jmlr jmlr2013 jmlr2013-113 knowledge-graph by maker-knowledge-mining

113 jmlr-2013-The CAM Software for Nonnegative Blind Source Separation in R-Java


Source: pdf

Author: Niya Wang, Fan Meng, Li Chen, Subha Madhavan, Robert Clarke, Eric P. Hoffman, Jianhua Xuan, Yue Wang

Abstract: We describe a R-Java CAM (convex analysis of mixtures) package that provides comprehensive analytic functions and a graphic user interface (GUI) for blindly separating mixed nonnegative sources. This open-source multiplatform software implements recent and classic algorithms in the literature including Chan et al. (2008), Wang et al. (2010), Chen et al. (2011a) and Chen et al. (2011b). The CAM package offers several attractive features: (1) instead of using proprietary MATLAB, its analytic functions are written in R, which makes the codes more portable and easier to modify; (2) besides producing and plotting results in R, it also provides a Java GUI for automatic progress update and convenient visual monitoring; (3) multi-thread interactions between the R and Java modules are driven and integrated by a Java GUI, assuring that the whole CAM software runs responsively; (4) the package offers a simple mechanism to allow others to plug-in additional R-functions. Keywords: convex analysis of mixtures, blind source separation, affinity propagation clustering, compartment modeling, information-based model selection c 2013 Niya Wang, Fan Meng, Li Chen, Subha Madhavan, Robert Clarke, Eric P. Hoffman, Jianhua Xuan and Yue Wang. WANG , M ENG , C HEN , M ADHAVAN , C LARKE , H OFFMAN , X UAN AND WANG 1. Overview Blind source separation (BSS) has proven to be a powerful and widely-applicable tool for the analysis and interpretation of composite patterns in engineering and science (Hillman and Moore, 2007; Lee and Seung, 1999). BSS is often described by a linear latent variable model X = AS, where X is the observation data matrix, A is the unknown mixing matrix, and S is the unknown source data matrix. The fundamental objective of BSS is to estimate both the unknown but informative mixing proportions and the source signals based only on the observed mixtures (Child, 2006; Cruces-Alvarez et al., 2004; Hyvarinen et al., 2001; Keshava and Mustard, 2002). While many existing BSS algorithms can usefully extract interesting patterns from mixture observations, they often prove inaccurate or even incorrect in the face of real-world BSS problems in which the pre-imposed assumptions may be invalid. There is a family of approaches exploiting the source non-negativity, including the non-negative matrix factorization (NMF) (Gillis, 2012; Lee and Seung, 1999). This motivates the development of alternative BSS techniques involving exploitation of source nonnegative nature (Chan et al., 2008; Chen et al., 2011a,b; Wang et al., 2010). The method works by performing convex analysis of mixtures (CAM) that automatically identifies pure-source signals that reside at the vertices of the multifaceted simplex most tightly enclosing the data scatter, enabling geometrically-principled delineation of distinct source patterns from mixtures, with the number of underlying sources being suggested by the minimum description length criterion. Consider a latent variable model x(i) = As(i), where the observation vector x(i) = [x1 (i), ..., xM (i)]T can be expressed as a non-negative linear combination of the source vectors s(i) = [s1 (i), ..., sJ (i)]T , and A = [a1 , ..., aJ ] is the mixing matrix with a j being the jth column vector. This falls neatly within the definition of a convex set (Fig. 1) (Chen et al., 2011a): X= J J ∑ j=1 s j (i)a j |a j ∈ A, s j (i) ≥ 0, ∑ j=1 s j (i) = 1, i = 1, ..., N . Assume that the sources have at least one sample point whose signal is exclusively enriched in a particular source (Wang et al., 2010), we have shown that the vertex points of the observation simplex (Fig. 1) correspond to the column vectors of the mixing matrix (Chen et al., 2011b). Via a minimum-error-margin volume maximization, CAM identifies the optimum set of the vertices (Chen et al., 2011b; Wang et al., 2010). Using the samples attached to the vertices, compartment modeling (CM) (Chen et al., 2011a) obtains a parametric solution of A, nonnegative independent component analysis (nICA) (Oja and Plumbley, 2004) estimates A (and s) that maximizes the independency in s, and nonnegative well-grounded component analysis (nWCA) (Wang et al., 2010) finds the column vectors of A directly from the vertex cluster centers. Figure 1: Schematic and illustrative flowchart of R-Java CAM package. 2900 T HE CAM S OFTWARE IN R-JAVA In this paper we describe a newly developed R-Java CAM package whose analytic functions are written in R, while a graphic user interface (GUI) is implemented in Java, taking full advantages of both programming languages. The core software suite implements CAM functions and includes normalization, clustering, and data visualization. Multi-thread interactions between the R and Java modules are driven and integrated by a Java GUI, which not only provides convenient data or parameter passing and visual progress monitoring but also assures the responsive execution of the entire CAM software. 2. Software Design and Implementation The CAM package mainly consists of R and Java modules. The R module is a collection of main and helper functions, each represented by an R function object and achieving an independent and specific task (Fig. 1). The R module mainly performs various analytic tasks required by CAM: figure plotting, update, or error message generation. The Java module is developed to provide a GUI (Fig. 2). We adopt the model-view-controller (MVC) design strategy, and use different Java classes to separately perform information visualization and human-computer interaction. The Java module also serves as the software driver and integrator that use a multi-thread strategy to facilitate the interactions between the R and Java modules, such as importing raw data, passing algorithmic parameters, calling R scripts, and transporting results and messages. Figure 2: Interactive Java GUI supported by a multi-thread design strategy. 2.1 Analytic and Presentation Tasks Implemented in R The R module performs the CAM algorithm and facilitates a suite of subsequent analyses including CM, nICA, and nWCA. These tasks are performed by the three main functions: CAM-CM.R, CAM-nICA.R, and CAM-nWCA.R, which can be activated by the three R scripts: Java-runCAM-CM.R, Java-runCAM-ICA.R, and Java-runCAM-nWCA.R. The R module also performs auxiliary tasks including automatic R library installation, figure drawing, and result recording; and offers other standard methods such as nonnegative matrix factorization (Lee and Seung, 1999), Fast ICA (Hyvarinen et al., 2001), factor analysis (Child, 2006), principal component analysis, affinity propagation, k-means clustering, and expectation-maximization algorithm for learning standard finite normal mixture model. 2.2 Graphic User Interface Written in Java Swing The Java GUI module allows users to import data, select algorithms and parameters, and display results. The module encloses two packages: guiView contains classes for handling frames and 2901 WANG , M ENG , C HEN , M ADHAVAN , C LARKE , H OFFMAN , X UAN AND WANG Figure 3: Application of R-Java CAM to deconvolving dynamic medical image sequence. dialogs for managing user inputs; guiModel contains classes for representing result data sets and for interacting with the R script caller. Packaged as one jar file, the GUI module runs automatically. 2.3 Functional Interaction Between R and Java We adopt the open-source program RCaller (http://code.google.com/p/rcaller) to implement the interaction between R and Java modules (Fig. 2), supported by explicitly designed R scripts such as Java-runCAM-CM.R. Specifically, five featured Java classes are introduced to interact with R for importing data or parameters, running algorithms, passing on or recording results, displaying figures, and handing over error messages. The examples of these classes include guiModel.MyRCaller.java, guiModel.MyRCaller.readResults(), and guiView.MyRPlotViewer. 3. Case Studies and Experimental Results The CAM package has been successfully applied to various data types. Using dynamic contrastenhanced magnetic resonance imaging data set of an advanced breast cancer case (Chen, et al., 2011b),“double click” (or command lines under Ubuntu) activated execution of CAM-Java.jar reveals two biologically interpretable vascular compartments with distinct kinetic patterns: fast clearance in the peripheral “rim” and slow clearance in the inner “core”. These outcomes are consistent with previously reported intratumor heterogeneity (Fig. 3). Angiogenesis is essential to tumor development beyond 1-2mm3 . It has been widely observed that active angiogenesis is often observed in advanced breast tumors occurring in the peripheral “rim” with co-occurrence of inner-core hypoxia. This pattern is largely due to the defective endothelial barrier function and outgrowth blood supply. In another application to natural image mixtures, CAM algorithm successfully recovered the source images in a large number of trials (see Users Manual). 4. Summary and Acknowledgements We have developed a R-Java CAM package for blindly separating mixed nonnegative sources. The open-source cross-platform software is easy-to-use and effective, validated in several real-world applications leading to plausible scientific discoveries. The software is freely downloadable from http://mloss.org/software/view/437/. We intend to maintain and support this package in the future. This work was supported in part by the US National Institutes of Health under Grants CA109872, CA 100970, and NS29525. We thank T.H. Chan, F.Y. Wang, Y. Zhu, and D.J. Miller for technical discussions. 2902 T HE CAM S OFTWARE IN R-JAVA References T.H. Chan, W.K. Ma, C.Y. Chi, and Y. Wang. A convex analysis framework for blind separation of non-negative sources. IEEE Transactions on Signal Processing, 56:5120–5143, 2008. L. Chen, T.H. Chan, P.L. Choyke, and E.M. Hillman et al. Cam-cm: a signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues. Bioinformatics, 27:2607–2609, 2011a. L. Chen, P.L. Choyke, T.H. Chan, and C.Y. Chi et al. Tissue-specific compartmental analysis for dynamic contrast-enhanced mr imaging of complex tumors. IEEE Transactions on Medical Imaging, 30:2044–2058, 2011b. D. Child. The essentials of factor analysis. Continuum International, 2006. S.A. Cruces-Alvarez, Andrzej Cichocki, and Shun ichi Amari. From blind signal extraction to blind instantaneous signal separation: criteria, algorithms, and stability. IEEE Transactions on Neural Networks, 15:859–873, 2004. N. Gillis. Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning Research, 13:3349–3386, 2012. E.M.C. Hillman and A. Moore. All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nature Photonics, 1:526–530, 2007. A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley, New York, 2001. N. Keshava and J.F. Mustard. Spectral unmixing. IEEE Signal Processing Magazine, 19:44–57, 2002. D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788–791, 1999. E. Oja and M. Plumbley. Blind separation of positive sources by globally convergent gradient search. Neural Computation, 16:1811–1825, 2004. F.Y. Wang, C.Y. Chi, T.H. Chan, and Y. Wang. Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:857–888, 2010. 2903

