2 + inf ||f − f ∗ ||2 K (6) P P K f ∈F Remark: Note that because we use the quadratic loss function, by following the analysis in [3], or by deriving tight bounds on the Rademacher complexity [14] and following Theorem 5.2 of Koltchinskii’s Saint Flour course, it is actually possible to state assumptions under which we can remove the log K term in (5). We will not further detail such bounds since our motivation here is not to provide the tightest possible bounds, but rather to show how the excess risk bound for LS regression in the initial domain extends to the compressed domain. 1 In the full rank case, Φ† = (ΦT Φ)−1 ΦT when K ≥ N and Φ† = ΦT (ΦΦT )−1 when K ≤ N 5 3.2 Compressed Least-Squares Regression (CLSR) CLSR is defined as the ordinary LSR in the compressed domain. Let β = Ψ† Y ∈ RM , where Ψ is the K × M matrix with elements (ψm (xk ))1≤m≤M,1≤k≤K . The CLSR estimate is defined as def gL (x) = TL [gβ (x)]. From Theorem 1, (5) and (6), we deduce the following excess risk bounds for b the CLSR estimate: √ ||α+ || E||ϕ(X)||2 K log(8K/δ) Corollary 1 For any δ > 0, set M = 8 max(σ,L) c (1+log K) . Then whenever M ≥ 15 log(8K/δ), with probability at least 1 − δ, the expected excess risk of the CLSR estimate is bounded as √ E(||gL − f ∗ ||2 ) ≤ 16 c max{σ, L}||α+ || E||ϕ(X)||2 P × 1+ supx ||ϕ(x)||2 E||ϕ(X)||2 (1 + log K) log(8K/δ) K log 4/δ + 8 inf ||f − f ∗ ||2 . P f ∈FN 2K (7) √ ||α+ || E||ϕ(X)||2 Now set M = 8K log(8K/δ). Assume N > K and that the features (ϕk )1≤k≤K σ are linearly independent. Then whenever M ≥ 15 log(8K/δ), with probability at least 1 − δ, the expected excess risk of the CLSR estimate conditionally on the input samples is upper bounded as 2 log(8K/δ) supx ||ϕ(x)||2 1+ K E||ϕ(X)||2 EY (||gL − f ∗ ||2 K ) ≤ 4σ||α+ || E||ϕ(X)||2 P log 4/δ . 2K Proof: Whenever M ≥ 15 log(8K/δ) we deduce from Theorem 1 and (5) that the excess risk of gL is bounded as E(||gL − f ∗ ||2 ) ≤ c max{σ2 , L2 } P +8 8 log(8K/δ) + 2 ||α || M 1 + log K M K E||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x log 4/δ + inf ||f − f ∗ ||2 . P f ∈FN 2K By optimizing on M , we deduce (7). Similarly, using (6) we deduce the following bound on EY (||gL − f ∗ ||2 K ): P σ2 8 M + log(8K/δ)||α+ ||2 K M E||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x log 4/δ + inf ||f − f ∗ ||2 K . P f ∈FN 2K By optimizing on M and noticing that inf f ∈FN ||f − f ∗ ||2 K = 0 whenever N > K and the features P (ϕk )1≤k≤K are linearly independent, we deduce the second result. Remark 1 Note that the second term in the parenthesis of (7) is negligible whenever K Thus we have the expected excess risk log K/δ + inf ||f − f ∗ ||2 . P f ∈FN K E(||gL − f ∗ ||2 ) = O ||α+ || E||ϕ(X)||2 √ P log 1/δ. (8) The choice of M in the previous corollary depends on ||α+ || and E||ϕ(X)|| which are a priori unknown (since f ∗ and PX are unknown). If we set M independently of ||α+ ||, then an additional multiplicative factor of ||α+ || appears in the bound, and if we replace E||ϕ(X)|| by its bound supx ||ϕ(x)|| (which is known) then this latter factor will appear instead of the former in the bound. Complexity of CLSR: The complexity of LSR for computing the regression function in the compressed domain only depends on M and K, and is (see e.g. [4]) Cx(DK , GM , P ) = O(M K 2 ) which √ is of order O(K 5/2 ) when we choose the optimized number of projections M = O( K). However the leading term when using CLSR is the cost for building the Ψ matrix: O(N K 3/2 ). 6 4 4.1 Discussion The factor ||α+ || E||ϕ(X)||2 In light of Corollary 1, the important factor which will determine whether the CLSR provides low generalization error or not is ||α+ || E||ϕ(X)||2 . This factor indicates that a good set of features (for CLSR) should be such that the norm of those features as well as the norm of the parameter α+ of the projection of f ∗ onto the span of those features should be small. A natural question is whether this product can be made small for appropriate choices of features. We now provide two specific cases for which this is actually the case: (1) when the features are rescaled orthonormal basis functions, and (2) when the features are specific wavelet functions. In both cases, we relate the bound to an assumption of regularity on the function f ∗ , and show that the dependency w.r.t. N decreases when the regularity increases, and may even vanish. Rescaled Orthonormal Features: Consider a set of orthonormal functions (ηi )i≥1 w.r.t a measure µ, i.e. ηi , ηj µ = δi,j . In addition we assume that the law of the input data is dominated by µ, i.e. PX ≤ Cµ where C is a constant. For instance, this is the case when the set X is compact, µ is the uniform measure and PX has bounded density. def We define the set of N features as: ϕi = ci ηi , where ci > 0, for i ∈ {1, . . . , N }. Then any f ∈ FN decomposes as f = 2 we have: ||α|| = ||α+ ||2 E||ϕ||2 ≤ C N bi 2 i=1 ( ci ) N bi 2 i=1 ( ci ) and N i=1 N bi i=1 ci ϕi , where N 2 2 i=1 ci X ηi (x)dPX (x) f, ηi ηi = E||ϕ|| = 2 def bi = f, ηi . Thus ≤ C N 2 i=1 ci . Thus N 2 i=1 ci . Now, linear approximation theory (Jackson-type theorems) tells us that assuming a function f ∗ ∈ L2 (µ) is smooth, it may be decomposed onto the span of the N first (ηi )i∈{1,...,N } functions with decreasing coefficients |bi | ≤ i−λ for some λ ≥ 0 that depends on the smoothness of f ∗ . For example the class of functions with bounded total variation may be decomposed with Fourier basis (in dimension 1) with coefficients |bi | ≤ ||f ||V /(2πi). Thus here λ = 1. Other classes (such as Sobolev spaces) lead to larger values of λ related to the order of differentiability. √ N By choosing ci = i−λ/2 , we have ||α+ || E||ϕ||2 ≤ C i=1 i−λ . Thus if λ > 1, then this term is bounded by a constant that does not depend on N . If λ = 1 then it is bounded by O(log N ), and if 0 < λ < 1, then it is bounded by O(N 1−λ ). However any orthonormal basis, even rescaled, would not necessarily yield a small ||α+ || E||ϕ||2 term (this is all the more true when the dimension of X is large). The desired property that the coefficients (α+ )i of the decomposition of f ∗ rapidly decrease to 0 indicates that hierarchical bases, such as wavelets, that would decompose the function at different scales, may be interesting. Wavelets: Consider an infinite family of wavelets in [0, 1]: (ϕ0 ) = (ϕ0 ) (indexed by n ≥ 1 or n h,l equivalently by the scale h ≥ 0 and translation 0 ≤ l ≤ 2h − 1) where ϕ0 (x) = 2h/2 ϕ0 (2h x − l) h,l and ϕ0 is the mother wavelet. Then consider N = 2H features (ϕh,l )1≤h≤H defined as the rescaled def wavelets ϕh,l = ch 2−h/2 ϕ0 , where ch > 0 are some coefficients. Assume the mother wavelet h,l is C p (for p ≥ 1), has at least p vanishing moments, and that for all h ≥ 0, supx l ϕ0 (2h x − l)2 ≤ 1. Then the following result (proof in the supplementary material) provides a bound on supx∈X ||ϕ(x)||2 (thus on E||ϕ(X)||2 ) by a constant independent of N : Proposition 2 Assume that f ∗ is (L, γ)-Lipschitz (i.e. for all v ∈ X there exists a polynomial pv of degree γ such that for all u ∈ X , |f (u) − pv (u)| ≤ L|u − v|γ ) with 1/2 < γ ≤ p. Then setting γ 1 ch = 2h(1−2γ)/4 , we have ||α+ || supx ||ϕ(x)|| ≤ L 1−22 |ϕ0 |, which is independent of N . 