nips nips2004 nips2004-79 knowledge-graph by maker-knowledge-mining

79 nips-2004-Hierarchical Eigensolver for Transition Matrices in Spectral Methods


Source: pdf

Author: Chakra Chennubhotla, Allan D. Jepson

Abstract: We show how to build hierarchical, reduced-rank representation for large stochastic matrices and use this representation to design an efficient algorithm for computing the largest eigenvalues, and the corresponding eigenvectors. In particular, the eigen problem is first solved at the coarsest level of the representation. The approximate eigen solution is then interpolated over successive levels of the hierarchy. A small number of power iterations are employed at each stage to correct the eigen solution. The typical speedups obtained by a Matlab implementation of our fast eigensolver over a standard sparse matrix eigensolver [13] are at least a factor of ten for large image sizes. The hierarchical representation has proven to be effective in a min-cut based segmentation algorithm that we proposed recently [8]. 1 Spectral Methods Graph-theoretic spectral methods have gained popularity in a variety of application domains: segmenting images [22]; embedding in low-dimensional spaces [4, 5, 8]; and clustering parallel scientific computation tasks [19]. Spectral methods enable the study of properties global to a dataset, using only local (pairwise) similarity or affinity measurements between the data points. The global properties that emerge are best understood in terms of a random walk formulation on the graph. For example, the graph can be partitioned into clusters by analyzing the perturbations to the stationary distribution of a Markovian relaxation process defined in terms of the affinity weights [17, 18, 24, 7]. The Markovian relaxation process need never be explicitly carried out; instead, it can be analytically expressed using the leading order eigenvectors, and eigenvalues, of the Markov transition matrix. In this paper we consider the practical application of spectral methods to large datasets. In particular, the eigen decomposition can be very expensive, on the order of O(n 3 ), where n is the number of nodes in the graph. While it is possible to compute analytically the first eigenvector (see §3 below), the remaining subspace of vectors (necessary for say clustering) has to be explicitly computed. A typical approach to dealing with this difficulty is to first sparsify the links in the graph [22] and then apply an efficient eigensolver [13, 23, 3]. In comparison, we propose in this paper a specialized eigensolver suitable for large stochastic matrices with known stationary distributions. In particular, we exploit the spectral properties of the Markov transition matrix to generate hierarchical, successively lower-ranked approximations to the full transition matrix. The eigen problem is solved directly at the coarsest level of representation. The approximate eigen solution is then interpolated over successive levels of the hierarchy, using a small number of power iterations to correct the solution at each stage. 2 Previous Work One approach to speeding up the eigen decomposition is to use the fact that the columns of the affinity matrix are typically correlated. The idea then is to pick a small number of representative columns to perform eigen decomposition via SVD. For example, in the Nystrom approximation procedure, originally proposed for integral eigenvalue problems, the idea is to randomly pick a small set of m columns; generate the corresponding affinity matrix; solve the eigenproblem and finally extend the solution to the complete graph [9, 10]. The Nystrom method has also been recently applied in the kernel learning methods for fast Gaussian process classification and regression [25]. Other sampling-based approaches include the work reported in [1, 2, 11]. Our starting point is the transition matrix generated from affinity weights and we show how building a representational hierarchy follows naturally from considering the stochastic matrix. A closely related work is the paper by Lin on reduced rank approximations of transition matrices [14]. We differ in how we approximate the transition matrices, in particular our objective function is computationally less expensive to solve. In particular, one of our goals in reducing transition matrices is to develop a fast, specialized eigen solver for spectral clustering. Fast eigensolving is also the goal in ACE [12], where successive levels in the hierarchy can potentially have negative affinities. A graph coarsening process for clustering was also pursued in [21, 3]. 3 Markov Chain Terminology We first provide a brief overview of the Markov chain terminology here (for more details see [17, 15, 6]). We consider an undirected graph G = (V, E) with vertices vi , for i = {1, . . . , n}, and edges ei,j with non-negative weights ai,j . Here the weight ai,j represents the affinity between vertices vi and vj . The affinities are represented by a non-negative, symmetric n × n matrix A having weights ai,j as elements. The degree of a node j is n n defined to be: dj = i=1 ai,j = j=1 aj,i , where we define D = diag(d1 , . . . , dn ). A Markov chain is defined using these affinities by setting a transition probability matrix M = AD −1 , where the columns of M each sum to 1. The transition probability matrix defines the random walk of a particle on the graph G. The random walk need never be explicitly carried out; instead, it can be analytically expressed using the leading order eigenvectors, and eigenvalues, of the Markov transition matrix. Because the stochastic matrices need not be symmetric in general, a direct eigen decomposition step is not preferred for reasons of instability. This problem is easily circumvented by considering a normalized affinity matrix: L = D −1/2 AD−1/2 , which is related to the stochastic matrix by a similarity transformation: L = D −1/2 M D1/2 . Because L is symmetric, it can be diagonalized: L = U ΛU T , where U = [u1 , u2 , · · · , un ] is an orthogonal set of eigenvectors and Λ is a diagonal matrix of eigenvalues [λ1 , λ2 , · · · , λn ] sorted in decreasing order. The eigenvectors have unit length uk = 1 and from the form of A and D it can be shown that the eigenvalues λi ∈ (−1, 1], with at least one eigenvalue equal to one. Without loss of generality, we take λ1 = 1. Because L and M are similar we can perform an eigen decomposition of the Markov transition matrix as: M = D1/2 LD−1/2 = D1/2 U Λ U T D−1/2 . Thus an eigenvector u of L corresponds to an eigenvector D 1/2 u of M with the same eigenvalue λ. The Markovian relaxation process after β iterations, namely M β , can be represented as: M β = D1/2 U Λβ U T D−1/2 . Therefore, a particle undertaking a random walk with an initial distribution p 0 acquires after β steps a distribution p β given by: p β = M β p 0 . Assuming the graph is connected, as β → ∞, the Markov chain approaches a unique n stationary distribution given by π = diag(D)/ i=1 di , and thus, M ∞ = π1T , where 1 is a n-dim column vector of all ones. Observe that π is an eigenvector of M as it is easy to show that M π = π and the corresponding eigenvalue is 1. Next, we show how to generate hierarchical, successively low-ranked approximations for the transition matrix M . 4 Building a Hierarchy of Transition Matrices The goal is to generate a very fast approximation, while simultaneously achieving sufficient accuracy. For notational ease, we think of M as a fine-scale representation and M as some coarse-scale approximation to be derived here. By coarsening M further, we can generate successive levels of the representation hierarchy. We use the stationary distribution π to construct a corresponding coarse-scale stationary distribution δ. As we just discussed a critical property of the fine scale Markov matrix M is that it is similar to the symmetric matrix L and we wish to preserve this property at every level of the representation hierarchy. 4.1 Deriving Coarse-Scale Stationary Distribution We begin by expressing the stationary distribution π as a probabilistic mixture of latent distributions. In matrix notation, we have (1) π = K δ, where δ is an unknown mixture coefficient vector of length m, K is an n × m non-negative n kernel matrix whose columns are latent distributions that each sum to 1: i=1 Ki,j = 1 and m n. It is easy to derive a maximum likelihood approximation of δ using an EM type algorithm [16]. The main step is to find a stationary point δ, λ for the Lagrangian: m n i=1 m Ki,j δj + λ πi ln E≡− j=1 δj − 1 . (2) j=1 An implicit step in this EM procedure is to compute the the ownership probability r i,j of the j th kernel (or node) at the coarse scale for the ith node on the fine scale and is given by ri,j = δj Ki,j . m k=1 δk Ki,k (3) The EM procedure allows for an update of both δ and the latent distributions in the kernel matrix K (see §8.3.1 in [6]). For initialization, δ is taken to be uniform over the coarse-scale states. But in choosing kernels K, we provide a good initialization for the EM procedure. Specifically, the Markov matrix M is diffused using a small number of iterations to get M β . The diffusion causes random walks from neighboring nodes to be less distinguishable. This in turn helps us select a small number of columns of M β in a fast and greedy way to be the kernel matrix K. We defer the exact details on kernel selection to a later section (§4.3). 4.2 Deriving the Coarse-Scale Transition Matrix In order to define M , the coarse-scale transition matrix, we break it down into three steps. First, the Markov chain propagation at the coarse scale can be defined as: q k+1 = M q k , (4) where q is the coarse scale probability distribution after k steps of the random walk. Second, we expand q k into the fine scale using the kernels K resulting in a fine scale probability distribution p k : p k = Kq k . (5) k Finally, we lift p k back into the coarse scale by using the ownership probability of the j th kernel for the ith node on the fine grid: n qjk+1 = ri,j pik i=1 (6) Substituting for Eqs.(3) and (5) in Eq. 6 gives n m qjk+1 = i=1 n Ki,t qtk = ri,j t=1 i=1 δj Ki,j m k=1 δk Ki,k m Ki,t qtk . (7) t=1 We can write the preceding equation in a matrix form: q k+1 = diag( δ ) K T diag K δ −1 Kq k . (8) Comparing this with Eq. 4, we can derive the transition matrix M as: M = diag( δ ) K T diag K δ −1 (9) K. It is easy to see that δ = M δ, so δ is the stationary distribution for M . Following the definition of M , and its stationary distribution δ, we can generate a symmetric coarse scale affinity matrix A given by A = M diag(δ) = diag( δ ) K T diag K δ −1 Kdiag(δ) , (10) where we substitute for the expression M from Eq. 9. The coarse-scale affinity matrix A is then normalized to get: L = D−1/2 AD−1/2 ; D = diag(d1 , d2 , · · · , dm ), (11) where dj is the degree of node j in the coarse-scale graph represented by the matrix A (see §3 for degree definition). Thus, the coarse scale Markov matrix M is precisely similar to a symmetric matrix L. 4.3 Selecting Kernels For demonstration purpose, we present the kernel selection details on the image of an eye shown below. To begin with, a random walk is defined where each pixel in the test image is associated with a vertex of the graph G. The edges in G are defined by the standard 8-neighbourhood of each pixel. For the demonstrations in this paper, the edge weight ai,j between neighbouring pixels xi and xj is given by a function of the difference in the 2 corresponding intensities I(xi ) and I(xj ): ai,j = exp(−(I(xi ) − I(xj ))2 /2σa ), where σa is set according to the median absolute difference |I(xi ) − I(xj )| between neighbours measured over the entire image. The affinity matrix A with the edge weights is then used to generate a Markov transition matrix M . The kernel selection process we use is fast and greedy. First, the fine scale Markov matrix M is diffused to M β using β = 4. The Markov matrix M is sparse as we make the affinity matrix A sparse. Every column in the diffused matrix M β is a potential kernel. To facilitate the selection process, the second step is to rank order the columns of M β based on a probability value in the stationary distribution π. Third, the kernels (i.e. columns of M β ) are picked in such a way that for a kernel Ki all of the neighbours of pixel i which are within the half-height of the the maximum value in the kernel Ki are suppressed from the selection process. Finally, the kernel selection is continued until every pixel in the image is within a half-height of the peak value of at least one kernel. If M is a full matrix, to avoid the expense of computing M β explicitly, random kernel centers can be selected, and only the corresponding columns of M β need be computed. We show results from a three-scale hierarchy on the eye image (below). The image has 25 × 20 pixels but is shown here enlarged for clarity. At the first coarse scale 83 kernels are picked. The kernels each correspond to a different column in the fine scale transition matrix and the pixels giving rise to these kernels are shown numbered on the image. Using these kernels as an initialization, the EM procedure derives a coarse-scale stationary distribution δ 21 14 26 4 (Eq. 2), while simultaneously updating the kernel ma12 27 2 19 trix. Using the newly updated kernel matrix K and the 5 8 13 23 30 18 6 9 derived stationary distribution δ a transition matrix M 28 20 15 32 10 22 is generated (Eq. 9). The coarse scale Markov matrix 24 17 7 is then diffused to M β , again using β = 4. The kernel Coarse Scale 1 Coarse Scale 2 selection algorithm is reapplied, this time picking 32 kernels for the second coarse scale. Larger values of β cause the coarser level to have fewer elements. But the exact number of elements depends on the form of the kernels themselves. For the random experiments that we describe later in §6 we found β = 2 in the first iteration and 4 thereafter causes the number of kernels to be reduced by a factor of roughly 1/3 to 1/4 at each level. 72 28 35 44 51 64 82 4 12 31 56 19 77 36 45 52 65 13 57 23 37 5 40 53 63 73 14 29 6 66 38 74 47 24 7 30 41 54 71 78 58 15 8 20 39 48 59 67 25 68 79 21 16 2 11 26 42 49 55 60 75 32 83 43 9 76 50 17 27 61 33 69 80 3 46 18 70 81 34 10 62 22 1 25 11 1 3 16 31 29 At coarser levels of the hierarchy, we expect the kernels to get less sparse and so will the affinity and the transition matrices. In order to promote sparsity at successive levels of the hierarchy we sparsify A by zeroing out elements associated with “small” transition probabilities in M . However, in the experiments described later in §6, we observe this sparsification step to be not critical. To summarize, we use the stationary distribution π at the fine-scale to derive a transition matrix M , and its stationary distribution δ, at the coarse-scale. The coarse scale transition in turn helps to derive an affinity matrix A and its normalized version L. It is obvious that this procedure can be repeated recursively. We describe next how to use this representation hierarchy for building a fast eigensolver. 5 Fast EigenSolver Our goal in generating a hierarchical representation of a transition matrix is to develop a fast, specialized eigen solver for spectral clustering. To this end, we perform a full eigen decomposition of the normalized affinity matrix only at the coarsest level. As discussed in the previous section, the affinity matrix at the coarsest level is not likely to be sparse, hence it will need a full (as opposed to a sparse) version of an eigen solver. However it is typically the case that e ≤ m n (even in the case of the three-scale hierarchy that we just considered) and hence we expect this step to be the least expensive computationally. The resulting eigenvectors are interpolated to the next lower level of the hierarchy by a process which will be described next. Because the eigen interpolation process between every adjacent pair of scales in the hierarchy is similar, we will assume we have access to the leading eigenvectors U (size: m × e) for the normalized affinity matrix L (size: m × m) and describe how to generate the leading eigenvectors U (size: n × e), and the leading eigenvalues S (size: e × 1), for the fine-scale normalized affinity matrix L (size: n × n). There are several steps to the eigen interpolation process and in the discussion that follows we refer to the lines in the pseudo-code presented below. First, the coarse-scale eigenvectors U can be interpolated using the kernel matrix K to generate U = K U , an approximation for the fine-scale eigenvectors (line 9). Second, interpolation alone is unlikely to set the directions of U exactly aligned with U L , the vectors one would obtain by a direct eigen decomposition of the fine-scale normalized affinity matrix L. We therefore update the directions in U by applying a small number of power iterations with L, as given in lines 13-15. e e function (U, S) = CoarseToFine(L, K, U , S) 1: INPUT 2: L, K ⇐ {L is n × n and K is n × m where m n} e e e e 3: U /S ⇐ {leading coarse-scale eigenvectors/eigenvalues of L. U is of size m × e, e ≤ m} 4: OUTPUT 5: U, S ⇐ {leading fine-scale eigenvectors/eigenvalues of L. U is n × e and S is e × 1.} x 10 0.4 3 0.96 0.94 0.92 0.9 0.35 2.5 Relative Error Absolute Relative Error 0.98 Eigen Value |δλ|λ−1 −3 Eigen Spectrum 1 2 1.5 1 5 10 15 20 Eigen Index (a) 25 30 0.2 0.15 0.1 0.5 0.88 0.3 0.25 0.05 5 10 15 20 Eigen Index (b) 25 30 5 10 15 20 Eigen Index 25 30 (c) Figure 1: Hierarchical eigensolver results. (a) comparing ground truth eigenvalues S L (red circles) with multi-scale eigensolver spectrum S (blue line) (b) Relative absolute error between eigenvalues: |S−SL | (c) Eigenvector mismatch: 1 − diag |U T UL | , between SL eigenvectors U derived by the multi-scale eigensolver and the ground truth U L . Observe the slight mismatch in the last few eigenvectors, but excellent agreement in the leading eigenvectors (see text). 6: CONSTANTS: TOL = 1e-4; POWER ITERS = 50 7: “ ” e 8: TPI = min POWER ITERS, log(e × eps/TOL)/ log(min(S)) {eps: machine accuracy} e 9: U = K U {interpolation from coarse to fine} 10: while not converged do 11: Uold = U {n × e matrix, e n} 12: for i = 1 to TPI do 13: U ⇐ LU 14: end for 15: U ⇐ Gram-Schmidt(U ) {orthogonalize U } 16: Le = U T LU {L may be sparse, but Le need not be.} 17: Ue Se UeT = svd(Le ) {eigenanalysis of Le , which is of size e × e.} 18: U ⇐ U Ue {update the leading eigenvectors of L} 19: S = diag(Se ) {grab the leading eigenvalues of L} T 20: innerProd = 1 − diag( Uold U ) {1 is a e × 1 vector of all ones} 21: converged = max[abs(innerProd)] < TOL 22: end while The number of power iterations TPI can be bounded as discussed next. Suppose v = U c where U is a matrix of true eigenvectors and c is a coefficient vector for an arbitrary vector v. After TPI power iterations v becomes v = U diag(S TPI )c, where S has the exact eigenvalues. In order for the component of a vector v in the direction Ue (the eth column of U ) not to be swamped by other components, we can limit it’s decay after TPI iterations as TPI follows: (S(e)/S(1)) >= e×eps/TOL, where S(e) is the exact eth eigenvalue, S(1) = 1, eps is the machine precision, TOL is requested accuracy. Because we do not have access to the exact value S(e) at the beginning of the interpolation procedure, we estimate it from the coarse eigenvalues S. This leads to a bound on the power iterations TPI, as derived on the line 9 above. Third, the interpolation process and the power iterations need not preserve orthogonality in the eigenvectors in U . We fix this by Gram-Schmidt orthogonalization procedure (line 16). Finally, there is a still a problem with power iterations that needs to be resolved, in that it is very hard to separate nearby eigenvalues. In particular, for the convergence of the power iterations the ratio that matters is between the (e + 1) st and eth eigenvalues. So the idea we pursue is to use the power iterations only to separate the reduced space of eigenvectors (of dimension e) from the orthogonal subspace (of dimension n − e). We then use a full SVD on the reduced space to update the leading eigenvectors U , and eigenvalues S, for the fine-scale (lines 17-20). This idea is similar to computing the Ritz values and Ritz vectors in a Rayleigh-Ritz method. 6 Interpolation Results Our multi-scale decomposition code is in Matlab. For the direct eigen decomposition, we have used the Matlab program svds.m which invokes the compiled ARPACKC routine [13], with a default convergence tolerance of 1e-10. In Fig. 1a we compare the spectrum S obtained from a three-scale decomposition on the eye image (blue line) with the ground truth, which is the spectrum SL resulting from direct eigen decomposition of the fine-scale normalized affinity matrices L (red circles). There is an excellent agreement in the leading eigenvalues. To illustrate this, we show absolute relative error between the spectra: |S−SL | in Fig. 1b. The spectra agree mostly, except for SL the last few eigenvalues. For a quantitative comparison between the eigenvectors, we plot in Fig. 1c the following measure: 1 − diag(|U T UL |), where U is the matrix of eigenvectors obtained by the multi-scale approximation, UL is the ground-truth resulting from a direct eigen decomposition of the fine-scale affinity matrix L and 1 is a vector of all ones. The relative error plot demonstrates a close match, within the tolerance threshold of 1e-4 that we chose for the multi-scale method, in the leading eigenvector directions between the two methods. The relative error is high with the last few eigen vectors, which suggests that the power iterations have not clearly separated them from other directions. So, the strategy we suggest is to pad the required number of leading eigen basis by about 20% before invoking the multi-scale procedure. Obviously, the number of hierarchical stages for the multi-scale procedure must be chosen such that the transition matrix at the coarsest scale can accommodate the slight increase in the subspace dimensions. For lack of space we are omitting extra results (see Ch.8 in [6]). Next we measure the time the hierarchical eigensolver takes to compute the leading eigenbasis for various input sizes, in comparison with the svds.m procedure [13]. We form images of different input sizes by Gaussian smoothing of i.i.d noise. The Gaussian function has a standard deviation of 3 pixels. The edges in graph G are defined by the standard 8-neighbourhood of each pixel. The edge weights between neighbouring pixels are simply given by a function of the difference in the corresponding intensities (see §4.3). The affinity matrix A with the edge weights is then used to generate a Markov transition matrix M . The fast eigensolver is run on ten different instances of the input image of a given size and the average of these times is reported here. For a fair comparison between the two procedures, we set the convergence tolerance value for the svds.m procedure to be 1e-4, the same as the one used for the fast eigensolver. We found the hierarchical representation derived from this tolerance threshold to be sufficiently accurate for a novel min-cut based segmentation results that we reported in [8]. Also, the subspace dimensionality is fixed to be 51 where we expect (and indeed observe) the leading 40 eigenpairs derived from the multi-scale procedure to be accurate. Hence, while invoking svds.m we compute only the leading 41 eigenpairs. In the table shown below, the first column corresponds to the number of nodes in the graph, while the second and third columns report the time taken in seconds by the svds.m procedure and the Matlab implementation of the multi-scale eigensolver respectively. The fourth column reports the speedups of the multi-scale eigensolver over svds.m procedure on a standard desktop (Intel P4, 2.5GHz, 1GB RAM). Lowering the tolerance threshold for svds.m made it faster by about 20 − 30%. Despite this, the multi-scale algorithm clearly outperforms the svds.m procedure. The most expensive step in the multi-scale algorithm is the power iteration required in the last stage, that is interpolating eigenvectors from the first coarse scale to the required fine scale. The complexity is of the order of n × e where e is the subspace dimensionality and n is the size of the graph. Indeed, from the table we can see that the multi-scale procedure is taking time roughly proportional to n. Deviations from the linear trend are observed at specific values of n, which we believe are due to the n 322 632 642 652 1002 1272 1282 1292 1602 2552 2562 2572 5112 5122 5132 6002 7002 8002 svds.m 1.6 10.8 20.5 12.6 44.2 91.1 230.9 96.9 179.3 819.2 2170.8 871.7 7977.2 20269 7887.2 10841.4 15048.8 Multi-Scale 1.5 4.9 5.5 5.1 13.1 20.4 35.2 20.9 34.4 90.3 188.7 93.3 458.8 739.3 461.9 644.2 1162.4 1936.6 Speedup 1.1 2.2 3.7 2.5 3.4 4.5 6.6 4.6 5.2 9.1 11.5 9.3 17.4 27.4 17.1 16.8 12.9 variations in the difficulty of the specific eigenvalue problem (eg. nearly multiple eigenvalues). The hierarchical representation has proven to be effective in a min-cut based segmentation algorithm that we proposed recently [8]. Here we explored the use of random walks and associated spectral embedding techniques for the automatic generation of suitable proposal (source and sink) regions for a min-cut based algorithm. The multiscale algorithm was used to generate the 40 leading eigenvectors of large transition matrices (eg. size 20K × 20K). In terms of future work, it will be useful to compare our work with other approximate methods for SVD such as [23]. Ack: We thank S. Roweis, F. Estrada and M. Sakr for valuable comments. References [1] D. Achlioptas and F. McSherry. Fast Computation of Low-Rank Approximations. STOC, 2001. [2] D. Achlioptas et al Sampling Techniques for Kernel Methods. NIPS, 2001. [3] S. Barnard and H. Simon Fast Multilevel Implementation of Recursive Spectral Bisection for Partitioning Unstructured Problems. PPSC, 627-632. [4] M. Belkin et al Laplacian Eigenmaps and Spectral Techniques for Embedding. NIPS, 2001. [5] M. Brand et al A unifying theorem for spectral embedding and clustering. AI & STATS, 2002. [6] C. Chennubhotla. Spectral Methods for Multi-scale Feature Extraction and Spectral Clustering. http://www.cs.toronto.edu/˜chakra/thesis.pdf Ph.D Thesis, Department of Computer Science, University of Toronto, Canada, 2004. [7] C. Chennubhotla and A. Jepson. Half-Lives of EigenFlows for Spectral Clustering. NIPS, 2002. [8] F. Estrada, A. Jepson and C. Chennubhotla. Spectral Embedding and Min-Cut for Image Segmentation. Manuscript Under Review, 2004. [9] C. Fowlkes et al Efficient spatiotemporal grouping using the Nystrom method. CVPR, 2001. [10] S. Belongie et al Spectral Partitioning with Indefinite Kernels using Nystrom app. ECCV, 2002. [11] A. Frieze et al Fast Monte-Carlo Algorithms for finding low-rank approximations. FOCS, 1998. [12] Y. Koren et al ACE: A Fast Multiscale Eigenvectors Computation for Drawing Huge Graphs IEEE Symp. on InfoVis 2002, pp. 137-144 [13] R. B. Lehoucq, D. C. Sorensen and C. Yang. ARPACK User Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM 1998. [14] J. J. Lin. Reduced Rank Approximations of Transition Matrices. AI & STATS, 2002. [15] L. Lova’sz. Random Walks on Graphs: A Survey Combinatorics, 1996, 353–398. [16] G. J. McLachlan et al Mixture Models: Inference and Applications to Clustering. 1988 [17] M. Meila and J. Shi. A random walks view of spectral segmentation. AI & STATS, 2001. [18] A. Ng, M. Jordan and Y. Weiss. On Spectral Clustering: analysis and an algorithm NIPS, 2001. [19] A. Pothen Graph partitioning algorithms with applications to scientific computing. Parallel Numerical Algorithms, D. E. Keyes et al (eds.), Kluwer Academic Press, 1996. [20] G. L. Scott et al Feature grouping by relocalization of eigenvectors of the proximity matrix. BMVC, pg. 103-108, 1990. [21] E. Sharon et al Fast Multiscale Image Segmentation CVPR, I:70-77, 2000. [22] J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, August, 2000. [23] H. Simon et al Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications SIAM J. of Sci. Comp. 21(6):2257-2274, 2000. [24] N. Tishby et al Data clustering by Markovian Relaxation NIPS, 2001. [25] C. Williams et al Using the Nystrom method to speed up the kernel machines. NIPS, 2001.