Reference: text


Summary: the most important sentenses genereted by tfidf model

sentIndex sentText sentNum sentScore

1 This open-source multiplatform software implements recent and classic algorithms in the literature including Chan et al. [sent-12, score-0.094]

2 Keywords: convex analysis of mixtures, blind source separation, affinity propagation clustering, compartment modeling, information-based model selection c 2013 Niya Wang, Fan Meng, Li Chen, Subha Madhavan, Robert Clarke, Eric P. [sent-18, score-0.346]

3 Overview Blind source separation (BSS) has proven to be a powerful and widely-applicable tool for the analysis and interpretation of composite patterns in engineering and science (Hillman and Moore, 2007; Lee and Seung, 1999). [sent-21, score-0.248]

4 BSS is often described by a linear latent variable model X = AS, where X is the observation data matrix, A is the unknown mixing matrix, and S is the unknown source data matrix. [sent-22, score-0.175]

5 The fundamental objective of BSS is to estimate both the unknown but informative mixing proportions and the source signals based only on the observed mixtures (Child, 2006; Cruces-Alvarez et al. [sent-23, score-0.28]

6 While many existing BSS algorithms can usefully extract interesting patterns from mixture observations, they often prove inaccurate or even incorrect in the face of real-world BSS problems in which the pre-imposed assumptions may be invalid. [sent-26, score-0.04]

7 There is a family of approaches exploiting the source non-negativity, including the non-negative matrix factorization (NMF) (Gillis, 2012; Lee and Seung, 1999). [sent-27, score-0.148]

8 This motivates the development of alternative BSS techniques involving exploitation of source nonnegative nature (Chan et al. [sent-28, score-0.239]

9 , xM (i)]T can be expressed as a non-negative linear combination of the source vectors s(i) = [s1 (i), . [sent-36, score-0.114]

10 , aJ ] is the mixing matrix with a j being the jth column vector. [sent-42, score-0.061]

11 Assume that the sources have at least one sample point whose signal is exclusively enriched in a particular source (Wang et al. [sent-49, score-0.212]

12 , 2010), we have shown that the vertex points of the observation simplex (Fig. [sent-50, score-0.036]

13 1) correspond to the column vectors of the mixing matrix (Chen et al. [sent-51, score-0.061]

14 Via a minimum-error-margin volume maximization, CAM identifies the optimum set of the vertices (Chen et al. [sent-53, score-0.035]

15 Using the samples attached to the vertices, compartment modeling (CM) (Chen et al. [sent-56, score-0.07]

16 , 2011a) obtains a parametric solution of A, nonnegative independent component analysis (nICA) (Oja and Plumbley, 2004) estimates A (and s) that maximizes the independency in s, and nonnegative well-grounded component analysis (nWCA) (Wang et al. [sent-57, score-0.25]

17 2900 T HE CAM S OFTWARE IN R-JAVA In this paper we describe a newly developed R-Java CAM package whose analytic functions are written in R, while a graphic user interface (GUI) is implemented in Java, taking full advantages of both programming languages. [sent-60, score-0.308]

18 The core software suite implements CAM functions and includes normalization, clustering, and data visualization. [sent-61, score-0.144]

19 Multi-thread interactions between the R and Java modules are driven and integrated by a Java GUI, which not only provides convenient data or parameter passing and visual progress monitoring but also assures the responsive execution of the entire CAM software. [sent-62, score-0.302]

20 Software Design and Implementation The CAM package mainly consists of R and Java modules. [sent-64, score-0.089]

21 The R module is a collection of main and helper functions, each represented by an R function object and achieving an independent and specific task (Fig. [sent-65, score-0.242]

22 The R module mainly performs various analytic tasks required by CAM: figure plotting, update, or error message generation. [sent-67, score-0.349]

23 The Java module is developed to provide a GUI (Fig. [sent-68, score-0.242]

24 We adopt the model-view-controller (MVC) design strategy, and use different Java classes to separately perform information visualization and human-computer interaction. [sent-70, score-0.031]

25 The Java module also serves as the software driver and integrator that use a multi-thread strategy to facilitate the interactions between the R and Java modules, such as importing raw data, passing algorithmic parameters, calling R scripts, and transporting results and messages. [sent-71, score-0.496]

26 1 Analytic and Presentation Tasks Implemented in R The R module performs the CAM algorithm and facilitates a suite of subsequent analyses including CM, nICA, and nWCA. [sent-74, score-0.292]

27 These tasks are performed by the three main functions: CAM-CM. [sent-75, score-0.033]

28 R, which can be activated by the three R scripts: Java-runCAM-CM. [sent-78, score-0.054]

29 The R module also performs auxiliary tasks including automatic R library installation, figure drawing, and result recording; and offers other standard methods such as nonnegative matrix factorization (Lee and Seung, 1999), Fast ICA (Hyvarinen et al. [sent-82, score-0.466]

30 2 Graphic User Interface Written in Java Swing The Java GUI module allows users to import data, select algorithms and parameters, and display results. [sent-85, score-0.242]

31 The module encloses two packages: guiView contains classes for handling frames and 2901 WANG , M ENG , C HEN , M ADHAVAN , C LARKE , H OFFMAN , X UAN AND WANG Figure 3: Application of R-Java CAM to deconvolving dynamic medical image sequence. [sent-86, score-0.37]

32 dialogs for managing user inputs; guiModel contains classes for representing result data sets and for interacting with the R script caller. [sent-87, score-0.061]

33 Packaged as one jar file, the GUI module runs automatically. [sent-88, score-0.242]

34 com/p/rcaller) to implement the interaction between R and Java modules (Fig. [sent-92, score-0.099]

35 2), supported by explicitly designed R scripts such as Java-runCAM-CM. [sent-93, score-0.089]

36 Specifically, five featured Java classes are introduced to interact with R for importing data or parameters, running algorithms, passing on or recording results, displaying figures, and handing over error messages. [sent-95, score-0.218]

37 Case Studies and Experimental Results The CAM package has been successfully applied to various data types. [sent-103, score-0.089]

38 Using dynamic contrastenhanced magnetic resonance imaging data set of an advanced breast cancer case (Chen, et al. [sent-104, score-0.217]

39 , 2011b),“double click” (or command lines under Ubuntu) activated execution of CAM-Java. [sent-105, score-0.054]

40 jar reveals two biologically interpretable vascular compartments with distinct kinetic patterns: fast clearance in the peripheral “rim” and slow clearance in the inner “core”. [sent-106, score-0.23]

41 It has been widely observed that active angiogenesis is often observed in advanced breast tumors occurring in the peripheral “rim” with co-occurrence of inner-core hypoxia. [sent-110, score-0.168]

42 In another application to natural image mixtures, CAM algorithm successfully recovered the source images in a large number of trials (see Users Manual). [sent-112, score-0.114]