1/2−γ 0 Notice that the Haar walevets has p = 1 vanishing moment but is not C 1 , thus the Proposition does not apply directly. However direct computations show that if f ∗ is L-Lipschitz (i.e. γ = 1) then L 0 αh,l ≤ L2−3h/2−2 , and thus ||α+ || supx ||ϕ(x)|| ≤ 4(1−2−1/2 ) with ch = 2−h/4 . 7 4.2 Comparison with other methods In the case when the factor ||α+ || E||ϕ(X)||2 does not depend on N (such as in the previous example), the bound (8) on the excess risk of CLSR states that the estimation error (assessed in √ √ terms of FN ) of CLSR is O(log K/ K). It is clear that whenever N > K (which is the case of interest here), this is better than the ordinary LSR in the initial domain, whose estimation error is O(N log K/K). It is difficult to compare this result with LASSO (or the Dantzig selector that has similar properties [5]) for which an important aspect is to design sparse regression functions or to recover a solution assumed to be sparse. From [12, 15, 24] one deduces that under some assumptions, the estimation error of LASSO is of order S log N where S is the sparsity (number of non-zero coefficients) of the K√ best regressor f + in FN . If S < K then LASSO is more interesting than CLSR in terms of excess risk. Otherwise CLSR may be an interesting alternative although this method does not make any assumption about the sparsity of f + and its goal is not to recover a possible sparse f + but only to make good predictions. However, in some sense our method finds a sparse solution in the fact that the regression function gL lies in a space GM of small dimension M N and can thus be expressed using only M coefficients. Now in terms of numerical complexity, CLSR requires O(N K 3/2 ) operations to build the matrix and compute the regression function, whereas according to [18], the (heuristical) complexity of the LASSO algorithm is O(N K 2 ) in the best cases (assuming that the number of steps required for convergence is O(K), which is not proved theoretically). Thus CLSR seems to be a good and simple competitor to LASSO. 5 Conclusion We considered the case when the number of features N is larger than the number of data K. The result stated in Theorem 1 enables to analyze the excess risk of any linear regression algorithm (LS or its penalized versions) performed in the compressed domain GM versus in the initial space FN . In the compressed domain the estimation error is reduced but an additional (controlled) approximation error (when compared to the best regressor in FN ) comes into the picture. In the case of LS regression, when the term ||α+ || E||ϕ(X)||2 has a mild dependency on N , then by choosing a √ random subspace of dimension M = O( K), CLSR has an estimation error (assessed in terms of √ FN ) bounded by O(log K/ K) and has numerical complexity O(N K 3/2 ). In short, CLSR provides an alternative to usual penalization techniques where one first selects a random subspace of lower dimension and then performs an empirical risk minimizer in this subspace. Further work needs to be done to provide additional settings (when the space X is of dimension > 1) for which the term ||α+ || E||ϕ(X)||2 is small. Acknowledgements: The authors wish to thank Laurent Jacques for numerous comments and Alessandro Lazaric and Mohammad Ghavamzadeh for exciting discussions. This work has been supported by French National Research Agency (ANR) through COSINUS program (project EXPLO-RA, ANR-08-COSI-004). References [1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4):671–687, June 2003. [2] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast JohnsonLindenstrauss transform. In STOC ’06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 557–563, New York, NY, USA, 2006. ACM. [3] Jean-Yves Audibert and Olivier Catoni. Risk bounds in linear regression through pac-bayesian truncation. Technical Report HAL : hal-00360268, 2009. [4] David Bau III and Lloyd N. Trefethen. Numerical linear algebra. Philadelphia: Society for Industrial and Applied Mathematics, 1997. 8 [5] Peter J. Bickel, Ya’acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. To appear in Annals of Statistics, 2008. [6] Avrim Blum. Random projection, margins, kernels, and feature-selection. Subspace, Latent Structure and Feature Selection, pages 52–68, 2006. [7] Robert Calderbank, Sina Jafarpour, and Robert Schapire. Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain. Technical Report, 2009. [8] Emmanuel Candes and Terence Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 35:2313, 2007. [9] Emmanuel J. Candes and Justin K. Romberg. Signal recovery from random projections. volume 5674, pages 76–86. SPIE, 2005. [10] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20:33–61, 1998. [11] Mark A. Davenport, Michael B. Wakin, and Richard G. Baraniuk. Detection and estimation with compressive measurements. Technical Report TREE 0610, Department of Electrical and Computer Engineering, Rice University, 2006. [12] E. Greenshtein and Y. Ritov. Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization. Bernoulli, 10:971–988, 2004. [13] L. Gy¨ rfi, M. Kohler, A. Krzy˙ ak, and H. Walk. A distribution-free theory of nonparametric o z regression. Springer-Verlag, 2002. [14] Sham M. Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction: Risk bounds, margin bounds, and regularization. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Leon Bottou, editors, Neural Information Processing Systems, pages 793– 800. MIT Press, 2008. [15] Yuval Nardi and Alessandro Rinaldo. On the asymptotic properties of the group Lasso estimator for linear models. Electron. J. Statist., 2:605–633, 2008. [16] D. Pollard. Convergence of Stochastic Processes. Springer Verlag, New York, 1984. [17] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Neural Information Processing Systems, 2007. [18] Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths. Annals of Statistics, 35:1012, 2007. [19] Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B, 58:267–288, 1994. [20] A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4, pages 1035–1038, 1963. [21] Yaakov Tsaig and David L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289–1306, 2006. [22] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc., New York, NY, USA, 1995. [23] Tong Zhang. Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research, 2:527–550, 2002. [24] Tong Zhang. Some sharp performance bounds for least squares regression with L1 regularization. To appear in Annals of Statistics, 2009. [25] Shuheng Zhou, John D. Lafferty, and Larry A. Wasserman. Compressed regression. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors, Neural Information Processing Systems. MIT Press, 2007. 9