Reference: text


Summary: the most important sentenses genereted by tfidf model

sentIndex sentText sentNum sentScore

1 In particular, the eigen problem is first solved at the coarsest level of the representation. [sent-3, score-0.521]

2 The approximate eigen solution is then interpolated over successive levels of the hierarchy. [sent-4, score-0.59]

3 A small number of power iterations are employed at each stage to correct the eigen solution. [sent-5, score-0.589]

4 The typical speedups obtained by a Matlab implementation of our fast eigensolver over a standard sparse matrix eigensolver [13] are at least a factor of ten for large image sizes. [sent-6, score-0.864]

5 1 Spectral Methods Graph-theoretic spectral methods have gained popularity in a variety of application domains: segmenting images [22]; embedding in low-dimensional spaces [4, 5, 8]; and clustering parallel scientific computation tasks [19]. [sent-8, score-0.23]

6 For example, the graph can be partitioned into clusters by analyzing the perturbations to the stationary distribution of a Markovian relaxation process defined in terms of the affinity weights [17, 18, 24, 7]. [sent-11, score-0.29]

7 The Markovian relaxation process need never be explicitly carried out; instead, it can be analytically expressed using the leading order eigenvectors, and eigenvalues, of the Markov transition matrix. [sent-12, score-0.402]

8 In particular, the eigen decomposition can be very expensive, on the order of O(n 3 ), where n is the number of nodes in the graph. [sent-14, score-0.491]

9 A typical approach to dealing with this difficulty is to first sparsify the links in the graph [22] and then apply an efficient eigensolver [13, 23, 3]. [sent-16, score-0.367]

10 In comparison, we propose in this paper a specialized eigensolver suitable for large stochastic matrices with known stationary distributions. [sent-17, score-0.506]

11 In particular, we exploit the spectral properties of the Markov transition matrix to generate hierarchical, successively lower-ranked approximations to the full transition matrix. [sent-18, score-0.751]

12 The eigen problem is solved directly at the coarsest level of representation. [sent-19, score-0.521]

13 The approximate eigen solution is then interpolated over successive levels of the hierarchy, using a small number of power iterations to correct the solution at each stage. [sent-20, score-0.776]

14 2 Previous Work One approach to speeding up the eigen decomposition is to use the fact that the columns of the affinity matrix are typically correlated. [sent-21, score-0.683]

15 The idea then is to pick a small number of representative columns to perform eigen decomposition via SVD. [sent-22, score-0.558]

16 The Nystrom method has also been recently applied in the kernel learning methods for fast Gaussian process classification and regression [25]. [sent-24, score-0.209]

17 Our starting point is the transition matrix generated from affinity weights and we show how building a representational hierarchy follows naturally from considering the stochastic matrix. [sent-26, score-0.481]

18 A closely related work is the paper by Lin on reduced rank approximations of transition matrices [14]. [sent-27, score-0.268]

19 We differ in how we approximate the transition matrices, in particular our objective function is computationally less expensive to solve. [sent-28, score-0.24]

20 In particular, one of our goals in reducing transition matrices is to develop a fast, specialized eigen solver for spectral clustering. [sent-29, score-0.864]

21 Fast eigensolving is also the goal in ACE [12], where successive levels in the hierarchy can potentially have negative affinities. [sent-30, score-0.257]

22 A Markov chain is defined using these affinities by setting a transition probability matrix M = AD −1 , where the columns of M each sum to 1. [sent-43, score-0.437]

23 The transition probability matrix defines the random walk of a particle on the graph G. [sent-44, score-0.452]

24 The random walk need never be explicitly carried out; instead, it can be analytically expressed using the leading order eigenvectors, and eigenvalues, of the Markov transition matrix. [sent-45, score-0.377]

25 Because the stochastic matrices need not be symmetric in general, a direct eigen decomposition step is not preferred for reasons of instability. [sent-46, score-0.627]

26 Because L is symmetric, it can be diagonalized: L = U ΛU T , where U = [u1 , u2 , · · · , un ] is an orthogonal set of eigenvectors and Λ is a diagonal matrix of eigenvalues [λ1 , λ2 , · · · , λn ] sorted in decreasing order. [sent-48, score-0.424]

27 The eigenvectors have unit length uk = 1 and from the form of A and D it can be shown that the eigenvalues λi ∈ (−1, 1], with at least one eigenvalue equal to one. [sent-49, score-0.359]

28 Because L and M are similar we can perform an eigen decomposition of the Markov transition matrix as: M = D1/2 LD−1/2 = D1/2 U Λ U T D−1/2 . [sent-51, score-0.82]

29 Assuming the graph is connected, as β → ∞, the Markov chain approaches a unique n stationary distribution given by π = diag(D)/ i=1 di , and thus, M ∞ = π1T , where 1 is a n-dim column vector of all ones. [sent-55, score-0.282]

30 Next, we show how to generate hierarchical, successively low-ranked approximations for the transition matrix M . [sent-57, score-0.388]

31 By coarsening M further, we can generate successive levels of the representation hierarchy. [sent-60, score-0.247]

32 We use the stationary distribution π to construct a corresponding coarse-scale stationary distribution δ. [sent-61, score-0.284]

33 As we just discussed a critical property of the fine scale Markov matrix M is that it is similar to the symmetric matrix L and we wish to preserve this property at every level of the representation hierarchy. [sent-62, score-0.399]

34 In matrix notation, we have (1) π = K δ, where δ is an unknown mixture coefficient vector of length m, K is an n × m non-negative n kernel matrix whose columns are latent distributions that each sum to 1: i=1 Ki,j = 1 and m n. [sent-65, score-0.401]

35 (2) j=1 An implicit step in this EM procedure is to compute the the ownership probability r i,j of the j th kernel (or node) at the coarse scale for the ith node on the fine scale and is given by ri,j = δj Ki,j . [sent-68, score-0.547]

36 m k=1 δk Ki,k (3) The EM procedure allows for an update of both δ and the latent distributions in the kernel matrix K (see §8. [sent-69, score-0.27]

37 Specifically, the Markov matrix M is diffused using a small number of iterations to get M β . [sent-74, score-0.309]

38 This in turn helps us select a small number of columns of M β in a fast and greedy way to be the kernel matrix K. [sent-76, score-0.368]

39 First, the Markov chain propagation at the coarse scale can be defined as: q k+1 = M q k , (4) where q is the coarse scale probability distribution after k steps of the random walk. [sent-81, score-0.553]

40 Second, we expand q k into the fine scale using the kernels K resulting in a fine scale probability distribution p k : p k = Kq k . [sent-82, score-0.226]

41 (5) k Finally, we lift p k back into the coarse scale by using the ownership probability of the j th kernel for the ith node on the fine grid: n qjk+1 = ri,j pik i=1 (6) Substituting for Eqs. [sent-83, score-0.413]

42 (7) t=1 We can write the preceding equation in a matrix form: q k+1 = diag( δ ) K T diag K δ −1 Kq k . [sent-86, score-0.28]

43 4, we can derive the transition matrix M as: M = diag( δ ) K T diag K δ −1 (9) K. [sent-88, score-0.484]

44 Following the definition of M , and its stationary distribution δ, we can generate a symmetric coarse scale affinity matrix A given by A = M diag(δ) = diag( δ ) K T diag K δ −1 Kdiag(δ) , (10) where we substitute for the expression M from Eq. [sent-90, score-0.777]

45 The coarse-scale affinity matrix A is then normalized to get: L = D−1/2 AD−1/2 ; D = diag(d1 , d2 , · · · , dm ), (11) where dj is the degree of node j in the coarse-scale graph represented by the matrix A (see §3 for degree definition). [sent-92, score-0.384]

46 Thus, the coarse scale Markov matrix M is precisely similar to a symmetric matrix L. [sent-93, score-0.546]

47 3 Selecting Kernels For demonstration purpose, we present the kernel selection details on the image of an eye shown below. [sent-95, score-0.204]

48 The affinity matrix A with the edge weights is then used to generate a Markov transition matrix M . [sent-99, score-0.513]

49 The kernel selection process we use is fast and greedy. [sent-100, score-0.243]

50 First, the fine scale Markov matrix M is diffused to M β using β = 4. [sent-101, score-0.292]

51 The Markov matrix M is sparse as we make the affinity matrix A sparse. [sent-102, score-0.285]

52 Every column in the diffused matrix M β is a potential kernel. [sent-103, score-0.258]

53 To facilitate the selection process, the second step is to rank order the columns of M β based on a probability value in the stationary distribution π. [sent-104, score-0.243]