43 Summary and Acknowledgements We have developed a R-Java CAM package for blindly separating mixed nonnegative sources. [sent-114, score-0.268]

44 The open-source cross-platform software is easy-to-use and effective, validated in several real-world applications leading to plausible scientific discoveries. [sent-115, score-0.064]

45 We intend to maintain and support this package in the future. [sent-118, score-0.089]

46 A convex analysis framework for blind separation of non-negative sources. [sent-136, score-0.256]

47 Cam-cm: a signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues. [sent-146, score-0.166]

48 Tissue-specific compartmental analysis for dynamic contrast-enhanced mr imaging of complex tumors. [sent-156, score-0.129]

49 From blind signal extraction to blind instantaneous signal separation: criteria, algorithms, and stability. [sent-165, score-0.398]

50 Sparse and unique nonnegative matrix factorization through data preprocessing. [sent-169, score-0.159]

51 All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. [sent-176, score-0.159]

52 Blind separation of positive sources by globally convergent gradient search. [sent-200, score-0.155]

53 Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. [sent-210, score-0.155]


similar papers computed by tfidf model

tfidf for this paper:

wordName wordTfidf (topN-words)

[('cam', 0.44), ('java', 0.352), ('gui', 0.268), ('module', 0.242), ('bss', 0.209), ('blind', 0.162), ('chan', 0.145), ('georgetown', 0.139), ('nonnegative', 0.125), ('chen', 0.125), ('source', 0.114), ('wang', 0.108), ('mixtures', 0.105), ('graphic', 0.105), ('xuan', 0.105), ('modules', 0.099), ('separation', 0.094), ('scripts', 0.089), ('hillman', 0.089), ('package', 0.089), ('hyvarinen', 0.081), ('imaging', 0.076), ('analytic', 0.074), ('adhavan', 0.07), ('angiogenesis', 0.07), ('arlington', 0.07), ('choyke', 0.07), ('clearance', 0.07), ('compartment', 0.07), ('importing', 0.07), ('jianhua', 0.07), ('keshava', 0.07), ('larke', 0.07), ('madhavan', 0.07), ('nica', 0.07), ('niya', 0.07), ('oftware', 0.07), ('oja', 0.07), ('polytechnic', 0.07), ('rim', 0.07), ('subha', 0.07), ('chi', 0.069), ('seung', 0.069), ('software', 0.064), ('mixing', 0.061), ('sources', 0.061), ('yue', 0.06), ('meng', 0.06), ('institutes', 0.06), ('offman', 0.06), ('peripheral', 0.06), ('uan', 0.06), ('dc', 0.059), ('clarke', 0.054), ('blindly', 0.054), ('eng', 0.054), ('activated', 0.054), ('dynamic', 0.053), ('washington', 0.052), ('cancer', 0.05), ('plotting', 0.05), ('suite', 0.05), ('virginia', 0.05), ('hen', 0.046), ('lee', 0.046), ('passing', 0.046), ('medical', 0.044), ('interactions', 0.044), ('monitoring', 0.044), ('va', 0.044), ('recording', 0.041), ('interface', 0.04), ('patterns', 0.04), ('eric', 0.039), ('progress', 0.039), ('health', 0.039), ('cm', 0.039), ('breast', 0.038), ('hoffman', 0.038), ('signal', 0.037), ('simplex', 0.036), ('vertices', 0.035), ('factorization', 0.034), ('tasks', 0.033), ('center', 0.033), ('child', 0.032), ('offers', 0.032), ('classes', 0.031), ('robert', 0.031), ('implements', 0.03), ('packaged', 0.03), ('displaying', 0.03), ('installation', 0.03), ('responsive', 0.03), ('anatomical', 0.03), ('kinetic', 0.03), ('schematic', 0.03), ('driver', 0.03), ('managing', 0.03), ('swing', 0.03)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.99999928 113 jmlr-2013-The CAM Software for Nonnegative Blind Source Separation in R-Java

Author: Niya Wang, Fan Meng, Li Chen, Subha Madhavan, Robert Clarke, Eric P. Hoffman, Jianhua Xuan, Yue Wang