2 0.71509504 37 nips-2009-Asymptotically Optimal Regularization in Smooth Parametric Models
Author: Percy Liang, Guillaume Bouchard, Francis R. Bach, Michael I. Jordan
Abstract: Many types of regularization schemes have been employed in statistical learning, each motivated by some assumption about the problem domain. In this paper, we present a unified asymptotic analysis of smooth regularizers, which allows us to see how the validity of these assumptions impacts the success of a particular regularizer. In addition, our analysis motivates an algorithm for optimizing regularization parameters, which in turn can be analyzed within our framework. We apply our analysis to several examples, including hybrid generative-discriminative learning and multi-task learning. 1
3 0.62817025 67 nips-2009-Directed Regression
Author: Yi-hao Kao, Benjamin V. Roy, Xiang Yan
Abstract: When used to guide decisions, linear regression analysis typically involves estimation of regression coefficients via ordinary least squares and their subsequent use to make decisions. When there are multiple response variables and features do not perfectly capture their relationships, it is beneficial to account for the decision objective when computing regression coefficients. Empirical optimization does so but sacrifices performance when features are well-chosen or training data are insufficient. We propose directed regression, an efficient algorithm that combines merits of ordinary least squares and empirical optimization. We demonstrate through a computational study that directed regression can generate significant performance gains over either alternative. We also develop a theory that motivates the algorithm. 1
4 0.56686014 98 nips-2009-From PAC-Bayes Bounds to KL Regularization
Author: Pascal Germain, Alexandre Lacasse, Mario Marchand, Sara Shanian, François Laviolette
Abstract: We show that convex KL-regularized objective functions are obtained from a PAC-Bayes risk bound when using convex loss functions for the stochastic Gibbs classifier that upper-bound the standard zero-one loss used for the weighted majority vote. By restricting ourselves to a class of posteriors, that we call quasi uniform, we propose a simple coordinate descent learning algorithm to minimize the proposed KL-regularized cost function. We show that standard p -regularized objective functions currently used, such as ridge regression and p -regularized boosting, are obtained from a relaxation of the KL divergence between the quasi uniform posterior and the uniform prior. We present numerical experiments where the proposed learning algorithm generally outperforms ridge regression and AdaBoost. 1
5 0.51039505 64 nips-2009-Data-driven calibration of linear estimators with minimal penalties
Author: Sylvain Arlot, Francis R. Bach
Abstract: This paper tackles the problem of selecting among several linear estimators in non-parametric regression; this includes model selection for linear regression, the choice of a regularization parameter in kernel ridge regression or spline smoothing, and the choice of a kernel in multiple kernel learning. We propose a new algorithm which first estimates consistently the variance of the noise, based upon the concept of minimal penalty which was previously introduced in the context of model selection. Then, plugging our variance estimate in Mallows’ CL penalty is proved to lead to an algorithm satisfying an oracle inequality. Simulation experiments with kernel ridge regression and multiple kernel learning show that the proposed algorithm often improves significantly existing calibration procedures such as 10-fold cross-validation or generalized cross-validation. 1
6 0.5069257 157 nips-2009-Multi-Label Prediction via Compressed Sensing
7 0.50585836 91 nips-2009-Fast, smooth and adaptive regression in metric spaces
8 0.48720446 20 nips-2009-A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers
9 0.45077601 69 nips-2009-Discrete MDL Predicts in Total Variation
10 0.44938791 245 nips-2009-Thresholding Procedures for High Dimensional Variable Selection and Statistical Estimation
11 0.44822642 105 nips-2009-Grouped Orthogonal Matching Pursuit for Variable Selection and Prediction
12 0.43231237 185 nips-2009-Orthogonal Matching Pursuit From Noisy Random Measurements: A New Analysis
13 0.42872971 101 nips-2009-Generalization Errors and Learning Curves for Regression with Multi-task Gaussian Processes
14 0.40767854 71 nips-2009-Distribution-Calibrated Hierarchical Classification
15 0.39320293 36 nips-2009-Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing
16 0.39051875 108 nips-2009-Heterogeneous multitask learning with joint sparsity constraints
17 0.38414755 207 nips-2009-Robust Nonparametric Regression with Metric-Space Valued Output
18 0.37881619 138 nips-2009-Learning with Compressible Priors
19 0.37849084 180 nips-2009-On the Convergence of the Concave-Convex Procedure
20 0.35889864 222 nips-2009-Sparse Estimation Using General Likelihoods and Non-Factorial Priors
topicId topicWeight
[(23, 0.014), (24, 0.069), (25, 0.083), (35, 0.034), (36, 0.085), (39, 0.024), (58, 0.135), (61, 0.041), (71, 0.068), (81, 0.015), (86, 0.052), (89, 0.258), (91, 0.033)]
simIndex simValue paperId paperTitle
same-paper 1 0.82609427 55 nips-2009-Compressed Least-Squares Regression
Author: Odalric Maillard, Rémi Munos
Abstract: We consider the problem of learning, from K data, a regression function in a linear space of high dimension N using projections onto a random subspace of lower dimension M . From any algorithm minimizing the (possibly penalized) empirical risk, we provide bounds on the excess risk of the estimate computed in the projected subspace (compressed domain) in terms of the excess risk of the estimate built in the high-dimensional space (initial domain). We show that solving the problem in the compressed domain instead of the initial domain reduces the estimation error at the price of an increased (but controlled) approximation error. We apply the analysis to Least-Squares (LS) regression and discuss the excess risk and numerical complexity of the resulting “Compressed Least Squares Re√ gression” (CLSR) in terms of N , K, and M . When we choose M = O( K), we √ show that CLSR has an estimation error of order O(log K/ K). 