54 columns of M β ) are picked in such a way that for a kernel Ki all of the neighbours of pixel i which are within the half-height of the the maximum value in the kernel Ki are suppressed from the selection process. [sent-107, score-0.302]

55 We show results from a three-scale hierarchy on the eye image (below). [sent-110, score-0.238]

56 The kernels each correspond to a different column in the fine scale transition matrix and the pixels giving rise to these kernels are shown numbered on the image. [sent-113, score-0.601]

57 Using these kernels as an initialization, the EM procedure derives a coarse-scale stationary distribution δ 21 14 26 4 (Eq. [sent-114, score-0.283]

58 Using the newly updated kernel matrix K and the 5 8 13 23 30 18 6 9 derived stationary distribution δ a transition matrix M 28 20 15 32 10 22 is generated (Eq. [sent-116, score-0.68]

59 The coarse scale Markov matrix 24 17 7 is then diffused to M β , again using β = 4. [sent-118, score-0.475]

60 The kernel Coarse Scale 1 Coarse Scale 2 selection algorithm is reapplied, this time picking 32 kernels for the second coarse scale. [sent-119, score-0.381]

61 In order to promote sparsity at successive levels of the hierarchy we sparsify A by zeroing out elements associated with “small” transition probabilities in M . [sent-124, score-0.502]

62 To summarize, we use the stationary distribution π at the fine-scale to derive a transition matrix M , and its stationary distribution δ, at the coarse-scale. [sent-126, score-0.613]

63 The coarse scale transition in turn helps to derive an affinity matrix A and its normalized version L. [sent-127, score-0.627]

64 We describe next how to use this representation hierarchy for building a fast eigensolver. [sent-129, score-0.28]

65 5 Fast EigenSolver Our goal in generating a hierarchical representation of a transition matrix is to develop a fast, specialized eigen solver for spectral clustering. [sent-130, score-1.05]

66 To this end, we perform a full eigen decomposition of the normalized affinity matrix only at the coarsest level. [sent-131, score-0.776]

67 As discussed in the previous section, the affinity matrix at the coarsest level is not likely to be sparse, hence it will need a full (as opposed to a sparse) version of an eigen solver. [sent-132, score-0.646]

68 The resulting eigenvectors are interpolated to the next lower level of the hierarchy by a process which will be described next. [sent-134, score-0.47]

69 There are several steps to the eigen interpolation process and in the discussion that follows we refer to the lines in the pseudo-code presented below. [sent-136, score-0.513]

70 First, the coarse-scale eigenvectors U can be interpolated using the kernel matrix K to generate U = K U , an approximation for the fine-scale eigenvectors (line 9). [sent-137, score-0.756]

71 Second, interpolation alone is unlikely to set the directions of U exactly aligned with U L , the vectors one would obtain by a direct eigen decomposition of the fine-scale normalized affinity matrix L. [sent-138, score-0.767]

72 05 5 10 15 20 Eigen Index (b) 25 30 5 10 15 20 Eigen Index 25 30 (c) Figure 1: Hierarchical eigensolver results. [sent-160, score-0.266]

73 Observe the slight mismatch in the last few eigenvectors, but excellent agreement in the leading eigenvectors (see text). [sent-162, score-0.313]

74 Suppose v = U c where U is a matrix of true eigenvectors and c is a coefficient vector for an arbitrary vector v. [sent-166, score-0.328]

75 Because we do not have access to the exact value S(e) at the beginning of the interpolation procedure, we estimate it from the coarse eigenvalues S. [sent-169, score-0.356]

76 Third, the interpolation process and the power iterations need not preserve orthogonality in the eigenvectors in U . [sent-171, score-0.499]

77 In particular, for the convergence of the power iterations the ratio that matters is between the (e + 1) st and eth eigenvalues. [sent-174, score-0.238]

78 So the idea we pursue is to use the power iterations only to separate the reduced space of eigenvectors (of dimension e) from the orthogonal subspace (of dimension n − e). [sent-175, score-0.436]

79 We then use a full SVD on the reduced space to update the leading eigenvectors U , and eigenvalues S, for the fine-scale (lines 17-20). [sent-176, score-0.409]

80 For the direct eigen decomposition, we have used the Matlab program svds. [sent-179, score-0.435]

81 1a we compare the spectrum S obtained from a three-scale decomposition on the eye image (blue line) with the ground truth, which is the spectrum SL resulting from direct eigen decomposition of the fine-scale normalized affinity matrices L (red circles). [sent-182, score-0.916]

82 1c the following measure: 1 − diag(|U T UL |), where U is the matrix of eigenvectors obtained by the multi-scale approximation, UL is the ground-truth resulting from a direct eigen decomposition of the fine-scale affinity matrix L and 1 is a vector of all ones. [sent-188, score-0.976]

83 The relative error plot demonstrates a close match, within the tolerance threshold of 1e-4 that we chose for the multi-scale method, in the leading eigenvector directions between the two methods. [sent-189, score-0.25]

84 The relative error is high with the last few eigen vectors, which suggests that the power iterations have not clearly separated them from other directions. [sent-190, score-0.589]

85 So, the strategy we suggest is to pad the required number of leading eigen basis by about 20% before invoking the multi-scale procedure. [sent-191, score-0.554]

86 Obviously, the number of hierarchical stages for the multi-scale procedure must be chosen such that the transition matrix at the coarsest scale can accommodate the slight increase in the subspace dimensions. [sent-192, score-0.717]

87 Next we measure the time the hierarchical eigensolver takes to compute the leading eigenbasis for various input sizes, in comparison with the svds. [sent-195, score-0.465]

88 The affinity matrix A with the edge weights is then used to generate a Markov transition matrix M . [sent-204, score-0.513]

89 The fast eigensolver is run on ten different instances of the input image of a given size and the average of these times is reported here. [sent-205, score-0.405]

90 We found the hierarchical representation derived from this tolerance threshold to be sufficiently accurate for a novel min-cut based segmentation results that we reported in [8]. [sent-208, score-0.23]

91 Also, the subspace dimensionality is fixed to be 51 where we expect (and indeed observe) the leading 40 eigenpairs derived from the multi-scale procedure to be accurate. [sent-209, score-0.218]

92 m procedure and the Matlab implementation of the multi-scale eigensolver respectively. [sent-213, score-0.327]

93 The fourth column reports the speedups of the multi-scale eigensolver over svds. [sent-214, score-0.338]

94 The most expensive step in the multi-scale algorithm is the power iteration required in the last stage, that is interpolating eigenvectors from the first coarse scale to the required fine scale. [sent-221, score-0.591]

95 Here we explored the use of random walks and associated spectral embedding techniques for the automatic generation of suitable proposal (source and sink) regions for a min-cut based algorithm. [sent-279, score-0.253]

96 The multiscale algorithm was used to generate the 40 leading eigenvectors of large transition matrices (eg. [sent-280, score-0.689]

97 Brand et al A unifying theorem for spectral embedding and clustering. [sent-303, score-0.382]

98 Scott et al Feature grouping by relocalization of eigenvectors of the proximity matrix. [sent-374, score-0.387]

99 Tishby et al Data clustering by Markovian Relaxation NIPS, 2001. [sent-390, score-0.216]

100 Williams et al Using the Nystrom method to speed up the kernel machines. [sent-392, score-0.268]


similar papers computed by tfidf model

tfidf for this paper:

wordName wordTfidf (topN-words)

[('eigen', 0.403), ('eigensolver', 0.266), ('nity', 0.216), ('af', 0.215), ('transition', 0.204), ('eigenvectors', 0.203), ('tpi', 0.188), ('coarse', 0.183), ('spectral', 0.159), ('diag', 0.155), ('hierarchy', 0.152), ('stationary', 0.142), ('al', 0.128), ('matrix', 0.125), ('coarsest', 0.118), ('leading', 0.11), ('sl', 0.102), ('markov', 0.098), ('power', 0.096), ('eigenvalues', 0.096), ('diffused', 0.094), ('fast', 0.092), ('iterations', 0.09), ('hierarchical', 0.089), ('decomposition', 0.088), ('nystrom', 0.087), ('kernel', 0.084), ('interpolated', 0.082), ('kernels', 0.08), ('interpolation', 0.077), ('scale', 0.073), ('tolerance', 0.072), ('tol', 0.071), ('eigenvector', 0.068), ('columns', 0.067), ('matrices', 0.064), ('walk', 0.063), ('procedure', 0.061), ('graph', 0.06), ('eigenvalue', 0.06), ('generate', 0.059), ('ul', 0.056), ('stats', 0.056), ('et', 0.056), ('relaxation', 0.055), ('walks', 0.055), ('successive', 0.054), ('markovian', 0.053), ('eth', 0.052), ('ue', 0.052), ('levels', 0.051), ('multiscale', 0.049), ('achlioptas', 0.047), ('coarsening', 0.047), ('eps', 0.047), ('estrada', 0.047), ('innerprod', 0.047), ('iters', 0.047), ('qjk', 0.047), ('qtk', 0.047), ('ritz', 0.047), ('uold', 0.047), ('image', 0.047), ('subspace', 0.047), ('normalized', 0.042), ('le', 0.041), ('chain', 0.041), ('ownership', 0.041), ('sparsify', 0.041), ('kq', 0.041), ('invoking', 0.041), ('coarser', 0.041), ('ad', 0.04), ('symmetric', 0.04), ('column', 0.039), ('truth', 0.039), ('eye', 0.039), ('spectrum', 0.039), ('embedding', 0.039), ('svd', 0.038), ('chennubhotla', 0.037), ('nips', 0.036), ('expensive', 0.036), ('representation', 0.036), ('em', 0.035), ('jepson', 0.035), ('ace', 0.035), ('partitioning', 0.035), ('ground', 0.035), ('absolute', 0.035), ('sparse', 0.035), ('selection', 0.034), ('specialized', 0.034), ('process', 0.033), ('segmentation', 0.033), ('speedups', 0.033), ('neighbours', 0.033), ('direct', 0.032), ('clustering', 0.032), ('node', 0.032)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 1.0000004 79 nips-2004-Hierarchical Eigensolver for Transition Matrices in Spectral Methods