Abstract: We describe a R-Java CAM (convex analysis of mixtures) package that provides comprehensive analytic functions and a graphic user interface (GUI) for blindly separating mixed nonnegative sources. This open-source multiplatform software implements recent and classic algorithms in the literature including Chan et al. (2008), Wang et al. (2010), Chen et al. (2011a) and Chen et al. (2011b). The CAM package offers several attractive features: (1) instead of using proprietary MATLAB, its analytic functions are written in R, which makes the codes more portable and easier to modify; (2) besides producing and plotting results in R, it also provides a Java GUI for automatic progress update and convenient visual monitoring; (3) multi-thread interactions between the R and Java modules are driven and integrated by a Java GUI, assuring that the whole CAM software runs responsively; (4) the package offers a simple mechanism to allow others to plug-in additional R-functions. Keywords: convex analysis of mixtures, blind source separation, affinity propagation clustering, compartment modeling, information-based model selection c 2013 Niya Wang, Fan Meng, Li Chen, Subha Madhavan, Robert Clarke, Eric P. Hoffman, Jianhua Xuan and Yue Wang. WANG , M ENG , C HEN , M ADHAVAN , C LARKE , H OFFMAN , X UAN AND WANG 1. Overview Blind source separation (BSS) has proven to be a powerful and widely-applicable tool for the analysis and interpretation of composite patterns in engineering and science (Hillman and Moore, 2007; Lee and Seung, 1999). BSS is often described by a linear latent variable model X = AS, where X is the observation data matrix, A is the unknown mixing matrix, and S is the unknown source data matrix. The fundamental objective of BSS is to estimate both the unknown but informative mixing proportions and the source signals based only on the observed mixtures (Child, 2006; Cruces-Alvarez et al., 2004; Hyvarinen et al., 2001; Keshava and Mustard, 2002). While many existing BSS algorithms can usefully extract interesting patterns from mixture observations, they often prove inaccurate or even incorrect in the face of real-world BSS problems in which the pre-imposed assumptions may be invalid. There is a family of approaches exploiting the source non-negativity, including the non-negative matrix factorization (NMF) (Gillis, 2012; Lee and Seung, 1999). This motivates the development of alternative BSS techniques involving exploitation of source nonnegative nature (Chan et al., 2008; Chen et al., 2011a,b; Wang et al., 2010). The method works by performing convex analysis of mixtures (CAM) that automatically identifies pure-source signals that reside at the vertices of the multifaceted simplex most tightly enclosing the data scatter, enabling geometrically-principled delineation of distinct source patterns from mixtures, with the number of underlying sources being suggested by the minimum description length criterion. Consider a latent variable model x(i) = As(i), where the observation vector x(i) = [x1 (i), ..., xM (i)]T can be expressed as a non-negative linear combination of the source vectors s(i) = [s1 (i), ..., sJ (i)]T , and A = [a1 , ..., aJ ] is the mixing matrix with a j being the jth column vector. This falls neatly within the definition of a convex set (Fig. 1) (Chen et al., 2011a): X= J J ∑ j=1 s j (i)a j |a j ∈ A, s j (i) ≥ 0, ∑ j=1 s j (i) = 1, i = 1, ..., N . Assume that the sources have at least one sample point whose signal is exclusively enriched in a particular source (Wang et al., 2010), we have shown that the vertex points of the observation simplex (Fig. 1) correspond to the column vectors of the mixing matrix (Chen et al., 2011b). Via a minimum-error-margin volume maximization, CAM identifies the optimum set of the vertices (Chen et al., 2011b; Wang et al., 2010). Using the samples attached to the vertices, compartment modeling (CM) (Chen et al., 2011a) obtains a parametric solution of A, nonnegative independent component analysis (nICA) (Oja and Plumbley, 2004) estimates A (and s) that maximizes the independency in s, and nonnegative well-grounded component analysis (nWCA) (Wang et al., 2010) finds the column vectors of A directly from the vertex cluster centers. Figure 1: Schematic and illustrative flowchart of R-Java CAM package. 2900 T HE CAM S OFTWARE IN R-JAVA In this paper we describe a newly developed R-Java CAM package whose analytic functions are written in R, while a graphic user interface (GUI) is implemented in Java, taking full advantages of both programming languages. The core software suite implements CAM functions and includes normalization, clustering, and data visualization. Multi-thread interactions between the R and Java modules are driven and integrated by a Java GUI, which not only provides convenient data or parameter passing and visual progress monitoring but also assures the responsive execution of the entire CAM software. 2. Software Design and Implementation The CAM package mainly consists of R and Java modules. The R module is a collection of main and helper functions, each represented by an R function object and achieving an independent and specific task (Fig. 1). The R module mainly performs various analytic tasks required by CAM: figure plotting, update, or error message generation. The Java module is developed to provide a GUI (Fig. 2). We adopt the model-view-controller (MVC) design strategy, and use different Java classes to separately perform information visualization and human-computer interaction. The Java module also serves as the software driver and integrator that use a multi-thread strategy to facilitate the interactions between the R and Java modules, such as importing raw data, passing algorithmic parameters, calling R scripts, and transporting results and messages. Figure 2: Interactive Java GUI supported by a multi-thread design strategy. 2.1 Analytic and Presentation Tasks Implemented in R The R module performs the CAM algorithm and facilitates a suite of subsequent analyses including CM, nICA, and nWCA. These tasks are performed by the three main functions: CAM-CM.R, CAM-nICA.R, and CAM-nWCA.R, which can be activated by the three R scripts: Java-runCAM-CM.R, Java-runCAM-ICA.R, and Java-runCAM-nWCA.R. The R module also performs auxiliary tasks including automatic R library installation, figure drawing, and result recording; and offers other standard methods such as nonnegative matrix factorization (Lee and Seung, 1999), Fast ICA (Hyvarinen et al., 2001), factor analysis (Child, 2006), principal component analysis, affinity propagation, k-means clustering, and expectation-maximization algorithm for learning standard finite normal mixture model. 2.2 Graphic User Interface Written in Java Swing The Java GUI module allows users to import data, select algorithms and parameters, and display results. The module encloses two packages: guiView contains classes for handling frames and 2901 WANG , M ENG , C HEN , M ADHAVAN , C LARKE , H OFFMAN , X UAN AND WANG Figure 3: Application of R-Java CAM to deconvolving dynamic medical image sequence. dialogs for managing user inputs; guiModel contains classes for representing result data sets and for interacting with the R script caller. Packaged as one jar file, the GUI module runs automatically. 2.3 Functional Interaction Between R and Java We adopt the open-source program RCaller (http://code.google.com/p/rcaller) to implement the interaction between R and Java modules (Fig. 2), supported by explicitly designed R scripts such as Java-runCAM-CM.R. Specifically, five featured Java classes are introduced to interact with R for importing data or parameters, running algorithms, passing on or recording results, displaying figures, and handing over error messages. The examples of these classes include guiModel.MyRCaller.java, guiModel.MyRCaller.readResults(), and guiView.MyRPlotViewer. 3. Case Studies and Experimental Results The CAM package has been successfully applied to various data types. Using dynamic contrastenhanced magnetic resonance imaging data set of an advanced breast cancer case (Chen, et al., 2011b),“double click” (or command lines under Ubuntu) activated execution of CAM-Java.jar reveals two biologically interpretable vascular compartments with distinct kinetic patterns: fast clearance in the peripheral “rim” and slow clearance in the inner “core”. These outcomes are consistent with previously reported intratumor heterogeneity (Fig. 3). Angiogenesis is essential to tumor development beyond 1-2mm3 . It has been widely observed that active angiogenesis is often observed in advanced breast tumors occurring in the peripheral “rim” with co-occurrence of inner-core hypoxia. This pattern is largely due to the defective endothelial barrier function and outgrowth blood supply. In another application to natural image mixtures, CAM algorithm successfully recovered the source images in a large number of trials (see Users Manual). 4. Summary and Acknowledgements We have developed a R-Java CAM package for blindly separating mixed nonnegative sources. The open-source cross-platform software is easy-to-use and effective, validated in several real-world applications leading to plausible scientific discoveries. The software is freely downloadable from http://mloss.org/software/view/437/. We intend to maintain and support this package in the future. This work was supported in part by the US National Institutes of Health under Grants CA109872, CA 100970, and NS29525. We thank T.H. Chan, F.Y. Wang, Y. Zhu, and D.J. Miller for technical discussions. 2902 T HE CAM S OFTWARE IN R-JAVA References T.H. Chan, W.K. Ma, C.Y. Chi, and Y. Wang. A convex analysis framework for blind separation of non-negative sources. IEEE Transactions on Signal Processing, 56:5120–5143, 2008. L. Chen, T.H. Chan, P.L. Choyke, and E.M. Hillman et al. Cam-cm: a signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues. Bioinformatics, 27:2607–2609, 2011a. L. Chen, P.L. Choyke, T.H. Chan, and C.Y. Chi et al. Tissue-specific compartmental analysis for dynamic contrast-enhanced mr imaging of complex tumors. IEEE Transactions on Medical Imaging, 30:2044–2058, 2011b. D. Child. The essentials of factor analysis. Continuum International, 2006. S.A. Cruces-Alvarez, Andrzej Cichocki, and Shun ichi Amari. From blind signal extraction to blind instantaneous signal separation: criteria, algorithms, and stability. IEEE Transactions on Neural Networks, 15:859–873, 2004. N. Gillis. Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning Research, 13:3349–3386, 2012. E.M.C. Hillman and A. Moore. All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nature Photonics, 1:526–530, 2007. A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley, New York, 2001. N. Keshava and J.F. Mustard. Spectral unmixing. IEEE Signal Processing Magazine, 19:44–57, 2002. D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788–791, 1999. E. Oja and M. Plumbley. Blind separation of positive sources by globally convergent gradient search. Neural Computation, 16:1811–1825, 2004. F.Y. Wang, C.Y. Chi, T.H. Chan, and Y. Wang. Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:857–888, 2010. 2903

2 0.069334649 54 jmlr-2013-JKernelMachines: A Simple Framework for Kernel Machines

Author: David Picard, Nicolas Thome, Matthieu Cord

Abstract: JKernelMachines is a Java library for learning with kernels. It is primarily designed to deal with custom kernels that are not easily found in standard libraries, such as kernels on structured data. These types of kernels are often used in computer vision or bioinformatics applications. We provide several kernels leading to state of the art classification performances in computer vision, as well as various kernels on sets. The main focus of the library is to be easily extended with new kernels. Standard SVM optimization algorithms are available, but also more sophisticated learning-based kernel combination methods such as Multiple Kernel Learning (MKL), and a recently published algorithm to learn powered products of similarities (Product Kernel Learning). Keywords: classification, support vector machines, kernel, computer vision

3 0.032704987 98 jmlr-2013-Segregating Event Streams and Noise with a Markov Renewal Process Model

Author: Dan Stowell, Mark D. Plumbley

Abstract: We describe an inference task in which a set of timestamped event observations must be clustered into an unknown number of temporal sequences with independent and varying rates of observations. Various existing approaches to multi-object tracking assume a fixed number of sources and/or a fixed observation rate; we develop an approach to inferring structure in timestamped data produced by a mixture of an unknown and varying number of similar Markov renewal processes, plus independent clutter noise. The inference simultaneously distinguishes signal from noise as well as clustering signal observations into separate source streams. We illustrate the technique via synthetic experiments as well as an experiment to track a mixture of singing birds. Source code is available. Keywords: multi-target tracking, clustering, point processes, flow network, sound

4 0.032299403 112 jmlr-2013-Tapkee: An Efficient Dimension Reduction Library

Author: Sergey Lisitsyn, Christian Widmer, Fernando J. Iglesias Garcia

Abstract: We present Tapkee, a C++ template library that provides efficient implementations of more than 20 widely used dimensionality reduction techniques ranging from Locally Linear Embedding (Roweis and Saul, 2000) and Isomap (de Silva and Tenenbaum, 2002) to the recently introduced BarnesHut-SNE (van der Maaten, 2013). Our library was designed with a focus on performance and flexibility. For performance, we combine efficient multi-core algorithms, modern data structures and state-of-the-art low-level libraries. To achieve flexibility, we designed a clean interface for applying methods to user data and provide a callback API that facilitates integration with the library. The library is freely available as open-source software and is distributed under the permissive BSD 3-clause license. We encourage the integration of Tapkee into other open-source toolboxes and libraries. For example, Tapkee has been integrated into the codebase of the Shogun toolbox (Sonnenburg et al., 2010), giving us access to a rich set of kernels, distance measures and bindings to common programming languages including Python, Octave, Matlab, R, Java, C#, Ruby, Perl and Lua. Source code, examples and documentation are available at http://tapkee.lisitsyn.me. Keywords: dimensionality reduction, machine learning, C++, open source software

5 0.032208443 70 jmlr-2013-Maximum Volume Clustering: A New Discriminative Clustering Approach