1 Problem setting We consider a regression problem where we observe data DK = ({xk , yk }k≤K ) (where xk ∈ X and yk ∈ R) are assumed to be independently and identically distributed (i.i.d.) from some distribution P , where xk ∼ PX and yk = f ∗ (xk ) + ηk (xk ), where f ∗ is the (unknown) target function, and ηk a centered independent noise of variance σ 2 (xk ). For a given class of functions F, and f ∈ F, we define the empirical (quadratic) error def LK (f ) = 1 K K [yk − f (xk )]2 , k=1 and the generalization (quadratic) error def L(f ) = E(X,Y )∼P [(Y − f (X))2 ]. Our goal is to return a regression function f ∈ F with lowest possible generalization error L(f ). Notations: In the sequel we will make use of the following notations about norms: for h : X → R, we write ||h||P for the L2 norm of h with respect to (w.r.t.) the measure P , ||h||PK for the L2 norm n 2 1/2 of h w.r.t. the empirical measure PK , and for u ∈ Rn , ||u|| denotes by default . i=1 ui The measurable function minimizing the generalization error is f ∗ , but it may be the case that f ∗ ∈ F. For any regression function f , we define the excess risk / L(f ) − L(f ∗ ) = ||f − f ∗ ||2 , P which decomposes as the sum of the estimation error L(f ) − inf f ∈F L(f ) and the approximation error inf f ∈F L(f ) − L(f ∗ ) = inf f ∈F ||f − f ∗ ||2 which measures the distance between f ∗ and the P function space F. 1 In this paper we consider a class of linear functions FN defined as the span of a set of N functions def def N {ϕn }1≤n≤N called features. Thus: FN = {fα = n=1 αn ϕn , α ∈ RN }. When the number of data K is larger than the number of features N , the ordinary Least-Squares Regression (LSR) provides the LS solution fα which is the minimizer of the empirical risk LK (f ) b 1 in FN . Note that here LK (fα ) rewrites K ||Φα − Y ||K where Φ is the K × N matrix with elements (ϕn (xk ))1≤n≤N,1≤k≤K and Y the K-vector with components (yk )1≤k≤K . Usual results provide bound on the estimation error as a function of the capacity of the function space and the number of data. In the case of linear approximation, the capacity measures (such as covering numbers [23] or the pseudo-dimension [16]) depend on the number of features (for example the pseudo-dimension is at most N + 1). For example, let fα be a LS estimate (minimizer of LK b in FN ), then (a more precise statement will be stated later in Subsection 3) the expected estimation error is bounded as: N log K E L(fα ) − inf L(f ) ≤ cσ2 , (1) b f ∈FN K def where c is a universal constant, σ = supx∈X σ(x), and the expectation is taken with respect to P . Now, the excess risk is the sum of this estimation error and the approximation error inf f ∈FN ||f − f ∗ ||P of the class FN . Since the later usually decreases when the number of features N increases [13] (e.g. when N FN is dense in L2 (P )), we see the usual tradeoff between small estimation error (low N ) and small approximation error (large N ). In this paper we are interested in the setting when N is large so that the approximation error is small. Whenever N is larger than K we face the overfitting problem since there are more parameters than actual data (more variables than constraints), which is illustrated in the bound (1) which provides no information about the generalization ability of any LS estimate. In addition, there are many minimizers (in fact a vector space of same dimension as the null space of ΦT Φ) of the empirical risk. To overcome the problem, several approaches have been proposed in the literature: • LS solution with minimal norm: The solution is the minimizer of the empirical error with minimal (l1 or l2 )-norm: α = arg minΦα=Y ||α||1 or 2 , (or a robust solution arg min||Φα−Y ||2 ≤ε ||α||1 ). The choice of 2 -norm yields the ordinary LS solution. The choice of 1 -norm has been used for generating sparse solutions (e.g. the Basis Pursuit [10]), and assuming that the target function admits a sparse decomposition, the field of Compressed Sensing [9, 21] provides sufficient conditions for recovering the exact solution. However, such conditions (e.g. that Φ possesses a Restricted Isometric Property (RIP)) does not hold in general in this regression setting. On another aspect, solving these problems (both for l1 or l2 -norm) when N is large is numerically expensive. • Regularization. The solution is the minimizer of the empirical error plus a penalty term, for example f = arg min LK (f ) + λ||f ||p , for p = 1 or 2. p f ∈FN where λ is a parameter and usual choices for the norm are 2 (ridge-regression [20]) and 1 (LASSO [19]). A close alternative is the Dantzig selector [8, 5] which solves: α = arg min||α||1 ≤λ ||ΦT (Y − Φα)||∞ . The numerical complexity and generalization bounds of those methods depend on the sparsity of the target function decomposition in FN . Now if we possess a sequence of function classes (FN )N ≥1 with increasing capacity, we may perform structural risk minimization [22] by solving in each model the empirical risk penalized by a term that depends on the size of the model: fN = arg minf ∈FN ,N ≥1 LK (f ) + pen(N, K), where the penalty term measures the capacity of the function space. In this paper we follow another approach where instead of searching in the large space FN (where N > K) for a solution that minimizes the empirical error plus a penalty term, we simply search for the empirical error minimizer in a (randomly generated) lower dimensional subspace GM ⊂ FN (where M < K). Our contribution: We consider a set of M random linear combinations of the initial N features and perform our favorite LS regression algorithm (possibly regularized) using those “compressed 2 features”. This is equivalent to projecting the K points {ϕ(xk ) ∈ RN , k = 1..K} from the initial domain (of size N ) onto a random subspace of dimension M , and then performing the regression in the “compressed domain” (i.e. span of the compressed features). This is made possible because random projections approximately preserve inner products between vectors (by a variant of the Johnson-Lindenstrauss Lemma stated in Proposition 1. Our main result is a bound on the excess risk of a linear estimator built in the compressed domain in terms of the excess risk of the linear estimator built in the initial domain (Section 2). We further detail the case of ordinary Least-Squares Regression (Section 3) and discuss, in terms of M , N , K, the different tradeoffs concerning the excess risk (reduced estimation error in the compressed domain versus increased approximation error introduced by the random projection) and the numerical complexity (reduced complexity of solving the LSR in the compressed domain versus the additional load of performing the projection). √ As a consequence, we show that by choosing M = O( K) projections we define a Compressed Least-Squares Regression which uses O(N K 3/2 ) elementary operations to compute a regression √ function with estimation error (relatively to the initial function space FN ) of order log K/ K up to a multiplicative factor which depends on the best approximation of f ∗ in FN . This is competitive with the best methods, up to our knowledge. Related works: Using dimension reduction and random projections in various learning areas has received considerable interest over the past few years. In [7], the authors use a SVM