Author: Chakra Chennubhotla, Allan D. Jepson

Abstract: We show how to build hierarchical, reduced-rank representation for large stochastic matrices and use this representation to design an efficient algorithm for computing the largest eigenvalues, and the corresponding eigenvectors. In particular, the eigen problem is first solved at the coarsest level of the representation. The approximate eigen solution is then interpolated over successive levels of the hierarchy. A small number of power iterations are employed at each stage to correct the eigen solution. The typical speedups obtained by a Matlab implementation of our fast eigensolver over a standard sparse matrix eigensolver [13] are at least a factor of ten for large image sizes. The hierarchical representation has proven to be effective in a min-cut based segmentation algorithm that we proposed recently [8]. 1 Spectral Methods Graph-theoretic spectral methods have gained popularity in a variety of application domains: segmenting images [22]; embedding in low-dimensional spaces [4, 5, 8]; and clustering parallel scientific computation tasks [19]. Spectral methods enable the study of properties global to a dataset, using only local (pairwise) similarity or affinity measurements between the data points. The global properties that emerge are best understood in terms of a random walk formulation on the graph. For example, the graph can be partitioned into clusters by analyzing the perturbations to the stationary distribution of a Markovian relaxation process defined in terms of the affinity weights [17, 18, 24, 7]. The Markovian relaxation process need never be explicitly carried out; instead, it can be analytically expressed using the leading order eigenvectors, and eigenvalues, of the Markov transition matrix. In this paper we consider the practical application of spectral methods to large datasets. In particular, the eigen decomposition can be very expensive, on the order of O(n 3 ), where n is the number of nodes in the graph. While it is possible to compute analytically the first eigenvector (see §3 below), the remaining subspace of vectors (necessary for say clustering) has to be explicitly computed. A typical approach to dealing with this difficulty is to first sparsify the links in the graph [22] and then apply an efficient eigensolver [13, 23, 3]. In comparison, we propose in this paper a specialized eigensolver suitable for large stochastic matrices with known stationary distributions. In particular, we exploit the spectral properties of the Markov transition matrix to generate hierarchical, successively lower-ranked approximations to the full transition matrix. The eigen problem is solved directly at the coarsest level of representation. The approximate eigen solution is then interpolated over successive levels of the hierarchy, using a small number of power iterations to correct the solution at each stage. 2 Previous Work One approach to speeding up the eigen decomposition is to use the fact that the columns of the affinity matrix are typically correlated. The idea then is to pick a small number of representative columns to perform eigen decomposition via SVD. For example, in the Nystrom approximation procedure, originally proposed for integral eigenvalue problems, the idea is to randomly pick a small set of m columns; generate the corresponding affinity matrix; solve the eigenproblem and finally extend the solution to the complete graph [9, 10]. The Nystrom method has also been recently applied in the kernel learning methods for fast Gaussian process classification and regression [25]. Other sampling-based approaches include the work reported in [1, 2, 11]. Our starting point is the transition matrix generated from affinity weights and we show how building a representational hierarchy follows naturally from considering the stochastic matrix. A closely related work is the paper by Lin on reduced rank approximations of transition matrices [14]. We differ in how we approximate the transition matrices, in particular our objective function is computationally less expensive to solve. In particular, one of our goals in reducing transition matrices is to develop a fast, specialized eigen solver for spectral clustering. Fast eigensolving is also the goal in ACE [12], where successive levels in the hierarchy can potentially have negative affinities. A graph coarsening process for clustering was also pursued in [21, 3]. 3 Markov Chain Terminology We first provide a brief overview of the Markov chain terminology here (for more details see [17, 15, 6]). We consider an undirected graph G = (V, E) with vertices vi , for i = {1, . . . , n}, and edges ei,j with non-negative weights ai,j . Here the weight ai,j represents the affinity between vertices vi and vj . The affinities are represented by a non-negative, symmetric n × n matrix A having weights ai,j as elements. The degree of a node j is n n defined to be: dj = i=1 ai,j = j=1 aj,i , where we define D = diag(d1 , . . . , dn ). A Markov chain is defined using these affinities by setting a transition probability matrix M = AD −1 , where the columns of M each sum to 1. The transition probability matrix defines the random walk of a particle on the graph G. The random walk need never be explicitly carried out; instead, it can be analytically expressed using the leading order eigenvectors, and eigenvalues, of the Markov transition matrix. Because the stochastic matrices need not be symmetric in general, a direct eigen decomposition step is not preferred for reasons of instability. This problem is easily circumvented by considering a normalized affinity matrix: L = D −1/2 AD−1/2 , which is related to the stochastic matrix by a similarity transformation: L = D −1/2 M D1/2 . Because L is symmetric, it can be diagonalized: L = U ΛU T , where U = [u1 , u2 , · · · , un ] is an orthogonal set of eigenvectors and Λ is a diagonal matrix of eigenvalues [λ1 , λ2 , · · · , λn ] sorted in decreasing order. The eigenvectors have unit length uk = 1 and from the form of A and D it can be shown that the eigenvalues λi ∈ (−1, 1], with at least one eigenvalue equal to one. Without loss of generality, we take λ1 = 1. Because L and M are similar we can perform an eigen decomposition of the Markov transition matrix as: M = D1/2 LD−1/2 = D1/2 U Λ U T D−1/2 . Thus an eigenvector u of L corresponds to an eigenvector D 1/2 u of M with the same eigenvalue λ. The Markovian relaxation process after β iterations, namely M β , can be represented as: M β = D1/2 U Λβ U T D−1/2 . Therefore, a particle undertaking a random walk with an initial distribution p 0 acquires after β steps a distribution p β given by: p β = M β p 0 . Assuming the graph is connected, as β → ∞, the Markov chain approaches a unique n stationary distribution given by π = diag(D)/ i=1 di , and thus, M ∞ = π1T , where 1 is a n-dim column vector of all ones. Observe that π is an eigenvector of M as it is easy to show that M π = π and the corresponding eigenvalue is 1. Next, we show how to generate hierarchical, successively low-ranked approximations for the transition matrix M . 4 Building a Hierarchy of Transition Matrices The goal is to generate a very fast approximation, while simultaneously achieving sufficient accuracy. For notational ease, we think of M as a fine-scale representation and M as some coarse-scale approximation to be derived here. By coarsening M further, we can generate successive levels of the representation hierarchy. We use the stationary distribution π to construct a corresponding coarse-scale stationary distribution δ. As we just discussed a critical property of the fine scale Markov matrix M is that it is similar to the symmetric matrix L and we wish to preserve this property at every level of the representation hierarchy. 4.1 Deriving Coarse-Scale Stationary Distribution We begin by expressing the stationary distribution π as a probabilistic mixture of latent distributions. In matrix notation, we have (1) π = K δ, where δ is an unknown mixture coefficient vector of length m, K is an n × m non-negative n kernel matrix whose columns are latent distributions that each sum to 1: i=1 Ki,j = 1 and m n. It is easy to derive a maximum likelihood approximation of δ using an EM type algorithm [16]. The main step is to find a stationary point δ, λ for the Lagrangian: m n i=1 m Ki,j δj + λ πi ln E≡− j=1 δj − 1 . (2) j=1 An implicit step in this EM procedure is to compute the the ownership probability r i,j of the j th kernel (or node) at the coarse scale for the ith node on the fine scale and is given by ri,j = δj Ki,j . m k=1 δk Ki,k (3) The EM procedure allows for an update of both δ and the latent distributions in the kernel matrix K (see §8.3.1 in [6]). For initialization, δ is taken to be uniform over the coarse-scale states. But in choosing kernels K, we provide a good initialization for the EM procedure. Specifically, the Markov matrix M is diffused using a small number of iterations to get M β . The diffusion causes random walks from neighboring nodes to be less distinguishable. This in turn helps us select a small number of columns of M β in a fast and greedy way to be the kernel matrix K. We defer the exact details on kernel selection to a later section (§4.3). 4.2 Deriving the Coarse-Scale Transition Matrix In order to define M , the coarse-scale transition matrix, we break it down into three steps. First, the Markov chain propagation at the coarse scale can be defined as: q k+1 = M q k , (4) where q is the coarse scale probability distribution after k steps of the random walk. Second, we expand q k into the fine scale using the kernels K resulting in a fine scale probability distribution p k : p k = Kq k . (5) k Finally, we lift p k back into the coarse scale by using the ownership probability of the j th kernel for the ith node on the fine grid: n qjk+1 = ri,j pik i=1 (6) Substituting for Eqs.(3) and (5) in Eq. 6 gives n m qjk+1 = i=1 n Ki,t qtk = ri,j t=1 i=1 δj Ki,j m k=1 δk Ki,k m Ki,t qtk . (7) t=1 We can write the preceding equation in a matrix form: q k+1 = diag( δ ) K T diag K δ −1 Kq k . (8) Comparing this with Eq. 4, we can derive the transition matrix M as: M = diag( δ ) K T diag K δ −1 (9) K. It is easy to see that δ = M δ, so δ is the stationary distribution for M . Following the definition of M , and its stationary distribution δ, we can generate a symmetric coarse scale affinity matrix A given by A = M diag(δ) = diag( δ ) K T diag K δ −1 Kdiag(δ) , (10) where we substitute for the expression M from Eq. 9. The coarse-scale affinity matrix A is then normalized to get: L = D−1/2 AD−1/2 ; D = diag(d1 , d2 , · · · , dm ), (11) where dj is the degree of node j in the coarse-scale graph represented by the matrix A (see §3 for degree definition). Thus, the coarse scale Markov matrix M is precisely similar to a symmetric matrix L. 4.3 Selecting Kernels For demonstration purpose, we present the kernel selection details on the image of an eye shown below. To begin with, a random walk is defined where each pixel in the test image is associated with a vertex of the graph G. The edges in G are defined by the standard 8-neighbourhood of each pixel. For the demonstrations in this paper, the edge weight ai,j between neighbouring pixels xi and xj is given by a function of the difference in the 2 corresponding intensities I(xi ) and I(xj ): ai,j = exp(−(I(xi ) − I(xj ))2 /2σa ), where σa is set according to the median absolute difference |I(xi ) − I(xj )| between neighbours measured over the entire image. The affinity matrix A with the edge weights is then used to generate a Markov transition matrix M . The kernel selection process we use is fast and greedy. First, the fine scale Markov matrix M is diffused to M β using β = 4. The Markov matrix M is sparse as we make the affinity matrix A sparse. Every column in the diffused matrix M β is a potential kernel. To facilitate the selection process, the second step is to rank order the columns of M β based on a probability value in the stationary distribution π. Third, the kernels (i.e. columns of M β ) are picked in such a way that for a kernel Ki all of the neighbours of pixel i which are within the half-height of the the maximum value in the kernel Ki are suppressed from the selection process. Finally, the kernel selection is continued until every pixel in the image is within a half-height of the peak value of at least one kernel. If M is a full matrix, to avoid the expense of computing M β explicitly, random kernel centers can be selected, and only the corresponding columns of M β need be computed. We show results from a three-scale hierarchy on the eye image (below). The image has 25 × 20 pixels but is shown here enlarged for clarity. At the first coarse scale 83 kernels are picked. The kernels each correspond to a different column in the fine scale transition matrix and the pixels giving rise to these kernels are shown numbered on the image. Using these kernels as an initialization, the EM procedure derives a coarse-scale stationary distribution δ 21 14 26 4 (Eq. 2), while simultaneously updating the kernel ma12 27 2 19 trix. Using the newly updated kernel matrix K and the 5 8 13 23 30 18 6 9 derived stationary distribution δ a transition matrix M 28 20 15 32 10 22 is generated (Eq. 9). The coarse scale Markov matrix 24 17 7 is then diffused to M β , again using β = 4. The kernel Coarse Scale 1 Coarse Scale 2 selection algorithm is reapplied, this time picking 32 kernels for the second coarse scale. Larger values of β cause the coarser level to have fewer elements. But the exact number of elements depends on the form of the kernels themselves. For the random experiments that we describe later in §6 we found β = 2 in the first iteration and 4 thereafter causes the number of kernels to be reduced by a factor of roughly 1/3 to 1/4 at each level. 72 28 35 44 51 64 82 4 12 31 56 19 77 36 45 52 65 13 57 23 37 5 40 53 63 73 14 29 6 66 38 74 47 24 7 30 41 54 71 78 58 15 8 20 39 48 59 67 25 68 79 21 16 2 11 26 42 49 55 60 75 32 83 43 9 76 50 17 27 61 33 69 80 3 46 18 70 81 34 10 62 22 1 25 11 1 3 16 31 29 At coarser levels of the hierarchy, we expect the kernels to get less sparse and so will the affinity and the transition matrices. In order to promote sparsity at successive levels of the hierarchy we sparsify A by zeroing out elements associated with “small” transition probabilities in M . However, in the experiments described later in §6, we observe this sparsification step to be not critical. To summarize, we use the stationary distribution π at the fine-scale to derive a transition matrix M , and its stationary distribution δ, at the coarse-scale. The coarse scale transition in turn helps to derive an affinity matrix A and its normalized version L. It is obvious that this procedure can be repeated recursively. We describe next how to use this representation hierarchy for building a fast eigensolver. 5 Fast EigenSolver Our goal in generating a hierarchical representation of a transition matrix is to develop a fast, specialized eigen solver for spectral clustering. To this end, we perform a full eigen decomposition of the normalized affinity matrix only at the coarsest level. As discussed in the previous section, the affinity matrix at the coarsest level is not likely to be sparse, hence it will need a full (as opposed to a sparse) version of an eigen solver. However it is typically the case that e ≤ m n (even in the case of the three-scale hierarchy that we just considered) and hence we expect this step to be the least expensive computationally. The resulting eigenvectors are interpolated to the next lower level of the hierarchy by a process which will be described next. Because the eigen interpolation process between every adjacent pair of scales in the hierarchy is similar, we will assume we have access to the leading eigenvectors U (size: m × e) for the normalized affinity matrix L (size: m × m) and describe how to generate the leading eigenvectors U (size: n × e), and the leading eigenvalues S (size: e × 1), for the fine-scale normalized affinity matrix L (size: n × n). There are several steps to the eigen interpolation process and in the discussion that follows we refer to the lines in the pseudo-code presented below. First, the coarse-scale eigenvectors U can be interpolated using the kernel matrix K to generate U = K U , an approximation for the fine-scale eigenvectors (line 9). Second, interpolation alone is unlikely to set the directions of U exactly aligned with U L , the vectors one would obtain by a direct eigen decomposition of the fine-scale normalized affinity matrix L. We therefore update the directions in U by applying a small number of power iterations with L, as given in lines 13-15. e e function (U, S) = CoarseToFine(L, K, U , S) 1: INPUT 2: L, K ⇐ {L is n × n and K is n × m where m n} e e e e 3: U /S ⇐ {leading coarse-scale eigenvectors/eigenvalues of L. U is of size m × e, e ≤ m} 4: OUTPUT 5: U, S ⇐ {leading fine-scale eigenvectors/eigenvalues of L. U is n × e and S is e × 1.} x 10 0.4 3 0.96 0.94 0.92 0.9 0.35 2.5 Relative Error Absolute Relative Error 0.98 Eigen Value |δλ|λ−1 −3 Eigen Spectrum 1 2 1.5 1 5 10 15 20 Eigen Index (a) 25 30 0.2 0.15 0.1 0.5 0.88 0.3 0.25 0.05 5 10 15 20 Eigen Index (b) 25 30 5 10 15 20 Eigen Index 25 30 (c) Figure 1: Hierarchical eigensolver results. (a) comparing ground truth eigenvalues S L (red circles) with multi-scale eigensolver spectrum S (blue line) (b) Relative absolute error between eigenvalues: |S−SL | (c) Eigenvector mismatch: 1 − diag |U T UL | , between SL eigenvectors U derived by the multi-scale eigensolver and the ground truth U L . Observe the slight mismatch in the last few eigenvectors, but excellent agreement in the leading eigenvectors (see text). 6: CONSTANTS: TOL = 1e-4; POWER ITERS = 50 7: “ ” e 8: TPI = min POWER ITERS, log(e × eps/TOL)/ log(min(S)) {eps: machine accuracy} e 9: U = K U {interpolation from coarse to fine} 10: while not converged do 11: Uold = U {n × e matrix, e n} 12: for i = 1 to TPI do 13: U ⇐ LU 14: end for 15: U ⇐ Gram-Schmidt(U ) {orthogonalize U } 16: Le = U T LU {L may be sparse, but Le need not be.} 17: Ue Se UeT = svd(Le ) {eigenanalysis of Le , which is of size e × e.} 18: U ⇐ U Ue {update the leading eigenvectors of L} 19: S = diag(Se ) {grab the leading eigenvalues of L} T 20: innerProd = 1 − diag( Uold U ) {1 is a e × 1 vector of all ones} 21: converged = max[abs(innerProd)] < TOL 22: end while The number of power iterations TPI can be bounded as discussed next. Suppose v = U c where U is a matrix of true eigenvectors and c is a coefficient vector for an arbitrary vector v. After TPI power iterations v becomes v = U diag(S TPI )c, where S has the exact eigenvalues. In order for the component of a vector v in the direction Ue (the eth column of U ) not to be swamped by other components, we can limit it’s decay after TPI iterations as TPI follows: (S(e)/S(1)) >= e×eps/TOL, where S(e) is the exact eth eigenvalue, S(1) = 1, eps is the machine precision, TOL is requested accuracy. Because we do not have access to the exact value S(e) at the beginning of the interpolation procedure, we estimate it from the coarse eigenvalues S. This leads to a bound on the power iterations TPI, as derived on the line 9 above. Third, the interpolation process and the power iterations need not preserve orthogonality in the eigenvectors in U . We fix this by Gram-Schmidt orthogonalization procedure (line 16). Finally, there is a still a problem with power iterations that needs to be resolved, in that it is very hard to separate nearby eigenvalues. In particular, for the convergence of the power iterations the ratio that matters is between the (e + 1) st and eth eigenvalues. So the idea we pursue is to use the power iterations only to separate the reduced space of eigenvectors (of dimension e) from the orthogonal subspace (of dimension n − e). We then use a full SVD on the reduced space to update the leading eigenvectors U , and eigenvalues S, for the fine-scale (lines 17-20). This idea is similar to computing the Ritz values and Ritz vectors in a Rayleigh-Ritz method. 6 Interpolation Results Our multi-scale decomposition code is in Matlab. For the direct eigen decomposition, we have used the Matlab program svds.m which invokes the compiled ARPACKC routine [13], with a default convergence tolerance of 1e-10. In Fig. 1a we compare the spectrum S obtained from a three-scale decomposition on the eye image (blue line) with the ground truth, which is the spectrum SL resulting from direct eigen decomposition of the fine-scale normalized affinity matrices L (red circles). There is an excellent agreement in the leading eigenvalues. To illustrate this, we show absolute relative error between the spectra: |S−SL | in Fig. 1b. The spectra agree mostly, except for SL the last few eigenvalues. For a quantitative comparison between the eigenvectors, we plot in Fig. 1c the following measure: 1 − diag(|U T UL |), where U is the matrix of eigenvectors obtained by the multi-scale approximation, UL is the ground-truth resulting from a direct eigen decomposition of the fine-scale affinity matrix L and 1 is a vector of all ones. The relative error plot demonstrates a close match, within the tolerance threshold of 1e-4 that we chose for the multi-scale method, in the leading eigenvector directions between the two methods. The relative error is high with the last few eigen vectors, which suggests that the power iterations have not clearly separated them from other directions. So, the strategy we suggest is to pad the required number of leading eigen basis by about 20% before invoking the multi-scale procedure. Obviously, the number of hierarchical stages for the multi-scale procedure must be chosen such that the transition matrix at the coarsest scale can accommodate the slight increase in the subspace dimensions. For lack of space we are omitting extra results (see Ch.8 in [6]). Next we measure the time the hierarchical eigensolver takes to compute the leading eigenbasis for various input sizes, in comparison with the svds.m procedure [13]. We form images of different input sizes by Gaussian smoothing of i.i.d noise. The Gaussian function has a standard deviation of 3 pixels. The edges in graph G are defined by the standard 8-neighbourhood of each pixel. The edge weights between neighbouring pixels are simply given by a function of the difference in the corresponding intensities (see §4.3). The affinity matrix A with the edge weights is then used to generate a Markov transition matrix M . The fast eigensolver is run on ten different instances of the input image of a given size and the average of these times is reported here. For a fair comparison between the two procedures, we set the convergence tolerance value for the svds.m procedure to be 1e-4, the same as the one used for the fast eigensolver. We found the hierarchical representation derived from this tolerance threshold to be sufficiently accurate for a novel min-cut based segmentation results that we reported in [8]. Also, the subspace dimensionality is fixed to be 51 where we expect (and indeed observe) the leading 40 eigenpairs derived from the multi-scale procedure to be accurate. Hence, while invoking svds.m we compute only the leading 41 eigenpairs. In the table shown below, the first column corresponds to the number of nodes in the graph, while the second and third columns report the time taken in seconds by the svds.m procedure and the Matlab implementation of the multi-scale eigensolver respectively. The fourth column reports the speedups of the multi-scale eigensolver over svds.m procedure on a standard desktop (Intel P4, 2.5GHz, 1GB RAM). Lowering the tolerance threshold for svds.m made it faster by about 20 − 30%. Despite this, the multi-scale algorithm clearly outperforms the svds.m procedure. The most expensive step in the multi-scale algorithm is the power iteration required in the last stage, that is interpolating eigenvectors from the first coarse scale to the required fine scale. The complexity is of the order of n × e where e is the subspace dimensionality and n is the size of the graph. Indeed, from the table we can see that the multi-scale procedure is taking time roughly proportional to n. Deviations from the linear trend are observed at specific values of n, which we believe are due to the n 322 632 642 652 1002 1272 1282 1292 1602 2552 2562 2572 5112 5122 5132 6002 7002 8002 svds.m 1.6 10.8 20.5 12.6 44.2 91.1 230.9 96.9 179.3 819.2 2170.8 871.7 7977.2 20269 7887.2 10841.4 15048.8 Multi-Scale 1.5 4.9 5.5 5.1 13.1 20.4 35.2 20.9 34.4 90.3 188.7 93.3 458.8 739.3 461.9 644.2 1162.4 1936.6 Speedup 1.1 2.2 3.7 2.5 3.4 4.5 6.6 4.6 5.2 9.1 11.5 9.3 17.4 27.4 17.1 16.8 12.9 variations in the difficulty of the specific eigenvalue problem (eg. nearly multiple eigenvalues). The hierarchical representation has proven to be effective in a min-cut based segmentation algorithm that we proposed recently [8]. Here we explored the use of random walks and associated spectral embedding techniques for the automatic generation of suitable proposal (source and sink) regions for a min-cut based algorithm. The multiscale algorithm was used to generate the 40 leading eigenvectors of large transition matrices (eg. size 20K × 20K). In terms of future work, it will be useful to compare our work with other approximate methods for SVD such as [23]. Ack: We thank S. Roweis, F. Estrada and M. Sakr for valuable comments. References [1] D. Achlioptas and F. McSherry. Fast Computation of Low-Rank Approximations. STOC, 2001. [2] D. Achlioptas et al Sampling Techniques for Kernel Methods. NIPS, 2001. [3] S. Barnard and H. Simon Fast Multilevel Implementation of Recursive Spectral Bisection for Partitioning Unstructured Problems. PPSC, 627-632. [4] M. Belkin et al Laplacian Eigenmaps and Spectral Techniques for Embedding. NIPS, 2001. [5] M. Brand et al A unifying theorem for spectral embedding and clustering. AI & STATS, 2002. [6] C. Chennubhotla. Spectral Methods for Multi-scale Feature Extraction and Spectral Clustering. http://www.cs.toronto.edu/˜chakra/thesis.pdf Ph.D Thesis, Department of Computer Science, University of Toronto, Canada, 2004. [7] C. Chennubhotla and A. Jepson. Half-Lives of EigenFlows for Spectral Clustering. NIPS, 2002. [8] F. Estrada, A. Jepson and C. Chennubhotla. Spectral Embedding and Min-Cut for Image Segmentation. Manuscript Under Review, 2004. [9] C. Fowlkes et al Efficient spatiotemporal grouping using the Nystrom method. CVPR, 2001. [10] S. Belongie et al Spectral Partitioning with Indefinite Kernels using Nystrom app. ECCV, 2002. [11] A. Frieze et al Fast Monte-Carlo Algorithms for finding low-rank approximations. FOCS, 1998. [12] Y. Koren et al ACE: A Fast Multiscale Eigenvectors Computation for Drawing Huge Graphs IEEE Symp. on InfoVis 2002, pp. 137-144 [13] R. B. Lehoucq, D. C. Sorensen and C. Yang. ARPACK User Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM 1998. [14] J. J. Lin. Reduced Rank Approximations of Transition Matrices. AI & STATS, 2002. [15] L. Lova’sz. Random Walks on Graphs: A Survey Combinatorics, 1996, 353–398. [16] G. J. McLachlan et al Mixture Models: Inference and Applications to Clustering. 1988 [17] M. Meila and J. Shi. A random walks view of spectral segmentation. AI & STATS, 2001. [18] A. Ng, M. Jordan and Y. Weiss. On Spectral Clustering: analysis and an algorithm NIPS, 2001. [19] A. Pothen Graph partitioning algorithms with applications to scientific computing. Parallel Numerical Algorithms, D. E. Keyes et al (eds.), Kluwer Academic Press, 1996. [20] G. L. Scott et al Feature grouping by relocalization of eigenvectors of the proximity matrix. BMVC, pg. 103-108, 1990. [21] E. Sharon et al Fast Multiscale Image Segmentation CVPR, I:70-77, 2000. [22] J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, August, 2000. [23] H. Simon et al Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications SIAM J. of Sci. Comp. 21(6):2257-2274, 2000. [24] N. Tishby et al Data clustering by Markovian Relaxation NIPS, 2001. [25] C. Williams et al Using the Nystrom method to speed up the kernel machines. NIPS, 2001.