Author: Gang Niu, Bo Dai, Lin Shang, Masashi Sugiyama

Abstract: The large volume principle proposed by Vladimir Vapnik, which advocates that hypotheses lying in an equivalence class with a larger volume are more preferable, is a useful alternative to the large margin principle. In this paper, we introduce a new discriminative clustering model based on the large volume principle called maximum volume clustering (MVC), and then propose two approximation schemes to solve this MVC model: A soft-label MVC method using sequential quadratic programming and a hard-label MVC method using semi-definite programming, respectively. The proposed MVC is theoretically advantageous for three reasons. The optimization involved in hardlabel MVC is convex, and under mild conditions, the optimization involved in soft-label MVC is akin to a convex one in terms of the resulting clusters. Secondly, the soft-label MVC method pos∗. A preliminary and shorter version has appeared in Proceedings of 14th International Conference on Artificial Intelligence and Statistics (Niu et al., 2011). The preliminary work was done when GN was studying at Department of Computer Science and Technology, Nanjing University, and BD was studying at Institute of Automation, Chinese Academy of Sciences. A Matlab implementation of maximum volume clustering is available from http://sugiyama-www.cs.titech.ac.jp/∼gang/software.html. c 2013 Gang Niu, Bo Dai, Lin Shang and Masashi Sugiyama. N IU , DAI , S HANG AND S UGIYAMA sesses a clustering error bound. Thirdly, MVC includes the optimization problems of a spectral clustering, two relaxed k-means clustering and an information-maximization clustering as special limit cases when its regularization parameter goes to infinity. Experiments on several artificial and benchmark data sets demonstrate that the proposed MVC compares favorably with state-of-the-art clustering methods. Keywords: discriminative clustering, large volume principle, sequential quadratic programming, semi-definite programming, finite sample stability, clustering error

6 0.028550303 19 jmlr-2013-BudgetedSVM: A Toolbox for Scalable SVM Approximations

7 0.02787854 101 jmlr-2013-Sparse Activity and Sparse Connectivity in Supervised Learning

8 0.026915144 89 jmlr-2013-QuantMiner for Mining Quantitative Association Rules

9 0.026842011 99 jmlr-2013-Semi-Supervised Learning Using Greedy Max-Cut

10 0.026087165 111 jmlr-2013-Supervised Feature Selection in Graphs with Path Coding Penalties and Network Flows

11 0.025974344 108 jmlr-2013-Stochastic Variational Inference

12 0.023937382 58 jmlr-2013-Language-Motivated Approaches to Action Recognition

13 0.023100562 100 jmlr-2013-Similarity-based Clustering by Left-Stochastic Matrix Factorization

14 0.020652134 38 jmlr-2013-Dynamic Affine-Invariant Shape-Appearance Handshape Features and Classification in Sign Language Videos

15 0.019897439 67 jmlr-2013-MLPACK: A Scalable C++ Machine Learning Library

16 0.019631429 76 jmlr-2013-Nonparametric Sparsity and Regularization

17 0.019551232 80 jmlr-2013-One-shot Learning Gesture Recognition from RGB-D Data Using Bag of Features

18 0.019469606 46 jmlr-2013-GURLS: A Least Squares Library for Supervised Learning

19 0.018998887 83 jmlr-2013-Orange: Data Mining Toolbox in Python

20 0.01828054 56 jmlr-2013-Keep It Simple And Sparse: Real-Time Action Recognition


similar papers computed by lsi model

lsi for this paper:

topicId topicWeight

[(0, -0.092), (1, -0.012), (2, -0.065), (3, -0.022), (4, 0.034), (5, 0.047), (6, -0.005), (7, 0.007), (8, 0.013), (9, -0.105), (10, 0.088), (11, -0.159), (12, 0.041), (13, -0.03), (14, 0.085), (15, -0.082), (16, 0.03), (17, -0.061), (18, -0.007), (19, 0.008), (20, 0.082), (21, 0.018), (22, -0.032), (23, -0.022), (24, -0.111), (25, 0.022), (26, 0.087), (27, -0.133), (28, 0.062), (29, 0.047), (30, 0.031), (31, -0.066), (32, -0.026), (33, -0.069), (34, -0.034), (35, -0.015), (36, -0.214), (37, 0.088), (38, -0.03), (39, -0.139), (40, 0.043), (41, 0.138), (42, -0.003), (43, -0.219), (44, -0.189), (45, -0.011), (46, -0.048), (47, -0.272), (48, -0.139), (49, 0.096)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.9811089 113 jmlr-2013-The CAM Software for Nonnegative Blind Source Separation in R-Java

Author: Niya Wang, Fan Meng, Li Chen, Subha Madhavan, Robert Clarke, Eric P. Hoffman, Jianhua Xuan, Yue Wang