algorithm in a compressed space for the purpose of classification and show that their resulting algorithm has good generalization properties. In [25], the authors consider a notion of compressed linear regression. For data Y = Xβ + ε, where β is the target and ε a standard noise, they use compression of the set of data, thus considering AY = AXβ + Aε, where A has a Restricted Isometric Property. They provide an analysis of the LASSO estimator built from these compressed data, and discuss a property called sparsistency, i.e. the number of random projections needed to recover β (with high probability) when it is sparse. These works differ from our approach in the fact that we do not consider a compressed (input and/or output) data space but a compressed feature space instead. In [11], the authors discuss how compressed measurements may be useful to solve many detection, classification and estimation problems without having to reconstruct the signal ever. Interestingly, they make no assumption about the signal being sparse, like in our work. In [6, 17], the authors show how to map a kernel k(x, y) = ϕ(x) · ϕ(y) into a low-dimensional space, while still approximately preserving the inner products. Thus they build a low-dimensional feature space specific for (translation invariant) kernels. 2 Linear regression in the compressed domain We remind that the initial set of features is {ϕn : X → def N FN = {fα = n=1 αn ϕn , α ∈ components (ϕn (x))n≤N . Let us R, 1 ≤ n ≤ N } and the initial domain R } is the span of those features. We write ϕ(x) the N -vector of N now define the random projection. Let A be a M × N matrix of i.i.d. elements drawn for some distribution ρ. Examples of distributions are: • Gaussian random variables N (0, 1/M ), √ • ± Bernoulli distributions, i.e. which takes values ±1/ M with equal probability 1/2, • Distribution taking values ± 3/M with probability 1/6 and 0 with probability 2/3. The following result (proof in the supplementary material) states the property that inner-product are approximately preserved through random projections (this is a simple consequence of the JohnsonLindenstrauss Lemma): Proposition 1 Let (uk )1≤k≤K and v be vectors of RN . Let A be a M × N matrix of i.i.d. elements drawn from one of the previously defined distributions. For any ε > 0, δ > 0, for M ≥ ε2 1 ε3 log 4K , we have, with probability at least 1 − δ, for all k ≤ K, δ 4 − 6 |Auk · Av − uk · v| ≤ ε||uk || ||v||. 3 def We now introduce the set of M compressed features (ψm )1≤m≤M such that ψm (x) = N We also write ψ(x) the M -vector of components (ψm (x))m≤M . Thus n=1 Am,n ϕn (x). ψ(x) = Aϕ(x). We define the compressed domain GM = {gβ = m=1 βm ψm , β ∈ RM } the span of the compressed features (vector space of dimension at most M ). Note that each ψm ∈ FN , thus GM is a subspace of FN . def 2.1 M Approximation error We now compare the approximation error assessed in the compressed domain GM versus in the initial space FN . This applies to the linear algorithms mentioned in the introduction such as ordinary LS regression (analyzed in details in Section 3), but also its penalized versions, e.g. LASSO and ridge regression. Define α+ = arg minα∈RN L(fα ) − L(f ∗ ) the parameter of the best regression function in FN . Theorem 1 For any δ > 0, any M ≥ 15 log(8K/δ), let A be a random M × N matrix defined like in Proposition 1, and GM be the compressed domain resulting from this choice of A. Then with probability at least 1 − δ, inf ||g−f ∗ ||2 ≤ P g∈GM 8 log(8K/δ) + 2 ||α || M E ||ϕ(X)||2 +2 sup ||ϕ(x)||2 x∈X log 4/δ + inf ||f −f ∗ ||2 . P f ∈FN 2K (2) This theorem shows the tradeoff in terms of estimation and approximation errors for an estimator g obtained in the compressed domain compared to an estimator f obtained in the initial domain: • Bounds on the estimation error of g in GM are usually smaller than that of f in FN when M < N (since the capacity of FN is larger than that of GM ). • Theorem 1 says that the approximation error assessed in GM increases by at most O( log(K/δ) )||α+ ||2 E||ϕ(X)||2 compared to that in FN . M def def Proof: Let us write f + = fα+ = arg minf ∈FN ||f − f ∗ ||P and g + = gAα+ . The approximation error assessed in the compressed domain GM is bounded as inf ||g − f ∗ ||2 P g∈GM ≤ ||g + − f ∗ ||2 = ||g + − f + ||2 + ||f + − f ∗ ||2 , P P P (3) since f + is the orthogonal projection of f ∗ on FN and g + belongs to FN . We now bound ||g + − def def f + ||2 using concentration inequalities. Define Z(x) = Aα+ · Aϕ(x) − α+ · ϕ(x). Define ε2 = P log(8K/δ) 8 M log(8K/δ). For M ≥ 15 log(8K/δ) we have ε < 3/4 thus M ≥ ε2 /4−ε3 /6 . Proposition 1 applies and says that on an event E of probability at least 1 − δ/2, we have for all k ≤ K, def |Z(xk )| ≤ ε||α+ || ||ϕ(xk )|| ≤ ε||α+ || sup ||ϕ(x)|| = C (4) x∈X On the event E, we have with probability at least 1 − δ , ||g + − f + ||2 P = ≤ ≤ EX∼PX |Z(X)|2 ≤ ε2 ||α+ ||2 ε2 ||α+ ||2 1 K 1 K K |Z(xk )|2 + C 2 k=1 K ||ϕ(xk )||2 + sup ||ϕ(x)||2 x∈X k=1 E ||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x∈X log(2/δ ) 2K log(2/δ ) 2K log(2/δ ) . 2K where we applied two times Chernoff-Hoeffding’s inequality. Combining with (3), unconditioning, and setting δ = δ/2 then with probability at least (1 − δ/2)(1 − δ ) ≥ 1 − δ we have (2). 4 2.2 Computational issues We now discuss the relative computational costs of a given algorithm applied either in the initial or in the compressed domain. Let us write Cx(DK , FN , P ) the complexity (e.g. number of elementary operations) of an algorithm A to compute the regression function f when provided with the data DK and function space FN . We plot in the table below, both for the initial and the compressed versions of the algorithm A, the order of complexity for (i) the cost for building the feature matrix, (ii) the cost for computing the estimator, (iii) the cost for making one prediction (i.e. computing f (x) for any x): Construction of the feature matrix Computing the regression function Making one prediction Initial domain NK Cx(DK , FN , P ) N Compressed domain N KM Cx(DK , GM , P ) NM Note that the values mentioned for the compressed domain are upper-bounds on the real complexity and do not take into account the possible sparsity of the projection matrix A (which would speed up matrix computations, see e.g. [2, 1]). 3 Compressed Least-Squares Regression We now analyze the specific case of Least-Squares Regression. 