2 0.25222942 161 nips-2004-Self-Tuning Spectral Clustering

Author: Lihi Zelnik-manor, Pietro Perona

Abstract: We study a number of open issues in spectral clustering: (i) Selecting the appropriate scale of analysis, (ii) Handling multi-scale data, (iii) Clustering with irregular background clutter, and, (iv) Finding automatically the number of groups. We first propose that a ‘local’ scale should be used to compute the affinity between each pair of points. This local scaling leads to better clustering especially when the data includes multiple scales and when the clusters are placed within a cluttered background. We further suggest exploiting the structure of the eigenvectors to infer automatically the number of groups. This leads to a new algorithm in which the final randomly initialized k-means stage is eliminated. 1

3 0.18613249 133 nips-2004-Nonparametric Transforms of Graph Kernels for Semi-Supervised Learning

Author: Xiaojin Zhu, Jaz Kandola, Zoubin Ghahramani, John D. Lafferty

Abstract: We present an algorithm based on convex optimization for constructing kernels for semi-supervised learning. The kernel matrices are derived from the spectral decomposition of graph Laplacians, and combine labeled and unlabeled data in a systematic fashion. Unlike previous work using diffusion kernels and Gaussian random field kernels, a nonparametric kernel approach is presented that incorporates order constraints during optimization. This results in flexible kernels and avoids the need to choose among different parametric forms. Our approach relies on a quadratically constrained quadratic program (QCQP), and is computationally feasible for large datasets. We evaluate the kernels on real datasets using support vector machines, with encouraging results. 1

4 0.17822772 31 nips-2004-Blind One-microphone Speech Separation: A Spectral Learning Approach

Author: Francis R. Bach, Michael I. Jordan

Abstract: We present an algorithm to perform blind, one-microphone speech separation. Our algorithm separates mixtures of speech without modeling individual speakers. Instead, we formulate the problem of speech separation as a problem in segmenting the spectrogram of the signal into two or more disjoint sets. We build feature sets for our segmenter using classical cues from speech psychophysics. We then combine these features into parameterized affinity matrices. We also take advantage of the fact that we can generate training examples for segmentation by artificially superposing separately-recorded signals. Thus the parameters of the affinity matrices can be tuned using recent work on learning spectral clustering [1]. This yields an adaptive, speech-specific segmentation algorithm that can successfully separate one-microphone speech mixtures. 1

5 0.14836298 103 nips-2004-Limits of Spectral Clustering

Author: Ulrike V. Luxburg, Olivier Bousquet, Mikhail Belkin

Abstract: An important aspect of clustering algorithms is whether the partitions constructed on finite samples converge to a useful clustering of the whole data space as the sample size increases. This paper investigates this question for normalized and unnormalized versions of the popular spectral clustering algorithm. Surprisingly, the convergence of unnormalized spectral clustering is more difficult to handle than the normalized case. Even though recently some first results on the convergence of normalized spectral clustering have been obtained, for the unnormalized case we have to develop a completely new approach combining tools from numerical integration, spectral and perturbation theory, and probability. It turns out that while in the normalized case, spectral clustering usually converges to a nice partition of the data space, in the unnormalized case the same only holds under strong additional assumptions which are not always satisfied. We conclude that our analysis gives strong evidence for the superiority of normalized spectral clustering. It also provides a basis for future exploration of other Laplacian-based methods. 1

6 0.10685755 13 nips-2004-A Three Tiered Approach for Articulated Object Action Modeling and Recognition

7 0.10674021 185 nips-2004-The Convergence of Contrastive Divergences

8 0.096595168 168 nips-2004-Semigroup Kernels on Finite Sets

9 0.094005682 115 nips-2004-Maximum Margin Clustering

10 0.091194764 98 nips-2004-Learning Gaussian Process Kernels via Hierarchical Bayes

11 0.08798752 150 nips-2004-Proximity Graphs for Clustering and Manifold Learning

12 0.084134243 59 nips-2004-Efficient Kernel Discriminant Analysis via QR Decomposition

13 0.075839981 61 nips-2004-Efficient Out-of-Sample Extension of Dominant-Set Clusters

14 0.075786352 188 nips-2004-The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space

15 0.071217299 60 nips-2004-Efficient Kernel Machines Using the Improved Fast Gauss Transform

16 0.071208499 68 nips-2004-Face Detection --- Efficient and Rank Deficient

17 0.070905231 177 nips-2004-Supervised Graph Inference

18 0.070101924 110 nips-2004-Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection

19 0.069402136 42 nips-2004-Computing regularization paths for learning multiple kernels

20 0.068958163 62 nips-2004-Euclidean Embedding of Co-Occurrence Data


similar papers computed by lsi model

lsi for this paper:

topicId topicWeight

[(0, -0.244), (1, 0.064), (2, -0.06), (3, -0.091), (4, -0.15), (5, -0.156), (6, -0.183), (7, -0.064), (8, -0.123), (9, -0.083), (10, -0.193), (11, -0.076), (12, -0.061), (13, 0.055), (14, 0.032), (15, -0.015), (16, -0.027), (17, -0.05), (18, -0.038), (19, -0.002), (20, 0.035), (21, 0.029), (22, 0.009), (23, -0.102), (24, -0.062), (25, 0.096), (26, 0.054), (27, 0.011), (28, -0.01), (29, 0.076), (30, 0.008), (31, 0.065), (32, -0.052), (33, 0.025), (34, 0.004), (35, 0.015), (36, -0.041), (37, -0.021), (38, -0.061), (39, 0.049), (40, -0.103), (41, -0.042), (42, -0.044), (43, -0.005), (44, -0.046), (45, -0.124), (46, -0.082), (47, -0.111), (48, 0.064), (49, 0.049)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.96893853 79 nips-2004-Hierarchical Eigensolver for Transition Matrices in Spectral Methods