Abstract: We describe a R-Java CAM (convex analysis of mixtures) package that provides comprehensive analytic functions and a graphic user interface (GUI) for blindly separating mixed nonnegative sources. This open-source multiplatform software implements recent and classic algorithms in the literature including Chan et al. (2008), Wang et al. (2010), Chen et al. (2011a) and Chen et al. (2011b). The CAM package offers several attractive features: (1) instead of using proprietary MATLAB, its analytic functions are written in R, which makes the codes more portable and easier to modify; (2) besides producing and plotting results in R, it also provides a Java GUI for automatic progress update and convenient visual monitoring; (3) multi-thread interactions between the R and Java modules are driven and integrated by a Java GUI, assuring that the whole CAM software runs responsively; (4) the package offers a simple mechanism to allow others to plug-in additional R-functions. Keywords: convex analysis of mixtures, blind source separation, affinity propagation clustering, compartment modeling, information-based model selection c 2013 Niya Wang, Fan Meng, Li Chen, Subha Madhavan, Robert Clarke, Eric P. Hoffman, Jianhua Xuan and Yue Wang. WANG , M ENG , C HEN , M ADHAVAN , C LARKE , H OFFMAN , X UAN AND WANG 1. Overview Blind source separation (BSS) has proven to be a powerful and widely-applicable tool for the analysis and interpretation of composite patterns in engineering and science (Hillman and Moore, 2007; Lee and Seung, 1999). BSS is often described by a linear latent variable model X = AS, where X is the observation data matrix, A is the unknown mixing matrix, and S is the unknown source data matrix. The fundamental objective of BSS is to estimate both the unknown but informative mixing proportions and the source signals based only on the observed mixtures (Child, 2006; Cruces-Alvarez et al., 2004; Hyvarinen et al., 2001; Keshava and Mustard, 2002). While many existing BSS algorithms can usefully extract interesting patterns from mixture observations, they often prove inaccurate or even incorrect in the face of real-world BSS problems in which the pre-imposed assumptions may be invalid. There is a family of approaches exploiting the source non-negativity, including the non-negative matrix factorization (NMF) (Gillis, 2012; Lee and Seung, 1999). This motivates the development of alternative BSS techniques involving exploitation of source nonnegative nature (Chan et al., 2008; Chen et al., 2011a,b; Wang et al., 2010). The method works by performing convex analysis of mixtures (CAM) that automatically identifies pure-source signals that reside at the vertices of the multifaceted simplex most tightly enclosing the data scatter, enabling geometrically-principled delineation of distinct source patterns from mixtures, with the number of underlying sources being suggested by the minimum description length criterion. Consider a latent variable model x(i) = As(i), where the observation vector x(i) = [x1 (i), ..., xM (i)]T can be expressed as a non-negative linear combination of the source vectors s(i) = [s1 (i), ..., sJ (i)]T , and A = [a1 , ..., aJ ] is the mixing matrix with a j being the jth column vector. This falls neatly within the definition of a convex set (Fig. 1) (Chen et al., 2011a): X= J J ∑ j=1 s j (i)a j |a j ∈ A, s j (i) ≥ 0, ∑ j=1 s j (i) = 1, i = 1, ..., N . Assume that the sources have at least one sample point whose signal is exclusively enriched in a particular source (Wang et al., 2010), we have shown that the vertex points of the observation simplex (Fig. 1) correspond to the column vectors of the mixing matrix (Chen et al., 2011b). Via a minimum-error-margin volume maximization, CAM identifies the optimum set of the vertices (Chen et al., 2011b; Wang et al., 2010). Using the samples attached to the vertices, compartment modeling (CM) (Chen et al., 2011a) obtains a parametric solution of A, nonnegative independent component analysis (nICA) (Oja and Plumbley, 2004) estimates A (and s) that maximizes the independency in s, and nonnegative well-grounded component analysis (nWCA) (Wang et al., 2010) finds the column vectors of A directly from the vertex cluster centers. Figure 1: Schematic and illustrative flowchart of R-Java CAM package. 2900 T HE CAM S OFTWARE IN R-JAVA In this paper we describe a newly developed R-Java CAM package whose analytic functions are written in R, while a graphic user interface (GUI) is implemented in Java, taking full advantages of both programming languages. The core software suite implements CAM functions and includes normalization, clustering, and data visualization. Multi-thread interactions between the R and Java modules are driven and integrated by a Java GUI, which not only provides convenient data or parameter passing and visual progress monitoring but also assures the responsive execution of the entire CAM software. 2. Software Design and Implementation The CAM package mainly consists of R and Java modules. The R module is a collection of main and helper functions, each represented by an R function object and achieving an independent and specific task (Fig. 1). The R module mainly performs various analytic tasks required by CAM: figure plotting, update, or error message generation. The Java module is developed to provide a GUI (Fig. 2). We adopt the model-view-controller (MVC) design strategy, and use different Java classes to separately perform information visualization and human-computer interaction. The Java module also serves as the software driver and integrator that use a multi-thread strategy to facilitate the interactions between the R and Java modules, such as importing raw data, passing algorithmic parameters, calling R scripts, and transporting results and messages. Figure 2: Interactive Java GUI supported by a multi-thread design strategy. 2.1 Analytic and Presentation Tasks Implemented in R The R module performs the CAM algorithm and facilitates a suite of subsequent analyses including CM, nICA, and nWCA. These tasks are performed by the three main functions: CAM-CM.R, CAM-nICA.R, and CAM-nWCA.R, which can be activated by the three R scripts: Java-runCAM-CM.R, Java-runCAM-ICA.R, and Java-runCAM-nWCA.R. The R module also performs auxiliary tasks including automatic R library installation, figure drawing, and result recording; and offers other standard methods such as nonnegative matrix factorization (Lee and Seung, 1999), Fast ICA (Hyvarinen et al., 2001), factor analysis (Child, 2006), principal component analysis, affinity propagation, k-means clustering, and expectation-maximization algorithm for learning standard finite normal mixture model. 2.2 Graphic User Interface Written in Java Swing The Java GUI module allows users to import data, select algorithms and parameters, and display results. The module encloses two packages: guiView contains classes for handling frames and 2901 WANG , M ENG , C HEN , M ADHAVAN , C LARKE , H OFFMAN , X UAN AND WANG Figure 3: Application of R-Java CAM to deconvolving dynamic medical image sequence. dialogs for managing user inputs; guiModel contains classes for representing result data sets and for interacting with the R script caller. Packaged as one jar file, the GUI module runs automatically. 2.3 Functional Interaction Between R and Java We adopt the open-source program RCaller (http://code.google.com/p/rcaller) to implement the interaction between R and Java modules (Fig. 2), supported by explicitly designed R scripts such as Java-runCAM-CM.R. Specifically, five featured Java classes are introduced to interact with R for importing data or parameters, running algorithms, passing on or recording results, displaying figures, and handing over error messages. The examples of these classes include guiModel.MyRCaller.java, guiModel.MyRCaller.readResults(), and guiView.MyRPlotViewer. 3. Case Studies and Experimental Results The CAM package has been successfully applied to various data types. Using dynamic contrastenhanced magnetic resonance imaging data set of an advanced breast cancer case (Chen, et al., 2011b),“double click” (or command lines under Ubuntu) activated execution of CAM-Java.jar reveals two biologically interpretable vascular compartments with distinct kinetic patterns: fast clearance in the peripheral “rim” and slow clearance in the inner “core”. These outcomes are consistent with previously reported intratumor heterogeneity (Fig. 3). Angiogenesis is essential to tumor development beyond 1-2mm3 . It has been widely observed that active angiogenesis is often observed in advanced breast tumors occurring in the peripheral “rim” with co-occurrence of inner-core hypoxia. This pattern is largely due to the defective endothelial barrier function and outgrowth blood supply. In another application to natural image mixtures, CAM algorithm successfully recovered the source images in a large number of trials (see Users Manual). 4. Summary and Acknowledgements We have developed a R-Java CAM package for blindly separating mixed nonnegative sources. The open-source cross-platform software is easy-to-use and effective, validated in several real-world applications leading to plausible scientific discoveries. The software is freely downloadable from http://mloss.org/software/view/437/. We intend to maintain and support this package in the future. This work was supported in part by the US National Institutes of Health under Grants CA109872, CA 100970, and NS29525. We thank T.H. Chan, F.Y. Wang, Y. Zhu, and D.J. Miller for technical discussions. 2902 T HE CAM S OFTWARE IN R-JAVA References T.H. Chan, W.K. Ma, C.Y. Chi, and Y. Wang. A convex analysis framework for blind separation of non-negative sources. IEEE Transactions on Signal Processing, 56:5120–5143, 2008. L. Chen, T.H. Chan, P.L. Choyke, and E.M. Hillman et al. Cam-cm: a signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues. Bioinformatics, 27:2607–2609, 2011a. L. Chen, P.L. Choyke, T.H. Chan, and C.Y. Chi et al. Tissue-specific compartmental analysis for dynamic contrast-enhanced mr imaging of complex tumors. IEEE Transactions on Medical Imaging, 30:2044–2058, 2011b. D. Child. The essentials of factor analysis. Continuum International, 2006. S.A. Cruces-Alvarez, Andrzej Cichocki, and Shun ichi Amari. From blind signal extraction to blind instantaneous signal separation: criteria, algorithms, and stability. IEEE Transactions on Neural Networks, 15:859–873, 2004. N. Gillis. Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning Research, 13:3349–3386, 2012. E.M.C. Hillman and A. Moore. All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nature Photonics, 1:526–530, 2007. A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley, New York, 2001. N. Keshava and J.F. Mustard. Spectral unmixing. IEEE Signal Processing Magazine, 19:44–57, 2002. D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788–791, 1999. E. Oja and M. Plumbley. Blind separation of positive sources by globally convergent gradient search. Neural Computation, 16:1811–1825, 2004. F.Y. Wang, C.Y. Chi, T.H. Chan, and Y. Wang. Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:857–888, 2010. 2903

2 0.42831737 54 jmlr-2013-JKernelMachines: A Simple Framework for Kernel Machines

Author: David Picard, Nicolas Thome, Matthieu Cord

Abstract: JKernelMachines is a Java library for learning with kernels. It is primarily designed to deal with custom kernels that are not easily found in standard libraries, such as kernels on structured data. These types of kernels are often used in computer vision or bioinformatics applications. We provide several kernels leading to state of the art classification performances in computer vision, as well as various kernels on sets. The main focus of the library is to be easily extended with new kernels. Standard SVM optimization algorithms are available, but also more sophisticated learning-based kernel combination methods such as Multiple Kernel Learning (MKL), and a recently published algorithm to learn powered products of similarities (Product Kernel Learning). Keywords: classification, support vector machines, kernel, computer vision

3 0.38677055 38 jmlr-2013-Dynamic Affine-Invariant Shape-Appearance Handshape Features and Classification in Sign Language Videos

Author: Anastasios Roussos, Stavros Theodorakis, Vassilis Pitsikalis, Petros Maragos

Abstract: We propose the novel approach of dynamic affine-invariant shape-appearance model (Aff-SAM) and employ it for handshape classification and sign recognition in sign language (SL) videos. AffSAM offers a compact and descriptive representation of hand configurations as well as regularized model-fitting, assisting hand tracking and extracting handshape features. We construct SA images representing the hand’s shape and appearance without landmark points. We model the variation of the images by linear combinations of eigenimages followed by affine transformations, accounting for 3D hand pose changes and improving model’s compactness. We also incorporate static and dynamic handshape priors, offering robustness in occlusions, which occur often in signing. The approach includes an affine signer adaptation component at the visual level, without requiring training from scratch a new singer-specific model. We rather employ a short development data set to adapt the models for a new signer. Experiments on the Boston-University-400 continuous SL corpus demonstrate improvements on handshape classification when compared to other feature extraction approaches. Supplementary evaluations of sign recognition experiments, are conducted on a multi-signer, 100-sign data set, from the Greek sign language lemmas corpus. These explore the fusion with movement cues as well as signer adaptation of Aff-SAM to multiple signers providing promising results. Keywords: affine-invariant shape-appearance model, landmarks-free shape representation, static and dynamic priors, feature extraction, handshape classification

4 0.37325463 1 jmlr-2013-AC++Template-Based Reinforcement Learning Library: Fitting the Code to the Mathematics