3.1 Excess risk of ordinary Least Squares regression In order to bound the estimation error, we follow the approach of [13] which truncates (up to the level ±L where L is a bound, assumed to be known, on ||f ∗ ||∞ ) the prediction of the LS regression function. The ordinary LS regression provides the regression function fα where b α= argmin α∈argminα ∈ RN ||α||. ||Y −Φα || Note that ΦΦT α = ΦT Y , hence α = Φ† Y ∈ RN where Φ† is the Penrose pseudo-inverse of Φ1 . def Then the truncated predictor is: fL (x) = TL [fα (x)], where b def TL (u) = u if |u| ≤ L, L sign(u) otherwise. Truncation after the computation of the parameter α ∈ RN , which is the solution of an unconstrained optimization problem, is easier than solving an optimization problem under the constraint that ||α|| is small (which is the approach followed in [23]) and allows for consistency results and prediction bounds. Indeed, the excess risk of fL is bounded as 1 + log K E(||f − f ∗ ||2 ) ≤ c max{σ2 , L2 } N + 8 inf ||f − f ∗ ||2 (5) P P f ∈FN K where a bound on c is 9216 (see [13]). We have a simpler bound when we consider the expectation EY conditionally on the input data: N EY (||f − f ∗ ||2 K ) ≤ σ2 + inf ||f − f ∗ ||2 K (6) P P K f ∈F Remark: Note that because we use the quadratic loss function, by following the analysis in [3], or by deriving tight bounds on the Rademacher complexity [14] and following Theorem 5.2 of Koltchinskii’s Saint Flour course, it is actually possible to state assumptions under which we can remove the log K term in (5). We will not further detail such bounds since our motivation here is not to provide the tightest possible bounds, but rather to show how the excess risk bound for LS regression in the initial domain extends to the compressed domain. 1 In the full rank case, Φ† = (ΦT Φ)−1 ΦT when K ≥ N and Φ† = ΦT (ΦΦT )−1 when K ≤ N 5 3.2 Compressed Least-Squares Regression (CLSR) CLSR is defined as the ordinary LSR in the compressed domain. Let β = Ψ† Y ∈ RM , where Ψ is the K × M matrix with elements (ψm (xk ))1≤m≤M,1≤k≤K . The CLSR estimate is defined as def gL (x) = TL [gβ (x)]. From Theorem 1, (5) and (6), we deduce the following excess risk bounds for b the CLSR estimate: √ ||α+ || E||ϕ(X)||2 K log(8K/δ) Corollary 1 For any δ > 0, set M = 8 max(σ,L) c (1+log K) . Then whenever M ≥ 15 log(8K/δ), with probability at least 1 − δ, the expected excess risk of the CLSR estimate is bounded as √ E(||gL − f ∗ ||2 ) ≤ 16 c max{σ, L}||α+ || E||ϕ(X)||2 P × 1+ supx ||ϕ(x)||2 E||ϕ(X)||2 (1 + log K) log(8K/δ) K log 4/δ + 8 inf ||f − f ∗ ||2 . P f ∈FN 2K (7) √ ||α+ || E||ϕ(X)||2 Now set M = 8K log(8K/δ). Assume N > K and that the features (ϕk )1≤k≤K σ are linearly independent. Then whenever M ≥ 15 log(8K/δ), with probability at least 1 − δ, the expected excess risk of the CLSR estimate conditionally on the input samples is upper bounded as 2 log(8K/δ) supx ||ϕ(x)||2 1+ K E||ϕ(X)||2 EY (||gL − f ∗ ||2 K ) ≤ 4σ||α+ || E||ϕ(X)||2 P log 4/δ . 2K Proof: Whenever M ≥ 15 log(8K/δ) we deduce from Theorem 1 and (5) that the excess risk of gL is bounded as E(||gL − f ∗ ||2 ) ≤ c max{σ2 , L2 } P +8 8 log(8K/δ) + 2 ||α || M 1 + log K M K E||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x log 4/δ + inf ||f − f ∗ ||2 . P f ∈FN 2K By optimizing on M , we deduce (7). Similarly, using (6) we deduce the following bound on EY (||gL − f ∗ ||2 K ): P σ2 8 M + log(8K/δ)||α+ ||2 K M E||ϕ(X)||2 + 2 sup ||ϕ(x)||2 x log 4/δ + inf ||f − f ∗ ||2 K . P f ∈FN 2K By optimizing on M and noticing that inf f ∈FN ||f − f ∗ ||2 K = 0 whenever N > K and the features P (ϕk )1≤k≤K are linearly independent, we deduce the second result. Remark 1 Note that the second term in the parenthesis of (7) is negligible whenever K Thus we have the expected excess risk log K/δ + inf ||f − f ∗ ||2 . P f ∈FN K E(||gL − f ∗ ||2 ) = O ||α+ || E||ϕ(X)||2 √ P log 1/δ. (8) The choice of M in the previous corollary depends on ||α+ || and E||ϕ(X)|| which are a priori unknown (since f ∗ and PX are unknown). If we set M independently of ||α+ ||, then an additional multiplicative factor of ||α+ || appears in the bound, and if we replace E||ϕ(X)|| by its bound supx ||ϕ(x)|| (which is known) then this latter factor will appear instead of the former in the bound. Complexity of CLSR: The complexity of LSR for computing the regression function in the compressed domain only depends on M and K, and is (see e.g. [4]) Cx(DK , GM , P ) = O(M K 2 ) which √ is of order O(K 5/2 ) when we choose the optimized number of projections M = O( K). However the leading term when using CLSR is the cost for building the Ψ matrix: O(N K 3/2 ). 6 4 4.1 Discussion The factor ||α+ || E||ϕ(X)||2 In light of Corollary 1, the important factor which will determine whether the CLSR provides low generalization error or not is ||α+ || E||ϕ(X)||2 . This factor indicates that a good set of features (for CLSR) should be such that the norm of those features as well as the norm of the parameter α+ of the projection of f ∗ onto the span of those features should be small. A natural question is whether this product can be made small for appropriate choices of features. We now provide two specific cases for which this is actually the case: (1) when the features are rescaled orthonormal basis functions, and (2) when the features are specific wavelet functions. In both cases, we relate the bound to an assumption of regularity on the function f ∗ , and show that the dependency w.r.t. N decreases when the regularity increases, and may even vanish. Rescaled Orthonormal Features: Consider a set of orthonormal functions (ηi )i≥1 w.r.t a measure µ, i.e. ηi , ηj µ = δi,j . In addition we assume that the law of the input data is dominated by µ, i.e. PX ≤ Cµ where C is a constant. For instance, this is the case when the set X is compact, µ is the uniform measure and PX has bounded density. def We define the set of N features as: ϕi = ci ηi , where ci > 0, for i ∈ {1, . . . , N }. Then any f ∈ FN decomposes as f = 2 we have: ||α|| = ||α+ ||2 E||ϕ||2 ≤ C N bi 2 i=1 ( ci ) N bi 2 i=1 ( ci ) and N i=1 N bi i=1 ci ϕi , where N 2 2 i=1 ci X ηi (x)dPX (x) f, ηi ηi = E||ϕ|| = 2 def bi = f, ηi . Thus ≤ C N 2 i=1 ci . Thus N 2 i=1 ci . Now, linear approximation theory (Jackson-type theorems) tells us that assuming a function f ∗ ∈ L2 (µ) is smooth, it may be decomposed onto the span of the N first (ηi )i∈{1,...,N } functions with decreasing coefficients |bi | ≤ i−λ for some λ ≥ 0 that depends on the smoothness of f ∗ . For example the class of functions with bounded total variation may be decomposed with Fourier basis (in dimension 1) with coefficients |bi | ≤ ||f ||V /(2πi). Thus here λ = 1. Other classes (such as Sobolev spaces) lead to larger values of λ related to the order of differentiability. √ N By choosing ci = i−λ/2 , we have ||α+ || E||ϕ||2 ≤ C i=1 i−λ . Thus if λ > 1, then this term is bounded by a constant that does not depend on N . If λ = 1 then it is bounded by O(log N ), and if 0 < λ < 1, then it is bounded by O(N 1−λ ). However any orthonormal basis, even rescaled, would not necessarily yield a small ||α+ || E||ϕ||2 term (this is all the more true when the dimension of X is large). The desired property that the coefficients (α+ )i of the decomposition of f ∗ rapidly decrease to 0 indicates that hierarchical bases, such as wavelets, that would decompose the function at different scales, may be interesting. Wavelets: Consider an infinite family of wavelets in [0, 1]: (ϕ0 ) = (ϕ0 ) (indexed by n ≥ 1 or n h,l equivalently by the scale h ≥ 0 and translation 0 ≤ l ≤ 2h − 1) where ϕ0 (x) = 2h/2 ϕ0 (2h x − l) h,l and ϕ0 is the mother wavelet. Then consider N = 2H features (ϕh,l )1≤h≤H defined as the rescaled def wavelets ϕh,l = ch 2−h/2 ϕ0 , where ch > 0 are some coefficients. Assume the mother wavelet h,l is C p (for p ≥ 1), has at least p vanishing moments, and that for all h ≥ 0, supx l ϕ0 (2h x − l)2 ≤ 1. Then the following result (proof in the supplementary material) provides a bound on supx∈X ||ϕ(x)||2 (thus on E||ϕ(X)||2 ) by a constant independent of N : Proposition 2 Assume that f ∗ is (L, γ)-Lipschitz (i.e. for all v ∈ X there exists a polynomial pv of degree γ such that for all u ∈ X , |f (u) − pv (u)| ≤ L|u − v|γ ) with 1/2 < γ ≤ p. Then setting γ 1 ch = 2h(1−2γ)/4 , we have ||α+ || supx ||ϕ(x)|| ≤ L 1−22 |ϕ0 |, which is independent of N . 