Author: Chakra Chennubhotla, Allan D. Jepson

Abstract: We show how to build hierarchical, reduced-rank representation for large stochastic matrices and use this representation to design an efficient algorithm for computing the largest eigenvalues, and the corresponding eigenvectors. In particular, the eigen problem is first solved at the coarsest level of the representation. The approximate eigen solution is then interpolated over successive levels of the hierarchy. A small number of power iterations are employed at each stage to correct the eigen solution. The typical speedups obtained by a Matlab implementation of our fast eigensolver over a standard sparse matrix eigensolver [13] are at least a factor of ten for large image sizes. The hierarchical representation has proven to be effective in a min-cut based segmentation algorithm that we proposed recently [8]. 1 Spectral Methods Graph-theoretic spectral methods have gained popularity in a variety of application domains: segmenting images [22]; embedding in low-dimensional spaces [4, 5, 8]; and clustering parallel scientific computation tasks [19]. Spectral methods enable the study of properties global to a dataset, using only local (pairwise) similarity or affinity measurements between the data points. The global properties that emerge are best understood in terms of a random walk formulation on the graph. For example, the graph can be partitioned into clusters by analyzing the perturbations to the stationary distribution of a Markovian relaxation process defined in terms of the affinity weights [17, 18, 24, 7]. The Markovian relaxation process need never be explicitly carried out; instead, it can be analytically expressed using the leading order eigenvectors, and eigenvalues, of the Markov transition matrix. In this paper we consider the practical application of spectral methods to large datasets. In particular, the eigen decomposition can be very expensive, on the order of O(n 3 ), where n is the number of nodes in the graph. While it is possible to compute analytically the first eigenvector (see §3 below), the remaining subspace of vectors (necessary for say clustering) has to be explicitly computed. A typical approach to dealing with this difficulty is to first sparsify the links in the graph [22] and then apply an efficient eigensolver [13, 23, 3]. In comparison, we propose in this paper a specialized eigensolver suitable for large stochastic matrices with known stationary distributions. In particular, we exploit the spectral properties of the Markov transition matrix to generate hierarchical, successively lower-ranked approximations to the full transition matrix. The eigen problem is solved directly at the coarsest level of representation. The approximate eigen solution is then interpolated over successive levels of the hierarchy, using a small number of power iterations to correct the solution at each stage. 2 Previous Work One approach to speeding up the eigen decomposition is to use the fact that the columns of the affinity matrix are typically correlated. The idea then is to pick a small number of representative columns to perform eigen decomposition via SVD. For example, in the Nystrom approximation procedure, originally proposed for integral eigenvalue problems, the idea is to randomly pick a small set of m columns; generate the corresponding affinity matrix; solve the eigenproblem and finally extend the solution to the complete graph [9, 10]. The Nystrom method has also been recently applied in the kernel learning methods for fast Gaussian process classification and regression [25]. Other sampling-based approaches include the work reported in [1, 2, 11]. Our starting point is the transition matrix generated from affinity weights and we show how building a representational hierarchy follows naturally from considering the stochastic matrix. A closely related work is the paper by Lin on reduced rank approximations of transition matrices [14]. We differ in how we approximate the transition matrices, in particular our objective function is computationally less expensive to solve. In particular, one of our goals in reducing transition matrices is to develop a fast, specialized eigen solver for spectral clustering. Fast eigensolving is also the goal in ACE [12], where successive levels in the hierarchy can potentially have negative affinities. A graph coarsening process for clustering was also pursued in [21, 3]. 3 Markov Chain Terminology We first provide a brief overview of the Markov chain terminology here (for more details see [17, 15, 6]). We consider an undirected graph G = (V, E) with vertices vi , for i = {1, . . . , n}, and edges ei,j with non-negative weights ai,j . Here the weight ai,j represents the affinity between vertices vi and vj . The affinities are represented by a non-negative, symmetric n × n matrix A having weights ai,j as elements. The degree of a node j is n n defined to be: dj = i=1 ai,j = j=1 aj,i , where we define D = diag(d1 , . . . , dn ). A Markov chain is defined using these affinities by setting a transition probability matrix M = AD −1 , where the columns of M each sum to 1. The transition probability matrix defines the random walk of a particle on the graph G. The random walk need never be explicitly carried out; instead, it can be analytically expressed using the leading order eigenvectors, and eigenvalues, of the Markov transition matrix. Because the stochastic matrices need not be symmetric in general, a direct eigen decomposition step is not preferred for reasons of instability. This problem is easily circumvented by considering a normalized affinity matrix: L = D −1/2 AD−1/2 , which is related to the stochastic matrix by a similarity transformation: L = D −1/2 M D1/2 . Because L is symmetric, it can be diagonalized: L = U ΛU T , where U = [u1 , u2 , · · · , un ] is an orthogonal set of eigenvectors and Λ is a diagonal matrix of eigenvalues [λ1 , λ2 , · · · , λn ] sorted in decreasing order. The eigenvectors have unit length uk = 1 and from the form of A and D it can be shown that the eigenvalues λi ∈ (−1, 1], with at least one eigenvalue equal to one. Without loss of generality, we take λ1 = 1. Because L and M are similar we can perform an eigen decomposition of the Markov transition matrix as: M = D1/2 LD−1/2 = D1/2 U Λ U T D−1/2 . Thus an eigenvector u of L corresponds to an eigenvector D 1/2 u of M with the same eigenvalue λ. The Markovian relaxation process after β iterations, namely M β , can be represented as: M β = D1/2 U Λβ U T D−1/2 . Therefore, a particle undertaking a random walk with an initial distribution p 0 acquires after β steps a distribution p β given by: p β = M β p 0 . Assuming the graph is connected, as β → ∞, the Markov chain approaches a unique n stationary distribution given by π = diag(D)/ i=1 di , and thus, M ∞ = π1T , where 1 is a n-dim column vector of all ones. Observe that π is an eigenvector of M as it is easy to show that M π = π and the corresponding eigenvalue is 1. Next, we show how to generate hierarchical, successively low-ranked approximations for the transition matrix M . 4 Building a Hierarchy of Transition Matrices The goal is to generate a very fast approximation, while simultaneously achieving sufficient accuracy. For notational ease, we think of M as a fine-scale representation and M as some coarse-scale approximation to be derived here. By coarsening M further, we can generate successive levels of the representation hierarchy. We use the stationary distribution π to construct a corresponding coarse-scale stationary distribution δ. As we just discussed a critical property of the fine scale Markov matrix M is that it is similar to the symmetric matrix L and we wish to preserve this property at every level of the representation hierarchy. 4.1 Deriving Coarse-Scale Stationary Distribution We begin by expressing the stationary distribution π as a probabilistic mixture of latent distributions. In matrix notation, we have (1) π = K δ, where δ is an unknown mixture coefficient vector of length m, K is an n × m non-negative n kernel matrix whose columns are latent distributions that each sum to 1: i=1 Ki,j = 1 and m n. It is easy to derive a maximum likelihood approximation of δ using an EM type algorithm [16]. The main step is to find a stationary point δ, λ for the Lagrangian: m n i=1 m Ki,j δj + λ πi ln E≡− j=1 δj − 1 . (2) j=1 An implicit step in this EM procedure is to compute the the ownership probability r i,j of the j th kernel (or node) at the coarse scale for the ith node on the fine scale and is given by ri,j = δj Ki,j . m k=1 δk Ki,k (3) The EM procedure allows for an update of both δ and the latent distributions in the kernel matrix K (see §8.3.1 in [6]). For initialization, δ is taken to be uniform over the coarse-scale states. But in choosing kernels K, we provide a good initialization for the EM procedure. Specifically, the Markov matrix M is diffused using a small number of iterations to get M β . The diffusion causes random walks from neighboring nodes to be less distinguishable. This in turn helps us select a small number of columns of M β in a fast and greedy way to be the kernel matrix K. We defer the exact details on kernel selection to a later section (§4.3). 4.2 Deriving the Coarse-Scale Transition Matrix In order to define M , the coarse-scale transition matrix, we break it down into three steps. First, the Markov chain propagation at the coarse scale can be defined as: q k+1 = M q k , (4) where q is the coarse scale probability distribution after k steps of the random walk. Second, we expand q k into the fine scale using the kernels K resulting in a fine scale probability distribution p k : p k = Kq k . (5) k Finally, we lift p k back into the coarse scale by using the ownership probability of the j th kernel for the ith node on the fine grid: n qjk+1 = ri,j pik i=1 (6) Substituting for Eqs.(3) and (5) in Eq. 6 gives n m qjk+1 = i=1 n Ki,t qtk = ri,j t=1 i=1 δj Ki,j m k=1 δk Ki,k m Ki,t qtk . (7) t=1 We can write the preceding equation in a matrix form: q k+1 = diag( δ ) K T diag K δ −1 Kq k . (8) Comparing this with Eq. 4, we can derive the transition matrix M as: M = diag( δ ) K T diag K δ −1 (9) K. It is easy to see that δ = M δ, so δ is the stationary distribution for M . Following the definition of M , and its stationary distribution δ, we can generate a symmetric coarse scale affinity matrix A given by A = M diag(δ) = diag( δ ) K T diag K δ −1 Kdiag(δ) , (10) where we substitute for the expression M from Eq. 9. The coarse-scale affinity matrix A is then normalized to get: L = D−1/2 AD−1/2 ; D = diag(d1 , d2 , · · · , dm ), (11) where dj is the degree of node j in the coarse-scale graph represented by the matrix A (see §3 for degree definition). Thus, the coarse scale Markov matrix M is precisely similar to a symmetric matrix L. 4.3 Selecting Kernels For demonstration purpose, we present the kernel selection details on the image of an eye shown below. To begin with, a random walk is defined where each pixel in the test image is associated with a vertex of the graph G. The edges in G are defined by the standard 8-neighbourhood of each pixel. For the demonstrations in this paper, the edge weight ai,j between neighbouring pixels xi and xj is given by a function of the difference in the 2 corresponding intensities I(xi ) and I(xj ): ai,j = exp(−(I(xi ) − I(xj ))2 /2σa ), where σa is set according to the median absolute difference |I(xi ) − I(xj )| between neighbours measured over the entire image. The affinity matrix A with the edge weights is then used to generate a Markov transition matrix M . The kernel selection process we use is fast and greedy. First, the fine scale Markov matrix M is diffused to M β using β = 4. The Markov matrix M is sparse as we make the affinity matrix A sparse. Every column in the diffused matrix M β is a potential kernel. To facilitate the selection process, the second step is to rank order the columns of M β based on a probability value in the stationary distribution π. Third, the kernels (i.e. columns of M β ) are picked in such a way that for a kernel Ki all of the neighbours of pixel i which are within the half-height of the the maximum value in the kernel Ki are suppressed from the selection process. Finally, the kernel selection is continued until every pixel in the image is within a half-height of the peak value of at least one kernel. If M is a full matrix, to avoid the expense of computing M β explicitly, random kernel centers can be selected, and only the corresponding columns of M β need be computed. We show results from a three-scale hierarchy on the eye image (below). The image has 25 × 20 pixels but is shown here enlarged for clarity. At the first coarse scale 83 kernels are picked. The kernels each correspond to a different column in the fine scale transition matrix and the pixels giving rise to these kernels are shown numbered on the image. Using these kernels as an initialization, the EM procedure derives a coarse-scale stationary distribution δ 21 14 26 4 (Eq. 2), while simultaneously updating the kernel ma12 27 2 19 trix. Using the newly updated kernel matrix K and the 5 8 13 23 30 18 6 9 derived stationary distribution δ a transition matrix M 28 20 15 32 10 22 is generated (Eq. 9). The coarse scale Markov matrix 24 17 7 is then diffused to M β , again using β = 4. The kernel Coarse Scale 1 Coarse Scale 2 selection algorithm is reapplied, this time picking 32 kernels for the second coarse scale. Larger values of β cause the coarser level to have fewer elements. But the exact number of elements depends on the form of the kernels themselves. For the random experiments that we describe later in §6 we found β = 2 in the first iteration and 4 thereafter causes the number of kernels to be reduced by a factor of roughly 1/3 to 1/4 at each level. 72 28 35 44 51 64 82 4 12 31 56 19 77 36 45 52 65 13 57 23 37 5 40 53 63 73 14 29 6 66 38 74 47 24 7 30 41 54 71 78 58 15 8 20 39 48 59 67 25 68 79 21 16 2 11 26 42 49 55 60 75 32 83 43 9 76 50 17 27 61 33 69 80 3 46 18 70 81 34 10 62 22 1 25 11 1 3 16 31 29 At coarser levels of the hierarchy, we expect the kernels to get less sparse and so will the affinity and the transition matrices. In order to promote sparsity at successive levels of the hierarchy we sparsify A by zeroing out elements associated with “small” transition probabilities in M . However, in the experiments described later in §6, we observe this sparsification step to be not critical. To summarize, we use the stationary distribution π at the fine-scale to derive a transition matrix M , and its stationary distribution δ, at the coarse-scale. The coarse scale transition in turn helps to derive an affinity matrix A and its normalized version L. It is obvious that this procedure can be repeated recursively. We describe next how to use this representation hierarchy for building a fast eigensolver. 5 Fast EigenSolver Our goal in generating a hierarchical representation of a transition matrix is to develop a fast, specialized eigen solver for spectral clustering. To this end, we perform a full eigen decomposition of the normalized affinity matrix only at the coarsest level. As discussed in the previous section, the affinity matrix at the coarsest level is not likely to be sparse, hence it will need a full (as opposed to a sparse) version of an eigen solver. However it is typically the case that e ≤ m n (even in the case of the three-scale hierarchy that we just considered) and hence we expect this step to be the least expensive computationally. The resulting eigenvectors are interpolated to the next lower level of the hierarchy by a process which will be described next. Because the eigen interpolation process between every adjacent pair of scales in the hierarchy is similar, we will assume we have access to the leading eigenvectors U (size: m × e) for the normalized affinity matrix L (size: m × m) and describe how to generate the leading eigenvectors U (size: n × e), and the leading eigenvalues S (size: e × 1), for the fine-scale normalized affinity matrix L (size: n × n). There are several steps to the eigen interpolation process and in the discussion that follows we refer to the lines in the pseudo-code presented below. First, the coarse-scale eigenvectors U can be interpolated using the kernel matrix K to generate U = K U , an approximation for the fine-scale eigenvectors (line 9). Second, interpolation alone is unlikely to set the directions of U exactly aligned with U L , the vectors one would obtain by a direct eigen decomposition of the fine-scale normalized affinity matrix L. We therefore update the directions in U by applying a small number of power iterations with L, as given in lines 13-15. e e function (U, S) = CoarseToFine(L, K, U , S) 1: INPUT 2: L, K ⇐ {L is n × n and K is n × m where m n} e e e e 3: U /S ⇐ {leading coarse-scale eigenvectors/eigenvalues of L. U is of size m × e, e ≤ m} 4: OUTPUT 5: U, S ⇐ {leading fine-scale eigenvectors/eigenvalues of L. U is n × e and S is e × 1.} x 10 0.4 3 0.96 0.94 0.92 0.9 0.35 2.5 Relative Error Absolute Relative Error 0.98 Eigen Value |δλ|λ−1 −3 Eigen Spectrum 1 2 1.5 1 5 10 15 20 Eigen Index (a) 25 30 0.2 0.15 0.1 0.5 0.88 0.3 0.25 0.05 5 10 15 20 Eigen Index (b) 25 30 5 10 15 20 Eigen Index 25 30 (c) Figure 1: Hierarchical eigensolver results. (a) comparing ground truth eigenvalues S L (red circles) with multi-scale eigensolver spectrum S (blue line) (b) Relative absolute error between eigenvalues: |S−SL | (c) Eigenvector mismatch: 1 − diag |U T UL | , between SL eigenvectors U derived by the multi-scale eigensolver and the ground truth U L . Observe the slight mismatch in the last few eigenvectors, but excellent agreement in the leading eigenvectors (see text). 6: CONSTANTS: TOL = 1e-4; POWER ITERS = 50 7: “ ” e 8: TPI = min POWER ITERS, log(e × eps/TOL)/ log(min(S)) {eps: machine accuracy} e 9: U = K U {interpolation from coarse to fine} 10: while not converged do 11: Uold = U {n × e matrix, e n} 12: for i = 1 to TPI do 13: U ⇐ LU 14: end for 15: U ⇐ Gram-Schmidt(U ) {orthogonalize U } 16: Le = U T LU {L may be sparse, but Le need not be.} 17: Ue Se UeT = svd(Le ) {eigenanalysis of Le , which is of size e × e.} 18: U ⇐ U Ue {update the leading eigenvectors of L} 19: S = diag(Se ) {grab the leading eigenvalues of L} T 20: innerProd = 1 − diag( Uold U ) {1 is a e × 1 vector of all ones} 21: converged = max[abs(innerProd)] < TOL 22: end while The number of power iterations TPI can be bounded as discussed next. Suppose v = U c where U is a matrix of true eigenvectors and c is a coefficient vector for an arbitrary vector v. After TPI power iterations v becomes v = U diag(S TPI )c, where S has the exact eigenvalues. In order for the component of a vector v in the direction Ue (the eth column of U ) not to be swamped by other components, we can limit it’s decay after TPI iterations as TPI follows: (S(e)/S(1)) >= e×eps/TOL, where S(e) is the exact eth eigenvalue, S(1) = 1, eps is the machine precision, TOL is requested accuracy. Because we do not have access to the exact value S(e) at the beginning of the interpolation procedure, we estimate it from the coarse eigenvalues S. This leads to a bound on the power iterations TPI, as derived on the line 9 above. Third, the interpolation process and the power iterations need not preserve orthogonality in the eigenvectors in U . We fix this by Gram-Schmidt orthogonalization procedure (line 16). Finally, there is a still a problem with power iterations that needs to be resolved, in that it is very hard to separate nearby eigenvalues. In particular, for the convergence of the power iterations the ratio that matters is between the (e + 1) st and eth eigenvalues. So the idea we pursue is to use the power iterations only to separate the reduced space of eigenvectors (of dimension e) from the orthogonal subspace (of dimension n − e). We then use a full SVD on the reduced space to update the leading eigenvectors U , and eigenvalues S, for the fine-scale (lines 17-20). This idea is similar to computing the Ritz values and Ritz vectors in a Rayleigh-Ritz method. 6 Interpolation Results Our multi-scale decomposition code is in Matlab. For the direct eigen decomposition, we have used the Matlab program svds.m which invokes the compiled ARPACKC routine [13], with a default convergence tolerance of 1e-10. In Fig. 1a we compare the spectrum S obtained from a three-scale decomposition on the eye image (blue line) with the ground truth, which is the spectrum SL resulting from direct eigen decomposition of the fine-scale normalized affinity matrices L (red circles). There is an excellent agreement in the leading eigenvalues. To illustrate this, we show absolute relative error between the spectra: |S−SL | in Fig. 1b. The spectra agree mostly, except for SL the last few eigenvalues. For a quantitative comparison between the eigenvectors, we plot in Fig. 1c the following measure: 1 − diag(|U T UL |), where U is the matrix of eigenvectors obtained by the multi-scale approximation, UL is the ground-truth resulting from a direct eigen decomposition of the fine-scale affinity matrix L and 1 is a vector of all ones. The relative error plot demonstrates a close match, within the tolerance threshold of 1e-4 that we chose for the multi-scale method, in the leading eigenvector directions between the two methods. The relative error is high with the last few eigen vectors, which suggests that the power iterations have not clearly separated them from other directions. So, the strategy we suggest is to pad the required number of leading eigen basis by about 20% before invoking the multi-scale procedure. Obviously, the number of hierarchical stages for the multi-scale procedure must be chosen such that the transition matrix at the coarsest scale can accommodate the slight increase in the subspace dimensions. For lack of space we are omitting extra results (see Ch.8 in [6]). Next we measure the time the hierarchical eigensolver takes to compute the leading eigenbasis for various input sizes, in comparison with the svds.m procedure [13]. We form images of different input sizes by Gaussian smoothing of i.i.d noise. The Gaussian function has a standard deviation of 3 pixels. The edges in graph G are defined by the standard 8-neighbourhood of each pixel. The edge weights between neighbouring pixels are simply given by a function of the difference in the corresponding intensities (see §4.3). The affinity matrix A with the edge weights is then used to generate a Markov transition matrix M . The fast eigensolver is run on ten different instances of the input image of a given size and the average of these times is reported here. For a fair comparison between the two procedures, we set the convergence tolerance value for the svds.m procedure to be 1e-4, the same as the one used for the fast eigensolver. We found the hierarchical representation derived from this tolerance threshold to be sufficiently accurate for a novel min-cut based segmentation results that we reported in [8]. Also, the subspace dimensionality is fixed to be 51 where we expect (and indeed observe) the leading 40 eigenpairs derived from the multi-scale procedure to be accurate. Hence, while invoking svds.m we compute only the leading 41 eigenpairs. In the table shown below, the first column corresponds to the number of nodes in the graph, while the second and third columns report the time taken in seconds by the svds.m procedure and the Matlab implementation of the multi-scale eigensolver respectively. The fourth column reports the speedups of the multi-scale eigensolver over svds.m procedure on a standard desktop (Intel P4, 2.5GHz, 1GB RAM). Lowering the tolerance threshold for svds.m made it faster by about 20 − 30%. Despite this, the multi-scale algorithm clearly outperforms the svds.m procedure. The most expensive step in the multi-scale algorithm is the power iteration required in the last stage, that is interpolating eigenvectors from the first coarse scale to the required fine scale. The complexity is of the order of n × e where e is the subspace dimensionality and n is the size of the graph. Indeed, from the table we can see that the multi-scale procedure is taking time roughly proportional to n. Deviations from the linear trend are observed at specific values of n, which we believe are due to the n 322 632 642 652 1002 1272 1282 1292 1602 2552 2562 2572 5112 5122 5132 6002 7002 8002 svds.m 1.6 10.8 20.5 12.6 44.2 91.1 230.9 96.9 179.3 819.2 2170.8 871.7 7977.2 20269 7887.2 10841.4 15048.8 Multi-Scale 1.5 4.9 5.5 5.1 13.1 20.4 35.2 20.9 34.4 90.3 188.7 93.3 458.8 739.3 461.9 644.2 1162.4 1936.6 Speedup 1.1 2.2 3.7 2.5 3.4 4.5 6.6 4.6 5.2 9.1 11.5 9.3 17.4 27.4 17.1 16.8 12.9 variations in the difficulty of the specific eigenvalue problem (eg. nearly multiple eigenvalues). The hierarchical representation has proven to be effective in a min-cut based segmentation algorithm that we proposed recently [8]. Here we explored the use of random walks and associated spectral embedding techniques for the automatic generation of suitable proposal (source and sink) regions for a min-cut based algorithm. The multiscale algorithm was used to generate the 40 leading eigenvectors of large transition matrices (eg. size 20K × 20K). In terms of future work, it will be useful to compare our work with other approximate methods for SVD such as [23]. Ack: We thank S. Roweis, F. Estrada and M. Sakr for valuable comments. References [1] D. Achlioptas and F. McSherry. Fast Computation of Low-Rank Approximations. STOC, 2001. [2] D. Achlioptas et al Sampling Techniques for Kernel Methods. NIPS, 2001. [3] S. Barnard and H. Simon Fast Multilevel Implementation of Recursive Spectral Bisection for Partitioning Unstructured Problems. PPSC, 627-632. [4] M. Belkin et al Laplacian Eigenmaps and Spectral Techniques for Embedding. NIPS, 2001. [5] M. Brand et al A unifying theorem for spectral embedding and clustering. AI & STATS, 2002. [6] C. Chennubhotla. Spectral Methods for Multi-scale Feature Extraction and Spectral Clustering. http://www.cs.toronto.edu/˜chakra/thesis.pdf Ph.D Thesis, Department of Computer Science, University of Toronto, Canada, 2004. [7] C. Chennubhotla and A. Jepson. Half-Lives of EigenFlows for Spectral Clustering. NIPS, 2002. [8] F. Estrada, A. Jepson and C. Chennubhotla. Spectral Embedding and Min-Cut for Image Segmentation. Manuscript Under Review, 2004. [9] C. Fowlkes et al Efficient spatiotemporal grouping using the Nystrom method. CVPR, 2001. [10] S. Belongie et al Spectral Partitioning with Indefinite Kernels using Nystrom app. ECCV, 2002. [11] A. Frieze et al Fast Monte-Carlo Algorithms for finding low-rank approximations. FOCS, 1998. [12] Y. Koren et al ACE: A Fast Multiscale Eigenvectors Computation for Drawing Huge Graphs IEEE Symp. on InfoVis 2002, pp. 137-144 [13] R. B. Lehoucq, D. C. Sorensen and C. Yang. ARPACK User Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM 1998. [14] J. J. Lin. Reduced Rank Approximations of Transition Matrices. AI & STATS, 2002. [15] L. Lova’sz. Random Walks on Graphs: A Survey Combinatorics, 1996, 353–398. [16] G. J. McLachlan et al Mixture Models: Inference and Applications to Clustering. 1988 [17] M. Meila and J. Shi. A random walks view of spectral segmentation. AI & STATS, 2001. [18] A. Ng, M. Jordan and Y. Weiss. On Spectral Clustering: analysis and an algorithm NIPS, 2001. [19] A. Pothen Graph partitioning algorithms with applications to scientific computing. Parallel Numerical Algorithms, D. E. Keyes et al (eds.), Kluwer Academic Press, 1996. [20] G. L. Scott et al Feature grouping by relocalization of eigenvectors of the proximity matrix. BMVC, pg. 103-108, 1990. [21] E. Sharon et al Fast Multiscale Image Segmentation CVPR, I:70-77, 2000. [22] J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, August, 2000. [23] H. Simon et al Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications SIAM J. of Sci. Comp. 21(6):2257-2274, 2000. [24] N. Tishby et al Data clustering by Markovian Relaxation NIPS, 2001. [25] C. Williams et al Using the Nystrom method to speed up the kernel machines. NIPS, 2001.