Author: Hervé Frezza-Buet, Matthieu Geist

Abstract: This paper introduces the rllib as an original C++ template-based library oriented toward value function estimation. Generic programming is promoted here as a way of having a good fit between the mathematics of reinforcement learning and their implementation in a library. The main concepts of rllib are presented, as well as a short example. Keywords: reinforcement learning, C++, generic programming 1. C++ Genericity for Fitting the Mathematics of Reinforcement Learning Reinforcement learning (RL) is a field of machine learning that benefits from a rigorous mathematical formalism, as shown for example by Bertsekas (1995). Although this formalism is well accepted in the field, its translation into efficient computer science tools has surprisingly not led to any standard yet, as mentioned by Kovacs and Egginton (2011). The claim of this paper is that genericity enables a natural expression of the mathematics of RL. The rllib (2011) library implements this idea in the C++ language, where genericity relies on templates. Templates automate the re-writing of some generic code involving user types, offering a strong type checking at compile time that improves the code safety. Using the rllib templates requires that the user-defined types fit some documented concepts. For example, some class C defining an agent should be designed so that C::state type is the type used for the states, C::action type is the type used for the actions, and the method C::action type policy(const C::state type& s) const is implemented, in order to compute the action to be performed in a given state. This concept definition specifies what is required for an agent mathematically. Note that C does not need to inherit from any kind of abstract rl::Agent class to be used by the rllib tools. It can be directly provided as a type argument to any rllib template requiring an argument fitting the concept of an agent, so that the re-written code actually compiles. 2. A Short Example Let us consider the following toy-example. The state space contains values from 0 to 9, and actions consist in increasing or decreasing the value. When the value gets out of bounds, a reward is returned ∗. Also at UMI 2958 Georgia Tech / CNRS, 2-3, rue Marconi, 57070 Metz, France. c 2013 Herv´ Frezza-Buet and Matthieu Geist. e F REZZA -B UET AND G EIST (-1 for bound 0, 1 for bound 9). Otherwise, a null reward is returned. Let us define this problem and run Sarsa. First, a simulator class fitting the concept Simulator described in the documentation is needed. c l a s s Sim { / / Our s i m u l a t o r c l a s s . No i n h e r i t a n c e r e q u i r e d . private : i n t c u r r e n t ; double r ; public : typedef int phase type ; typedef int observation type ; t y p e d e f enum { up , down} a c t i o n t y p e ; t y p e d e f d o u b l e r e w a r d t y p e ; Sim ( v o i d ) : c u r r e n t ( 0 ) , r ( 0 ) {} v o i d s e t P h a s e ( c o n s t p h a s e t y p e &s; ) { c u r r e n t = s %10;} c o n s t o b s e r v a t i o n t y p e& s e n s e ( v o i d ) c o n s t { r e t u r n c u r r e n t ; } reward type reward ( void ) const { return r ;} v o i d t i m e S t e p ( c o n s t a c t i o n t y p e &a; ) { i f ( a == up ) c u r r e n t ++; e l s e c u r r e n t −−; i f ( c u r r e n t < 0 ) r =−1; e l s e i f ( c u r r e n t > 9 ) r = 1 ; e l s e r = 0 ; i f ( r ! = 0 ) throw r l : : e x c e p t i o n : : T e r m i n a l ( ” Out o f r a n g e ” ) ; } }; Following the concept requirements, the class Sim naturally implements a sensor method sense that provides an observation from the current phase of the controlled dynamical system, and a method timeStep that computes a transition consecutive to some action. Note the use of exceptions for terminal states. For the sake of simplicity in further code, the following is added. typedef typedef typedef typedef typedef Sim : : p h a s e t y p e Sim : : a c t i o n t y p e r l : : I t e r a t o r t y p e d e f r l : : a g e n t : : o n l i n e : : E p s i l o n G r e e d y Critic ; ArgmaxCritic ; TestAgent ; LearnAgent ; The rllib expresses that Sarsa provides a critic, offering a Q-function. As actions are discrete, the best action (i.e., argmaxa∈A Q(s, a)) can be found by considering all the actions sequentially. This is what ArgmaxCritic offers thanks to the action enumerator Aenum, in order to define greedy and ε-greedy agents. The main function then only consists in running episodes with the appropriate agents. i n t main ( i n t a r g c , char ∗ a r g v [ ] ) { Sim simulator ; Transition transition ; ArgmaxCritic c r i t i c ; LearnAgent learner ( critic ); TestAgent tester ( critic ); A a; S s; int episode , length , s t e p =0; // // // // // // // T h i s i s what t h e a g e n t c o n t r o l s . T h i s i s some s , a , r , s ’ , a ’ d a t a . T h i s c o m p u t e s Q and argmax a Q( s , a ) . SARSA u s e s t h i s a g e n t t o l e a r n t h e p o l i c y . This behaves according to the c r i t i c . Some a c t i o n . Some s t a t e . f o r ( e p i s o d e = 0 ; e p i s o d e < 1 0 0 0 0 ; ++ e p i s o d e ) { / / L e a r n i n g p h a s e s i m u l a t o r . setPhase ( rand ()%10); r l : : episode : : sa : : r u n a n d l e a r n ( simulator , l e a r n e r , t r a n s i t i o n , 0 , length ) ; } try { / / T e s t phase simulator . setPhase (0); while ( true ) { s = simulator . sense ( ) ; a = t e s t e r . policy ( s ) ; s t e p ++; s i m u l a t o r . t i m e S t e p ( a ) ; } } c a t c h ( r l : : e x c e p t i o n : : T e r m i n a l e ) { s t d : : c o u t << s t e p << ” s t e p s . ” << s t d : : e n d l ; } return 0 ; / / t h e message p r i n t e d i s ‘ ‘10 s t e p s . ’ ’ } 3. Features of the Library Using the library requires to define the features that are specific to the problem (the simulator and the Q-function architecture in our example) from scratch, but with the help of concepts. Then, the specific features can be handled by generic code provided by the library to implement RL techniques with value function estimation. 627 F REZZA -B UET AND G EIST Currently, Q-learing, Sarsa, KTD-Q, LSTD, and policy iteration are available, as well as a multi-layer perceptron architecture. Moreover, some benchmark problems (i.e., simulators) are also provided: the mountain car, the cliff walking, the inverted pendulum and the Boyan chain. Extending the library with new algorithms is allowed, since it consists in defining new templates. This is a bit more technical than only using the existing algorithms, but the structure of existing concepts helps, since it reflects the mathematics of RL. For example, concepts like Feature, for linear approaches mainly (i.e., Q(s, a) = θT ϕ(s, a)) and Architecture (i.e., Q(s, a) = fθ (s, a) for more general approximation) orient the design toward functional approaches of RL. The algorithms implemented so far rely on the GNU Scientific Library (see GSL, 2011) for linear algebra computation, so the GPL licence of GSL propagates to the rllib. 4. Conclusion The rllib relies only on the C++ standard and the availability of the GSL on the system. It offers state-action function approximation tools for applying RL to real problems, as well as a design that fits the mathematics. The latter allows for extensions, but is also compliant with pedagogical purpose. The design of the rllib aims at allowing the user to build (using C++ programming) its own experiment, using several algorithms, several agents, on-line or batch learning, and so on. Actually, the difficult part of RL is the algorithms themselves, not the script-like part of the experiment where things are put together (see the main function in our example). With a framework, in the sense of Kovacs and Egginton (2011), the experiment is not directly accessible to the user programs, since it is handled by some libraries in order to offer graphical interface or analyzing tools. The user code is then called by the framework when required. We advocate that allowing the user to call the rllib functionality at his/her convenience provides an open and extensible access to RL for students, researchers and engineers. Last, the rllib fits the requirements expressed by Kovacs and Egginton (2011, Section 4.3): support of good scientific research, formulation compliant with the domain, allowing for any kind of agents and any kind of approximators, interoperability of components (the Q function of the example can be used for different algorithms and agents), maximization of run-time speed (use of C++ and templates that inline massively the code), open source, etc. Extensions of rllib can be considered, for example for handling POMDPs, and contributions of users are expected. The use of templates is unfortunately unfamiliar to many programmers, but the effort is worth it, since it brings the code at the level of the mathematical formalism, increasing readability (by a rational use of typedefs) and reducing bugs. Even if the approach is dramatically different from existing frameworks, wrappings with frameworks can be considered in further development. References Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 3rd (20052007) edition, 1995. GSL, 2011. http://http://www.gnu.org/software/gsl. Tim Kovacs and Robert Egginton. On the analysis and design of software for reinforcement learning, with a survey of existing systems. Machine Learning, 84:7–49, 2011. rllib, 2011. http://ims.metz.supelec.fr/spip.php?article122. 628