1/2−γ 0 Notice that the Haar walevets has p = 1 vanishing moment but is not C 1 , thus the Proposition does not apply directly. However direct computations show that if f ∗ is L-Lipschitz (i.e. γ = 1) then L 0 αh,l ≤ L2−3h/2−2 , and thus ||α+ || supx ||ϕ(x)|| ≤ 4(1−2−1/2 ) with ch = 2−h/4 . 7 4.2 Comparison with other methods In the case when the factor ||α+ || E||ϕ(X)||2 does not depend on N (such as in the previous example), the bound (8) on the excess risk of CLSR states that the estimation error (assessed in √ √ terms of FN ) of CLSR is O(log K/ K). It is clear that whenever N > K (which is the case of interest here), this is better than the ordinary LSR in the initial domain, whose estimation error is O(N log K/K). It is difficult to compare this result with LASSO (or the Dantzig selector that has similar properties [5]) for which an important aspect is to design sparse regression functions or to recover a solution assumed to be sparse. From [12, 15, 24] one deduces that under some assumptions, the estimation error of LASSO is of order S log N where S is the sparsity (number of non-zero coefficients) of the K√ best regressor f + in FN . If S < K then LASSO is more interesting than CLSR in terms of excess risk. Otherwise CLSR may be an interesting alternative although this method does not make any assumption about the sparsity of f + and its goal is not to recover a possible sparse f + but only to make good predictions. However, in some sense our method finds a sparse solution in the fact that the regression function gL lies in a space GM of small dimension M N and can thus be expressed using only M coefficients. Now in terms of numerical complexity, CLSR requires O(N K 3/2 ) operations to build the matrix and compute the regression function, whereas according to [18], the (heuristical) complexity of the LASSO algorithm is O(N K 2 ) in the best cases (assuming that the number of steps required for convergence is O(K), which is not proved theoretically). Thus CLSR seems to be a good and simple competitor to LASSO. 5 Conclusion We considered the case when the number of features N is larger than the number of data K. The result stated in Theorem 1 enables to analyze the excess risk of any linear regression algorithm (LS or its penalized versions) performed in the compressed domain GM versus in the initial space FN . In the compressed domain the estimation error is reduced but an additional (controlled) approximation error (when compared to the best regressor in FN ) comes into the picture. In the case of LS regression, when the term ||α+ || E||ϕ(X)||2 has a mild dependency on N , then by choosing a √ random subspace of dimension M = O( K), CLSR has an estimation error (assessed in terms of √ FN ) bounded by O(log K/ K) and has numerical complexity O(N K 3/2 ). In short, CLSR provides an alternative to usual penalization techniques where one first selects a random subspace of lower dimension and then performs an empirical risk minimizer in this subspace. Further work needs to be done to provide additional settings (when the space X is of dimension > 1) for which the term ||α+ || E||ϕ(X)||2 is small. Acknowledgements: The authors wish to thank Laurent Jacques for numerous comments and Alessandro Lazaric and Mohammad Ghavamzadeh for exciting discussions. This work has been supported by French National Research Agency (ANR) through COSINUS program (project EXPLO-RA, ANR-08-COSI-004). References [1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4):671–687, June 2003. [2] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast JohnsonLindenstrauss transform. In STOC ’06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 557–563, New York, NY, USA, 2006. ACM. [3] Jean-Yves Audibert and Olivier Catoni. Risk bounds in linear regression through pac-bayesian truncation. Technical Report HAL : hal-00360268, 2009. [4] David Bau III and Lloyd N. Trefethen. Numerical linear algebra. Philadelphia: Society for Industrial and Applied Mathematics, 1997. 8 [5] Peter J. Bickel, Ya’acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. To appear in Annals of Statistics, 2008. [6] Avrim Blum. Random projection, margins, kernels, and feature-selection. Subspace, Latent Structure and Feature Selection, pages 52–68, 2006. [7] Robert Calderbank, Sina Jafarpour, and Robert Schapire. Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain. Technical Report, 2009. [8] Emmanuel Candes and Terence Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 35:2313, 2007. [9] Emmanuel J. Candes and Justin K. Romberg. Signal recovery from random projections. volume 5674, pages 76–86. SPIE, 2005. [10] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20:33–61, 1998. [11] Mark A. Davenport, Michael B. Wakin, and Richard G. Baraniuk. Detection and estimation with compressive measurements. Technical Report TREE 0610, Department of Electrical and Computer Engineering, Rice University, 2006. [12] E. Greenshtein and Y. Ritov. Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization. Bernoulli, 10:971–988, 2004. [13] L. Gy¨ rfi, M. Kohler, A. Krzy˙ ak, and H. Walk. A distribution-free theory of nonparametric o z regression. Springer-Verlag, 2002. [14] Sham M. Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction: Risk bounds, margin bounds, and regularization. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Leon Bottou, editors, Neural Information Processing Systems, pages 793– 800. MIT Press, 2008. [15] Yuval Nardi and Alessandro Rinaldo. On the asymptotic properties of the group Lasso estimator for linear models. Electron. J. Statist., 2:605–633, 2008. [16] D. Pollard. Convergence of Stochastic Processes. Springer Verlag, New York, 1984. [17] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Neural Information Processing Systems, 2007. [18] Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths. Annals of Statistics, 35:1012, 2007. [19] Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B, 58:267–288, 1994. [20] A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4, pages 1035–1038, 1963. [21] Yaakov Tsaig and David L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289–1306, 2006. [22] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc., New York, NY, USA, 1995. [23] Tong Zhang. Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research, 2:527–550, 2002. [24] Tong Zhang. Some sharp performance bounds for least squares regression with L1 regularization. To appear in Annals of Statistics, 2009. [25] Shuheng Zhou, John D. Lafferty, and Larry A. Wasserman. Compressed regression. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors, Neural Information Processing Systems. MIT Press, 2007. 9