2 0.82330078 161 nips-2004-Self-Tuning Spectral Clustering

Author: Lihi Zelnik-manor, Pietro Perona

Abstract: We study a number of open issues in spectral clustering: (i) Selecting the appropriate scale of analysis, (ii) Handling multi-scale data, (iii) Clustering with irregular background clutter, and, (iv) Finding automatically the number of groups. We first propose that a ‘local’ scale should be used to compute the affinity between each pair of points. This local scaling leads to better clustering especially when the data includes multiple scales and when the clusters are placed within a cluttered background. We further suggest exploiting the structure of the eigenvectors to infer automatically the number of groups. This leads to a new algorithm in which the final randomly initialized k-means stage is eliminated. 1

3 0.75684923 103 nips-2004-Limits of Spectral Clustering

Author: Ulrike V. Luxburg, Olivier Bousquet, Mikhail Belkin

Abstract: An important aspect of clustering algorithms is whether the partitions constructed on finite samples converge to a useful clustering of the whole data space as the sample size increases. This paper investigates this question for normalized and unnormalized versions of the popular spectral clustering algorithm. Surprisingly, the convergence of unnormalized spectral clustering is more difficult to handle than the normalized case. Even though recently some first results on the convergence of normalized spectral clustering have been obtained, for the unnormalized case we have to develop a completely new approach combining tools from numerical integration, spectral and perturbation theory, and probability. It turns out that while in the normalized case, spectral clustering usually converges to a nice partition of the data space, in the unnormalized case the same only holds under strong additional assumptions which are not always satisfied. We conclude that our analysis gives strong evidence for the superiority of normalized spectral clustering. It also provides a basis for future exploration of other Laplacian-based methods. 1

4 0.64092928 133 nips-2004-Nonparametric Transforms of Graph Kernels for Semi-Supervised Learning

Author: Xiaojin Zhu, Jaz Kandola, Zoubin Ghahramani, John D. Lafferty

Abstract: We present an algorithm based on convex optimization for constructing kernels for semi-supervised learning. The kernel matrices are derived from the spectral decomposition of graph Laplacians, and combine labeled and unlabeled data in a systematic fashion. Unlike previous work using diffusion kernels and Gaussian random field kernels, a nonparametric kernel approach is presented that incorporates order constraints during optimization. This results in flexible kernels and avoids the need to choose among different parametric forms. Our approach relies on a quadratically constrained quadratic program (QCQP), and is computationally feasible for large datasets. We evaluate the kernels on real datasets using support vector machines, with encouraging results. 1

5 0.53981292 30 nips-2004-Binet-Cauchy Kernels

Author: Alex J. Smola, S.v.n. Vishwanathan

Abstract: We propose a family of kernels based on the Binet-Cauchy theorem and its extension to Fredholm operators. This includes as special cases all currently known kernels derived from the behavioral framework, diffusion processes, marginalized kernels, kernels on graphs, and the kernels on sets arising from the subspace angle approach. Many of these kernels can be seen as the extrema of a new continuum of kernel functions, which leads to numerous new special cases. As an application, we apply the new class of kernels to the problem of clustering of video sequences with encouraging results. 1

6 0.51835293 31 nips-2004-Blind One-microphone Speech Separation: A Spectral Learning Approach

7 0.51289892 61 nips-2004-Efficient Out-of-Sample Extension of Dominant-Set Clusters

8 0.49505493 150 nips-2004-Proximity Graphs for Clustering and Manifold Learning

9 0.48542938 185 nips-2004-The Convergence of Contrastive Divergences

10 0.46512958 13 nips-2004-A Three Tiered Approach for Articulated Object Action Modeling and Recognition

11 0.45954326 18 nips-2004-Algebraic Set Kernels with Application to Inference Over Local Image Representations

12 0.45591006 115 nips-2004-Maximum Margin Clustering

13 0.44279736 94 nips-2004-Kernels for Multi--task Learning

14 0.42728266 168 nips-2004-Semigroup Kernels on Finite Sets

15 0.40131238 96 nips-2004-Learning, Regularization and Ill-Posed Inverse Problems

16 0.40111652 207 nips-2004-ℓ₀-norm Minimization for Basis Selection

17 0.38246641 60 nips-2004-Efficient Kernel Machines Using the Improved Fast Gauss Transform

18 0.37607619 177 nips-2004-Supervised Graph Inference

19 0.36270607 188 nips-2004-The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space

20 0.36026344 59 nips-2004-Efficient Kernel Discriminant Analysis via QR Decomposition


similar papers computed by lda model

lda for this paper:

topicId topicWeight

[(13, 0.097), (15, 0.191), (17, 0.015), (26, 0.075), (31, 0.02), (33, 0.162), (35, 0.018), (39, 0.023), (50, 0.051), (56, 0.013), (76, 0.016), (88, 0.233)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.87601626 79 nips-2004-Hierarchical Eigensolver for Transition Matrices in Spectral Methods

Author: Chakra Chennubhotla, Allan D. Jepson

Abstract: We show how to build hierarchical, reduced-rank representation for large stochastic matrices and use this representation to design an efficient algorithm for computing the largest eigenvalues, and the corresponding eigenvectors. In particular, the eigen problem is first solved at the coarsest level of the representation. The approximate eigen solution is then interpolated over successive levels of the hierarchy. A small number of power iterations are employed at each stage to correct the eigen solution. The typical speedups obtained by a Matlab implementation of our fast eigensolver over a standard sparse matrix eigensolver [13] are at least a factor of ten for large image sizes. The hierarchical representation has proven to be effective in a min-cut based segmentation algorithm that we proposed recently [8]. 1 Spectral Methods Graph-theoretic spectral methods have gained popularity in a variety of application domains: segmenting images [22]; embedding in low-dimensional spaces [4, 5, 8]; and clustering parallel scientific computation tasks [19]. Spectral methods enable the study of properties global to a dataset, using only local (pairwise) similarity or affinity measurements between the data points. The global properties that emerge are best understood in terms of a random walk formulation on the graph. For example, the graph can be partitioned into clusters by analyzing the perturbations to the stationary distribution of a Markovian relaxation process defined in terms of the affinity weights [17, 18, 24, 7]. The Markovian relaxation process need never be explicitly carried out; instead, it can be analytically expressed using the leading order eigenvectors, and eigenvalues, of the Markov transition matrix. In this paper we consider the practical application of spectral methods to large datasets. In particular, the eigen decomposition can be very expensive, on the order of O(n 3 ), where n is the number of nodes in the graph. While it is possible to compute analytically the first eigenvector (see §3 below), the remaining subspace of vectors (necessary for say clustering) has to be explicitly computed. A typical approach to dealing with this difficulty is to first sparsify the links in the graph [22] and then apply an efficient eigensolver [13, 23, 3]. In comparison, we propose in this paper a specialized eigensolver suitable for large stochastic matrices with known stationary distributions. In particular, we exploit the spectral properties of the Markov transition matrix to generate hierarchical, successively lower-ranked approximations to the full transition matrix. The eigen problem is solved directly at the coarsest level of representation. The approximate eigen solution is then interpolated over successive levels of the hierarchy, using a small number of power iterations to correct the solution at each stage. 2 Previous Work One approach to speeding up the eigen decomposition is to use the fact that the columns of the affinity matrix are typically correlated. The idea then is to pick a small number of representative columns to perform eigen decomposition via SVD. For example, in the Nystrom approximation procedure, originally proposed for integral eigenvalue problems, the idea is to randomly pick a small set of m columns; generate the corresponding affinity matrix; solve the eigenproblem and finally extend the solution to the complete graph [9, 10]. The Nystrom method has also been recently applied in the kernel learning methods for fast Gaussian process classification and regression [25]. Other sampling-based approaches include the work reported in [1, 2, 11]. Our starting point is the transition matrix generated from affinity weights and we show how building a representational hierarchy follows naturally from considering the stochastic matrix. A closely related work is the paper by Lin on reduced rank approximations of transition matrices [14]. We differ in how we approximate the transition matrices, in particular our objective function is computationally less expensive to solve. In particular, one of our goals in reducing transition matrices is to develop a fast, specialized eigen solver for spectral clustering. Fast eigensolving is also the goal in ACE [12], where successive levels in the hierarchy can potentially have negative affinities. A graph coarsening process for clustering was also pursued in [21, 3]. 3 Markov Chain Terminology We first provide a brief overview of the Markov chain terminology here (for more details see [17, 15, 6]). We consider an undirected graph G = (V, E) with vertices vi , for i = {1, . . . , n}, and edges ei,j with non-negative weights ai,j . Here the weight ai,j represents the affinity between vertices vi and vj . The affinities are represented by a non-negative, symmetric n × n matrix A having weights ai,j as elements. The degree of a node j is n n defined to be: dj = i=1 ai,j = j=1 aj,i , where we define D = diag(d1 , . . . , dn ). A Markov chain is defined using these affinities by setting a transition probability matrix M = AD −1 , where the columns of M each sum to 1. The transition probability matrix defines the random walk of a particle on the graph G. The random walk need never be explicitly carried out; instead, it can be analytically expressed using the leading order eigenvectors, and eigenvalues, of the Markov transition matrix. Because the stochastic matrices need not be symmetric in general, a direct eigen decomposition step is not preferred for reasons of instability. This problem is easily circumvented by considering a normalized affinity matrix: L = D −1/2 AD−1/2 , which is related to the stochastic matrix by a similarity transformation: L = D −1/2 M D1/2 . Because L is symmetric, it can be diagonalized: L = U ΛU T , where U = [u1 , u2 , · · · , un ] is an orthogonal set of eigenvectors and Λ is a diagonal matrix of eigenvalues [λ1 , λ2 , · · · , λn ] sorted in decreasing order. The eigenvectors have unit length uk = 1 and from the form of A and D it can be shown that the eigenvalues λi ∈ (−1, 1], with at least one eigenvalue equal to one. Without loss of generality, we take λ1 = 1. Because L and M are similar we can perform an eigen decomposition of the Markov transition matrix as: M = D1/2 LD−1/2 = D1/2 U Λ U T D−1/2 . Thus an eigenvector u of L corresponds to an eigenvector D 1/2 u of M with the same eigenvalue λ. The Markovian relaxation process after β iterations, namely M β , can be represented as: M β = D1/2 U Λβ U T D−1/2 . Therefore, a particle undertaking a random walk with an initial distribution p 0 acquires after β steps a distribution p β given by: p β = M β p 0 . Assuming the graph is connected, as β → ∞, the Markov chain approaches a unique n stationary distribution given by π = diag(D)/ i=1 di , and thus, M ∞ = π1T , where 1 is a n-dim column vector of all ones. Observe that π is an eigenvector of M as it is easy to show that M π = π and the corresponding eigenvalue is 1. Next, we show how to generate hierarchical, successively low-ranked approximations for the transition matrix M . 4 Building a Hierarchy of Transition Matrices The goal is to generate a very fast approximation, while simultaneously achieving sufficient accuracy. For notational ease, we think of M as a fine-scale representation and M as some coarse-scale approximation to be derived here. By coarsening M further, we can generate successive levels of the representation hierarchy. We use the stationary distribution π to construct a corresponding coarse-scale stationary distribution δ. As we just discussed a critical property of the fine scale Markov matrix M is that it is similar to the symmetric matrix L and we wish to preserve this property at every level of the representation hierarchy. 4.1 Deriving Coarse-Scale Stationary Distribution We begin by expressing the stationary distribution π as a probabilistic mixture of latent distributions. In matrix notation, we have (1) π = K δ, where δ is an unknown mixture coefficient vector of length m, K is an n × m non-negative n kernel matrix whose columns are latent distributions that each sum to 1: i=1 Ki,j = 1 and m n. It is easy to derive a maximum likelihood approximation of δ using an EM type algorithm [16]. The main step is to find a stationary point δ, λ for the Lagrangian: m n i=1 m Ki,j δj + λ πi ln E≡− j=1 δj − 1 . (2) j=1 An implicit step in this EM procedure is to compute the the ownership probability r i,j of the j th kernel (or node) at the coarse scale for the ith node on the fine scale and is given by ri,j = δj Ki,j . m k=1 δk Ki,k (3) The EM procedure allows for an update of both δ and the latent distributions in the kernel matrix K (see §8.3.1 in [6]). For initialization, δ is taken to be uniform over the coarse-scale states. But in choosing kernels K, we provide a good initialization for the EM procedure. Specifically, the Markov matrix M is diffused using a small number of iterations to get M β . The diffusion causes random walks from neighboring nodes to be less distinguishable. This in turn helps us select a small number of columns of M β in a fast and greedy way to be the kernel matrix K. We defer the exact details on kernel selection to a later section (§4.3). 4.2 Deriving the Coarse-Scale Transition Matrix In order to define M , the coarse-scale transition matrix, we break it down into three steps. First, the Markov chain propagation at the coarse scale can be defined as: q k+1 = M q k , (4) where q is the coarse scale probability distribution after k steps of the random walk. Second, we expand q k into the fine scale using the kernels K resulting in a fine scale probability distribution p k : p k = Kq k . (5) k Finally, we lift p k back into the coarse scale by using the ownership probability of the j th kernel for the ith node on the fine grid: n qjk+1 = ri,j pik i=1 (6) Substituting for Eqs.(3) and (5) in Eq. 6 gives n m qjk+1 = i=1 n Ki,t qtk = ri,j t=1 i=1 δj Ki,j m k=1 δk Ki,k m Ki,t qtk . (7) t=1 We can write the preceding equation in a matrix form: q k+1 = diag( δ ) K T diag K δ −1 Kq k . (8) Comparing this with Eq. 4, we can derive the transition matrix M as: M = diag( δ ) K T diag K δ −1 (9) K. It is easy to see that δ = M δ, so δ is the stationary distribution for M . Following the definition of M , and its stationary distribution δ, we can generate a symmetric coarse scale affinity matrix A given by A = M diag(δ) = diag( δ ) K T diag K δ −1 Kdiag(δ) , (10) where we substitute for the expression M from Eq. 9. The coarse-scale affinity matrix A is then normalized to get: L = D−1/2 AD−1/2 ; D = diag(d1 , d2 , · · · , dm ), (11) where dj is the degree of node j in the coarse-scale graph represented by the matrix A (see §3 for degree definition). Thus, the coarse scale Markov matrix M is precisely similar to a symmetric matrix L. 4.3 Selecting Kernels For demonstration purpose, we present the kernel selection details on the image of an eye shown below. To begin with, a random walk is defined where each pixel in the test image is associated with a vertex of the graph G. The edges in G are defined by the standard 8-neighbourhood of each pixel. For the demonstrations in this paper, the edge weight ai,j between neighbouring pixels xi and xj is given by a function of the difference in the 2 corresponding intensities I(xi ) and I(xj ): ai,j = exp(−(I(xi ) − I(xj ))2 /2σa ), where σa is set according to the median absolute difference |I(xi ) − I(xj )| between neighbours measured over the entire image. The affinity matrix A with the edge weights is then used to generate a Markov transition matrix M . The kernel selection process we use is fast and greedy. First, the fine scale Markov matrix M is diffused to M β using β = 4. The Markov matrix M is sparse as we make the affinity matrix A sparse. Every column in the diffused matrix M β is a potential kernel. To facilitate the selection process, the second step is to rank order the columns of M β based on a probability value in the stationary distribution π. Third, the kernels (i.e. columns of M β ) are picked in such a way that for a kernel Ki all of the neighbours of pixel i which are within the half-height of the the maximum value in the kernel Ki are suppressed from the selection process. Finally, the kernel selection is continued until every pixel in the image is within a half-height of the peak value of at least one kernel. If M is a full matrix, to avoid the expense of computing M β explicitly, random kernel centers can be selected, and only the corresponding columns of M β need be computed. We show results from a three-scale hierarchy on the eye image (below). The image has 25 × 20 pixels but is shown here enlarged for clarity. At the first coarse scale 83 kernels are picked. The kernels each correspond to a different column in the fine scale transition matrix and the pixels giving rise to these kernels are shown numbered on the image. Using these kernels as an initialization, the EM procedure derives a coarse-scale stationary distribution δ 21 14 26 4 (Eq. 2), while simultaneously updating the kernel ma12 27 2 19 trix. Using the newly updated kernel matrix K and the 5 8 13 23 30 18 6 9 derived stationary distribution δ a transition matrix M 28 20 15 32 10 22 is generated (Eq. 9). The coarse scale Markov matrix 24 17 7 is then diffused to M β , again using β = 4. The kernel Coarse Scale 1 Coarse Scale 2 selection algorithm is reapplied, this time picking 32 kernels for the second coarse scale. Larger values of β cause the coarser level to have fewer elements. But the exact number of elements depends on the form of the kernels themselves. For the random experiments that we describe later in §6 we found β = 2 in the first iteration and 4 thereafter causes the number of kernels to be reduced by a factor of roughly 1/3 to 1/4 at each level. 72 28 35 44 51 64 82 4 12 31 56 19 77 36 45 52 65 13 57 23 37 5 40 53 63 73 14 29 6 66 38 74 47 24 7 30 41 54 71 78 58 15 8 20 39 48 59 67 25 68 79 21 16 2 11 26 42 49 55 60 75 32 83 43 9 76 50 17 27 61 33 69 80 3 46 18 70 81 34 10 62 22 1 25 11 1 3 16 31 29 At coarser levels of the hierarchy, we expect the kernels to get less sparse and so will the affinity and the transition matrices. In order to promote sparsity at successive levels of the hierarchy we sparsify A by zeroing out elements associated with “small” transition probabilities in M . However, in the experiments described later in §6, we observe this sparsification step to be not critical. To summarize, we use the stationary distribution π at the fine-scale to derive a transition matrix M , and its stationary distribution δ, at the coarse-scale. The coarse scale transition in turn helps to derive an affinity matrix A and its normalized version L. It is obvious that this procedure can be repeated recursively. We describe next how to use this representation hierarchy for building a fast eigensolver. 5 Fast EigenSolver Our goal in generating a hierarchical representation of a transition matrix is to develop a fast, specialized eigen solver for spectral clustering. To this end, we perform a full eigen decomposition of the normalized affinity matrix only at the coarsest level. As discussed in the previous section, the affinity matrix at the coarsest level is not likely to be sparse, hence it will need a full (as opposed to a sparse) version of an eigen solver. However it is typically the case that e ≤ m n (even in the case of the three-scale hierarchy that we just considered) and hence we expect this step to be the least expensive computationally. The resulting eigenvectors are interpolated to the next lower level of the hierarchy by a process which will be described next. Because the eigen interpolation process between every adjacent pair of scales in the hierarchy is similar, we will assume we have access to the leading eigenvectors U (size: m × e) for the normalized affinity matrix L (size: m × m) and describe how to generate the leading eigenvectors U (size: n × e), and the leading eigenvalues S (size: e × 1), for the fine-scale normalized affinity matrix L (size: n × n). There are several steps to the eigen interpolation process and in the discussion that follows we refer to the lines in the pseudo-code presented below. First, the coarse-scale eigenvectors U can be interpolated using the kernel matrix K to generate U = K U , an approximation for the fine-scale eigenvectors (line 9). Second, interpolation alone is unlikely to set the directions of U exactly aligned with U L , the vectors one would obtain by a direct eigen decomposition of the fine-scale normalized affinity matrix L. We therefore update the directions in U by applying a small number of power iterations with L, as given in lines 13-15. e e function (U, S) = CoarseToFine(L, K, U , S) 1: INPUT 2: L, K ⇐ {L is n × n and K is n × m where m n} e e e e 3: U /S ⇐ {leading coarse-scale eigenvectors/eigenvalues of L. U is of size m × e, e ≤ m} 4: OUTPUT 5: U, S ⇐ {leading fine-scale eigenvectors/eigenvalues of L. U is n × e and S is e × 1.} x 10 0.4 3 0.96 0.94 0.92 0.9 0.35 2.5 Relative Error Absolute Relative Error 0.98 Eigen Value |δλ|λ−1 −3 Eigen Spectrum 1 2 1.5 1 5 10 15 20 Eigen Index (a) 25 30 0.2 0.15 0.1 0.5 0.88 0.3 0.25 0.05 5 10 15 20 Eigen Index (b) 25 30 5 10 15 20 Eigen Index 25 30 (c) Figure 1: Hierarchical eigensolver results. (a) comparing ground truth eigenvalues S L (red circles) with multi-scale eigensolver spectrum S (blue line) (b) Relative absolute error between eigenvalues: |S−SL | (c) Eigenvector mismatch: 1 − diag |U T UL | , between SL eigenvectors U derived by the multi-scale eigensolver and the ground truth U L . Observe the slight mismatch in the last few eigenvectors, but excellent agreement in the leading eigenvectors (see text). 6: CONSTANTS: TOL = 1e-4; POWER ITERS = 50 7: “ ” e 8: TPI = min POWER ITERS, log(e × eps/TOL)/ log(min(S)) {eps: machine accuracy} e 9: U = K U {interpolation from coarse to fine} 10: while not converged do 11: Uold = U {n × e matrix, e n} 12: for i = 1 to TPI do 13: U ⇐ LU 14: end for 15: U ⇐ Gram-Schmidt(U ) {orthogonalize U } 16: Le = U T LU {L may be sparse, but Le need not be.} 17: Ue Se UeT = svd(Le ) {eigenanalysis of Le , which is of size e × e.} 18: U ⇐ U Ue {update the leading eigenvectors of L} 19: S = diag(Se ) {grab the leading eigenvalues of L} T 20: innerProd = 1 − diag( Uold U ) {1 is a e × 1 vector of all ones} 21: converged = max[abs(innerProd)] < TOL 22: end while The number of power iterations TPI can be bounded as discussed next. Suppose v = U c where U is a matrix of true eigenvectors and c is a coefficient vector for an arbitrary vector v. After TPI power iterations v becomes v = U diag(S TPI )c, where S has the exact eigenvalues. In order for the component of a vector v in the direction Ue (the eth column of U ) not to be swamped by other components, we can limit it’s decay after TPI iterations as TPI follows: (S(e)/S(1)) >= e×eps/TOL, where S(e) is the exact eth eigenvalue, S(1) = 1, eps is the machine precision, TOL is requested accuracy. Because we do not have access to the exact value S(e) at the beginning of the interpolation procedure, we estimate it from the coarse eigenvalues S. This leads to a bound on the power iterations TPI, as derived on the line 9 above. Third, the interpolation process and the power iterations need not preserve orthogonality in the eigenvectors in U . We fix this by Gram-Schmidt orthogonalization procedure (line 16). Finally, there is a still a problem with power iterations that needs to be resolved, in that it is very hard to separate nearby eigenvalues. In particular, for the convergence of the power iterations the ratio that matters is between the (e + 1) st and eth eigenvalues. So the idea we pursue is to use the power iterations only to separate the reduced space of eigenvectors (of dimension e) from the orthogonal subspace (of dimension n − e). We then use a full SVD on the reduced space to update the leading eigenvectors U , and eigenvalues S, for the fine-scale (lines 17-20). This idea is similar to computing the Ritz values and Ritz vectors in a Rayleigh-Ritz method. 6 Interpolation Results Our multi-scale decomposition code is in Matlab. For the direct eigen decomposition, we have used the Matlab program svds.m which invokes the compiled ARPACKC routine [13], with a default convergence tolerance of 1e-10. In Fig. 1a we compare the spectrum S obtained from a three-scale decomposition on the eye image (blue line) with the ground truth, which is the spectrum SL resulting from direct eigen decomposition of the fine-scale normalized affinity matrices L (red circles). There is an excellent agreement in the leading eigenvalues. To illustrate this, we show absolute relative error between the spectra: |S−SL | in Fig. 1b. The spectra agree mostly, except for SL the last few eigenvalues. For a quantitative comparison between the eigenvectors, we plot in Fig. 1c the following measure: 1 − diag(|U T UL |), where U is the matrix of eigenvectors obtained by the multi-scale approximation, UL is the ground-truth resulting from a direct eigen decomposition of the fine-scale affinity matrix L and 1 is a vector of all ones. The relative error plot demonstrates a close match, within the tolerance threshold of 1e-4 that we chose for the multi-scale method, in the leading eigenvector directions between the two methods. The relative error is high with the last few eigen vectors, which suggests that the power iterations have not clearly separated them from other directions. So, the strategy we suggest is to pad the required number of leading eigen basis by about 20% before invoking the multi-scale procedure. Obviously, the number of hierarchical stages for the multi-scale procedure must be chosen such that the transition matrix at the coarsest scale can accommodate the slight increase in the subspace dimensions. For lack of space we are omitting extra results (see Ch.8 in [6]). Next we measure the time the hierarchical eigensolver takes to compute the leading eigenbasis for various input sizes, in comparison with the svds.m procedure [13]. We form images of different input sizes by Gaussian smoothing of i.i.d noise. The Gaussian function has a standard deviation of 3 pixels. The edges in graph G are defined by the standard 8-neighbourhood of each pixel. The edge weights between neighbouring pixels are simply given by a function of the difference in the corresponding intensities (see §4.3). The affinity matrix A with the edge weights is then used to generate a Markov transition matrix M . The fast eigensolver is run on ten different instances of the input image of a given size and the average of these times is reported here. For a fair comparison between the two procedures, we set the convergence tolerance value for the svds.m procedure to be 1e-4, the same as the one used for the fast eigensolver. We found the hierarchical representation derived from this tolerance threshold to be sufficiently accurate for a novel min-cut based segmentation results that we reported in [8]. Also, the subspace dimensionality is fixed to be 51 where we expect (and indeed observe) the leading 40 eigenpairs derived from the multi-scale procedure to be accurate. Hence, while invoking svds.m we compute only the leading 41 eigenpairs. In the table shown below, the first column corresponds to the number of nodes in the graph, while the second and third columns report the time taken in seconds by the svds.m procedure and the Matlab implementation of the multi-scale eigensolver respectively. The fourth column reports the speedups of the multi-scale eigensolver over svds.m procedure on a standard desktop (Intel P4, 2.5GHz, 1GB RAM). Lowering the tolerance threshold for svds.m made it faster by about 20 − 30%. Despite this, the multi-scale algorithm clearly outperforms the svds.m procedure. The most expensive step in the multi-scale algorithm is the power iteration required in the last stage, that is interpolating eigenvectors from the first coarse scale to the required fine scale. The complexity is of the order of n × e where e is the subspace dimensionality and n is the size of the graph. Indeed, from the table we can see that the multi-scale procedure is taking time roughly proportional to n. Deviations from the linear trend are observed at specific values of n, which we believe are due to the n 322 632 642 652 1002 1272 1282 1292 1602 2552 2562 2572 5112 5122 5132 6002 7002 8002 svds.m 1.6 10.8 20.5 12.6 44.2 91.1 230.9 96.9 179.3 819.2 2170.8 871.7 7977.2 20269 7887.2 10841.4 15048.8 Multi-Scale 1.5 4.9 5.5 5.1 13.1 20.4 35.2 20.9 34.4 90.3 188.7 93.3 458.8 739.3 461.9 644.2 1162.4 1936.6 Speedup 1.1 2.2 3.7 2.5 3.4 4.5 6.6 4.6 5.2 9.1 11.5 9.3 17.4 27.4 17.1 16.8 12.9 variations in the difficulty of the specific eigenvalue problem (eg. nearly multiple eigenvalues). The hierarchical representation has proven to be effective in a min-cut based segmentation algorithm that we proposed recently [8]. Here we explored the use of random walks and associated spectral embedding techniques for the automatic generation of suitable proposal (source and sink) regions for a min-cut based algorithm. The multiscale algorithm was used to generate the 40 leading eigenvectors of large transition matrices (eg. size 20K × 20K). In terms of future work, it will be useful to compare our work with other approximate methods for SVD such as [23]. Ack: We thank S. Roweis, F. Estrada and M. Sakr for valuable comments. References [1] D. Achlioptas and F. McSherry. Fast Computation of Low-Rank Approximations. STOC, 2001. [2] D. Achlioptas et al Sampling Techniques for Kernel Methods. NIPS, 2001. [3] S. Barnard and H. Simon Fast Multilevel Implementation of Recursive Spectral Bisection for Partitioning Unstructured Problems. PPSC, 627-632. [4] M. Belkin et al Laplacian Eigenmaps and Spectral Techniques for Embedding. NIPS, 2001. [5] M. Brand et al A unifying theorem for spectral embedding and clustering. AI & STATS, 2002. [6] C. Chennubhotla. Spectral Methods for Multi-scale Feature Extraction and Spectral Clustering. http://www.cs.toronto.edu/˜chakra/thesis.pdf Ph.D Thesis, Department of Computer Science, University of Toronto, Canada, 2004. [7] C. Chennubhotla and A. Jepson. Half-Lives of EigenFlows for Spectral Clustering. NIPS, 2002. [8] F. Estrada, A. Jepson and C. Chennubhotla. Spectral Embedding and Min-Cut for Image Segmentation. Manuscript Under Review, 2004. [9] C. Fowlkes et al Efficient spatiotemporal grouping using the Nystrom method. CVPR, 2001. [10] S. Belongie et al Spectral Partitioning with Indefinite Kernels using Nystrom app. ECCV, 2002. [11] A. Frieze et al Fast Monte-Carlo Algorithms for finding low-rank approximations. FOCS, 1998. [12] Y. Koren et al ACE: A Fast Multiscale Eigenvectors Computation for Drawing Huge Graphs IEEE Symp. on InfoVis 2002, pp. 137-144 [13] R. B. Lehoucq, D. C. Sorensen and C. Yang. ARPACK User Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM 1998. [14] J. J. Lin. Reduced Rank Approximations of Transition Matrices. AI & STATS, 2002. [15] L. Lova’sz. Random Walks on Graphs: A Survey Combinatorics, 1996, 353–398. [16] G. J. McLachlan et al Mixture Models: Inference and Applications to Clustering. 1988 [17] M. Meila and J. Shi. A random walks view of spectral segmentation. AI & STATS, 2001. [18] A. Ng, M. Jordan and Y. Weiss. On Spectral Clustering: analysis and an algorithm NIPS, 2001. [19] A. Pothen Graph partitioning algorithms with applications to scientific computing. Parallel Numerical Algorithms, D. E. Keyes et al (eds.), Kluwer Academic Press, 1996. [20] G. L. Scott et al Feature grouping by relocalization of eigenvectors of the proximity matrix. BMVC, pg. 103-108, 1990. [21] E. Sharon et al Fast Multiscale Image Segmentation CVPR, I:70-77, 2000. [22] J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, August, 2000. [23] H. Simon et al Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications SIAM J. of Sci. Comp. 21(6):2257-2274, 2000. [24] N. Tishby et al Data clustering by Markovian Relaxation NIPS, 2001. [25] C. Williams et al Using the Nystrom method to speed up the kernel machines. NIPS, 2001.