2 0.82508886 51 nips-2009-Clustering sequence sets for motif discovery
Author: Jong K. Kim, Seungjin Choi
Abstract: Most of existing methods for DNA motif discovery consider only a single set of sequences to find an over-represented motif. In contrast, we consider multiple sets of sequences where we group sets associated with the same motif into a cluster, assuming that each set involves a single motif. Clustering sets of sequences yields clusters of coherent motifs, improving signal-to-noise ratio or enabling us to identify multiple motifs. We present a probabilistic model for DNA motif discovery where we identify multiple motifs through searching for patterns which are shared across multiple sets of sequences. Our model infers cluster-indicating latent variables and learns motifs simultaneously, where these two tasks interact with each other. We show that our model can handle various motif discovery problems, depending on how to construct multiple sets of sequences. Experiments on three different problems for discovering DNA motifs emphasize the useful behavior and confirm the substantial gains over existing methods where only a single set of sequences is considered.
3 0.75388569 142 nips-2009-Locality-sensitive binary codes from shift-invariant kernels
Author: Maxim Raginsky, Svetlana Lazebnik
Abstract: This paper addresses the problem of designing binary codes for high-dimensional data such that vectors that are similar in the original space map to similar binary strings. We introduce a simple distribution-free encoding scheme based on random projections, such that the expected Hamming distance between the binary codes of two vectors is related to the value of a shift-invariant kernel (e.g., a Gaussian kernel) between the vectors. We present a full theoretical analysis of the convergence properties of the proposed scheme, and report favorable experimental performance as compared to a recent state-of-the-art method, spectral hashing.
4 0.61920428 36 nips-2009-Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing
Author: Sundeep Rangan, Vivek Goyal, Alyson K. Fletcher
Abstract: The replica method is a non-rigorous but widely-accepted technique from statistical physics used in the asymptotic analysis of large, random, nonlinear problems. This paper applies the replica method to non-Gaussian maximum a posteriori (MAP) estimation. It is shown that with random linear measurements and Gaussian noise, the asymptotic behavior of the MAP estimate of an n-dimensional vector “decouples” as n scalar MAP estimators. The result is a counterpart to Guo and Verd´ ’s replica analysis of minimum mean-squared error estimation. u The replica MAP analysis can be readily applied to many estimators used in compressed sensing, including basis pursuit, lasso, linear estimation with thresholding, and zero norm-regularized estimation. In the case of lasso estimation the scalar estimator reduces to a soft-thresholding operator, and for zero normregularized estimation it reduces to a hard-threshold. Among other benefits, the replica method provides a computationally-tractable method for exactly computing various performance metrics including mean-squared error and sparsity pattern recovery probability.
5 0.61628085 20 nips-2009-A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers
Author: Sahand Negahban, Bin Yu, Martin J. Wainwright, Pradeep K. Ravikumar
Abstract: High-dimensional statistical inference deals with models in which the the number of parameters p is comparable to or larger than the sample size n. Since it is usually impossible to obtain consistent procedures unless p/n → 0, a line of recent work has studied models with various types of structure (e.g., sparse vectors; block-structured matrices; low-rank matrices; Markov assumptions). In such settings, a general approach to estimation is to solve a regularized convex program (known as a regularized M -estimator) which combines a loss function (measuring how well the model fits the data) with some regularization function that encourages the assumed structure. The goal of this paper is to provide a unified framework for establishing consistency and convergence rates for such regularized M estimators under high-dimensional scaling. We state one main theorem and show how it can be used to re-derive several existing results, and also to obtain several new results on consistency and convergence rates. Our analysis also identifies two key properties of loss and regularization functions, referred to as restricted strong convexity and decomposability, that ensure the corresponding regularized M -estimators have fast convergence rates. 1
6 0.61405456 147 nips-2009-Matrix Completion from Noisy Entries
7 0.61347926 254 nips-2009-Variational Gaussian-process factor analysis for modeling spatio-temporal data
8 0.60850036 163 nips-2009-Neurometric function analysis of population codes
9 0.60585719 37 nips-2009-Asymptotically Optimal Regularization in Smooth Parametric Models
10 0.60578847 22 nips-2009-Accelerated Gradient Methods for Stochastic Optimization and Online Learning
11 0.60569185 135 nips-2009-Learning to Hash with Binary Reconstructive Embeddings
12 0.60507286 62 nips-2009-Correlation Coefficients are Insufficient for Analyzing Spike Count Dependencies
13 0.60506195 215 nips-2009-Sensitivity analysis in HMMs with application to likelihood maximization
14 0.6048525 1 nips-2009-$L 1$-Penalized Robust Estimation for a Class of Inverse Problems Arising in Multiview Geometry
15 0.60454637 169 nips-2009-Nonlinear Learning using Local Coordinate Coding
16 0.60285044 19 nips-2009-A joint maximum-entropy model for binary neural population patterns and continuous signals
17 0.60079795 173 nips-2009-Nonparametric Greedy Algorithms for the Sparse Learning Problem
18 0.59948301 94 nips-2009-Fast Learning from Non-i.i.d. Observations
19 0.59913862 59 nips-2009-Construction of Nonparametric Bayesian Models from Parametric Bayes Equations
20 0.59908587 207 nips-2009-Robust Nonparametric Regression with Metric-Space Valued Output