2 0.84076333 116 nips-2004-Message Errors in Belief Propagation

Author: Alexander T. Ihler, John W. Fisher, Alan S. Willsky

Abstract: Belief propagation (BP) is an increasingly popular method of performing approximate inference on arbitrary graphical models. At times, even further approximations are required, whether from quantization or other simplified message representations or from stochastic approximation methods. Introducing such errors into the BP message computations has the potential to adversely affect the solution obtained. We analyze this effect with respect to a particular measure of message error, and show bounds on the accumulation of errors in the system. This leads both to convergence conditions and error bounds in traditional and approximate BP message passing. 1

3 0.75655138 55 nips-2004-Distributed Occlusion Reasoning for Tracking with Nonparametric Belief Propagation

Author: Erik B. Sudderth, Michael I. Mandel, William T. Freeman, Alan S. Willsky

Abstract: We describe a three–dimensional geometric hand model suitable for visual tracking applications. The kinematic constraints implied by the model’s joints have a probabilistic structure which is well described by a graphical model. Inference in this model is complicated by the hand’s many degrees of freedom, as well as multimodal likelihoods caused by ambiguous image measurements. We use nonparametric belief propagation (NBP) to develop a tracking algorithm which exploits the graph’s structure to control complexity, while avoiding costly discretization. While kinematic constraints naturally have a local structure, self– occlusions created by the imaging process lead to complex interpendencies in color and edge–based likelihood functions. However, we show that local structure may be recovered by introducing binary hidden variables describing the occlusion state of each pixel. We augment the NBP algorithm to infer these occlusion variables in a distributed fashion, and then analytically marginalize over them to produce hand position estimates which properly account for occlusion events. We provide simulations showing that NBP may be used to refine inaccurate model initializations, as well as track hand motion through extended image sequences. 1

4 0.75254762 178 nips-2004-Support Vector Classification with Input Data Uncertainty

Author: Jinbo Bi, Tong Zhang

Abstract: This paper investigates a new learning model in which the input data is corrupted with noise. We present a general statistical framework to tackle this problem. Based on the statistical reasoning, we propose a novel formulation of support vector classification, which allows uncertainty in input data. We derive an intuitive geometric interpretation of the proposed formulation, and develop algorithms to efficiently solve it. Empirical results are included to show that the newly formed method is superior to the standard SVM for problems with noisy input. 1

5 0.75196147 189 nips-2004-The Power of Selective Memory: Self-Bounded Learning of Prediction Suffix Trees

Author: Ofer Dekel, Shai Shalev-shwartz, Yoram Singer

Abstract: Prediction suffix trees (PST) provide a popular and effective tool for tasks such as compression, classification, and language modeling. In this paper we take a decision theoretic view of PSTs for the task of sequence prediction. Generalizing the notion of margin to PSTs, we present an online PST learning algorithm and derive a loss bound for it. The depth of the PST generated by this algorithm scales linearly with the length of the input. We then describe a self-bounded enhancement of our learning algorithm which automatically grows a bounded-depth PST. We also prove an analogous mistake-bound for the self-bounded algorithm. The result is an efficient algorithm that neither relies on a-priori assumptions on the shape or maximal depth of the target PST nor does it require any parameters. To our knowledge, this is the first provably-correct PST learning algorithm which generates a bounded-depth PST while being competitive with any fixed PST determined in hindsight. 1

6 0.7516253 60 nips-2004-Efficient Kernel Machines Using the Improved Fast Gauss Transform

7 0.7500782 9 nips-2004-A Method for Inferring Label Sampling Mechanisms in Semi-Supervised Learning

8 0.74906987 201 nips-2004-Using the Equivalent Kernel to Understand Gaussian Process Regression

9 0.74893248 110 nips-2004-Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection

10 0.74806517 68 nips-2004-Face Detection --- Efficient and Rank Deficient

11 0.74698818 168 nips-2004-Semigroup Kernels on Finite Sets

12 0.74648792 4 nips-2004-A Generalized Bradley-Terry Model: From Group Competition to Individual Skill

13 0.74610329 148 nips-2004-Probabilistic Computation in Spiking Populations

14 0.74526668 73 nips-2004-Generative Affine Localisation and Tracking

15 0.7451973 131 nips-2004-Non-Local Manifold Tangent Learning

16 0.74243402 16 nips-2004-Adaptive Discriminative Generative Model and Its Applications

17 0.74149269 133 nips-2004-Nonparametric Transforms of Graph Kernels for Semi-Supervised Learning

18 0.73977286 142 nips-2004-Outlier Detection with One-class Kernel Fisher Discriminants

19 0.73719424 197 nips-2004-Two-Dimensional Linear Discriminant Analysis

20 0.73560023 187 nips-2004-The Entire Regularization Path for the Support Vector Machine