5 0.31539536 112 jmlr-2013-Tapkee: An Efficient Dimension Reduction Library

Author: Sergey Lisitsyn, Christian Widmer, Fernando J. Iglesias Garcia

Abstract: We present Tapkee, a C++ template library that provides efficient implementations of more than 20 widely used dimensionality reduction techniques ranging from Locally Linear Embedding (Roweis and Saul, 2000) and Isomap (de Silva and Tenenbaum, 2002) to the recently introduced BarnesHut-SNE (van der Maaten, 2013). Our library was designed with a focus on performance and flexibility. For performance, we combine efficient multi-core algorithms, modern data structures and state-of-the-art low-level libraries. To achieve flexibility, we designed a clean interface for applying methods to user data and provide a callback API that facilitates integration with the library. The library is freely available as open-source software and is distributed under the permissive BSD 3-clause license. We encourage the integration of Tapkee into other open-source toolboxes and libraries. For example, Tapkee has been integrated into the codebase of the Shogun toolbox (Sonnenburg et al., 2010), giving us access to a rich set of kernels, distance measures and bindings to common programming languages including Python, Octave, Matlab, R, Java, C#, Ruby, Perl and Lua. Source code, examples and documentation are available at http://tapkee.lisitsyn.me. Keywords: dimensionality reduction, machine learning, C++, open source software

6 0.31400728 100 jmlr-2013-Similarity-based Clustering by Left-Stochastic Matrix Factorization

7 0.31167883 98 jmlr-2013-Segregating Event Streams and Noise with a Markov Renewal Process Model

8 0.22932519 15 jmlr-2013-Bayesian Canonical Correlation Analysis

9 0.19492513 37 jmlr-2013-Divvy: Fast and Intuitive Exploratory Data Analysis

10 0.18613032 101 jmlr-2013-Sparse Activity and Sparse Connectivity in Supervised Learning

11 0.18481073 62 jmlr-2013-Learning Theory Approach to Minimum Error Entropy Criterion

12 0.17650291 89 jmlr-2013-QuantMiner for Mining Quantitative Association Rules

13 0.17525719 4 jmlr-2013-A Max-Norm Constrained Minimization Approach to 1-Bit Matrix Completion

14 0.16418992 67 jmlr-2013-MLPACK: A Scalable C++ Machine Learning Library

15 0.16286699 70 jmlr-2013-Maximum Volume Clustering: A New Discriminative Clustering Approach

16 0.15478025 13 jmlr-2013-Approximating the Permanent with Fractional Belief Propagation

17 0.15422203 20 jmlr-2013-CODA: High Dimensional Copula Discriminant Analysis

18 0.15073656 116 jmlr-2013-Truncated Power Method for Sparse Eigenvalue Problems

19 0.14870811 111 jmlr-2013-Supervised Feature Selection in Graphs with Path Coding Penalties and Network Flows

20 0.14544398 30 jmlr-2013-Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising


similar papers computed by lda model

lda for this paper:

topicId topicWeight

[(5, 0.796), (6, 0.017), (10, 0.019), (20, 0.018), (23, 0.014), (75, 0.016), (87, 0.016)]

similar papers list:

simIndex simValue paperId paperTitle

1 0.99860448 24 jmlr-2013-Comment on "Robustness and Regularization of Support Vector Machines" by H. Xu et al. (Journal of Machine Learning Research, vol. 10, pp. 1485-1510, 2009)

Author: Yahya Forghani, Hadi Sadoghi

Abstract: This paper comments on the published work dealing with robustness and regularization of support vector machines (Journal of Machine Learning Research, Vol. 10, pp. 1485-1510, 2009) by H. Xu et al. They proposed a theorem to show that it is possible to relate robustness in the feature space and robustness in the sample space directly. In this paper, we propose a counter example that rejects their theorem. Keywords: kernel, robustness, support vector machine 1. Comment Firstly, it must be stated that Xu et al. (2009) made a good study of robustness and regularization of support vector machines. They proposed the following theorem to show that it is possible to relate robustness in the feature space and robustness in the sample space directly: Theorem (Xu et al., 2009) Suppose that the kernel function has the form k(x, x′ ) = f ( x − x′ ), with f : R+ → R a decreasing function. Denote by H the RKHS space of k(., .) and φ(.) the corresponding feature mapping. Then we have any x ∈ Rn , w ∈ H and c > 0, sup w, φ(x − δ) = δ ≤c δφ H≤ sup √ 2 f (0)−2 f (c) w, φ(x) − δφ . The following counter example rejects the mentioned theorem. However, this theorem is a standalone result in the appendix of the paper of Xu et al. (2009), which is not used anywhere else in the paper of Xu et al. (2009). Thus, the main result and all other results of Xu et al. (2009) are not affected in any way. Counter example. Let φ(.) be the feature mapping of Gaussian kernel function. We have φ(x) H = 1. Let w = φ(x). Therefore, w, φ(x) = w H , and sup w, φ(x − δ) = w δ ≤c ∗. Also at Islamic Azad University, Mashhad Branch, Mashhad, IRAN. c 2013 Yahya Forghani and Hadi Sadoghi. H. (1) F ORGHANI AND S ADOGHI Moreover, δφ δφ H≤ H≤ w, φ(x) − δφ = sup √ 2 f (0)−2 f (c) w, φ(x) + sup √ 2 f (0)−2 f (c) w H δφ + δφ w H H≤ + w H≤ w, δφ = sup √ 2 f (0)−2 f (c) w, δφ = sup √ 2 f (0)−2 f (c) H 2 f (0) − 2 f (c). (2) According to Equation (1) and (2), and since f is a decreasing function, for any c > 0, we have sup w, φ(x − δ) ≤ δ ≤c δφ H≤ sup √ 2 f (0)−2 f (c) w, φ(x) − δφ . End of counter example. The exact spot that the error has been occurred in the mentioned theorem is Equation (19) of the paper of Xu et al. (2009). There it has been claimed that the image of the RKHS feature mapping is dense, which unfortunately is not true. Indeed, because φ(x), φ(x) = K(0) where K(.) is the kernel function, the image of the feature mapping is in a ball of radius K(0). References Huan Xu, Shie Mannor, and Constantine Caramanis. Robustness and regularization of support vector machines. Journal of Machine Learning Research, 10:1485–1510, 2009. 3494

same-paper 2 0.99710268 113 jmlr-2013-The CAM Software for Nonnegative Blind Source Separation in R-Java

Author: Niya Wang, Fan Meng, Li Chen, Subha Madhavan, Robert Clarke, Eric P. Hoffman, Jianhua Xuan, Yue Wang

Abstract: We describe a R-Java CAM (convex analysis of mixtures) package that provides comprehensive analytic functions and a graphic user interface (GUI) for blindly separating mixed nonnegative sources. This open-source multiplatform software implements recent and classic algorithms in the literature including Chan et al. (2008), Wang et al. (2010), Chen et al. (2011a) and Chen et al. (2011b). The CAM package offers several attractive features: (1) instead of using proprietary MATLAB, its analytic functions are written in R, which makes the codes more portable and easier to modify; (2) besides producing and plotting results in R, it also provides a Java GUI for automatic progress update and convenient visual monitoring; (3) multi-thread interactions between the R and Java modules are driven and integrated by a Java GUI, assuring that the whole CAM software runs responsively; (4) the package offers a simple mechanism to allow others to plug-in additional R-functions. Keywords: convex analysis of mixtures, blind source separation, affinity propagation clustering, compartment modeling, information-based model selection c 2013 Niya Wang, Fan Meng, Li Chen, Subha Madhavan, Robert Clarke, Eric P. Hoffman, Jianhua Xuan and Yue Wang. WANG , M ENG , C HEN , M ADHAVAN , C LARKE , H OFFMAN , X UAN AND WANG 1. Overview Blind source separation (BSS) has proven to be a powerful and widely-applicable tool for the analysis and interpretation of composite patterns in engineering and science (Hillman and Moore, 2007; Lee and Seung, 1999). BSS is often described by a linear latent variable model X = AS, where X is the observation data matrix, A is the unknown mixing matrix, and S is the unknown source data matrix. The fundamental objective of BSS is to estimate both the unknown but informative mixing proportions and the source signals based only on the observed mixtures (Child, 2006; Cruces-Alvarez et al., 2004; Hyvarinen et al., 2001; Keshava and Mustard, 2002). While many existing BSS algorithms can usefully extract interesting patterns from mixture observations, they often prove inaccurate or even incorrect in the face of real-world BSS problems in which the pre-imposed assumptions may be invalid. There is a family of approaches exploiting the source non-negativity, including the non-negative matrix factorization (NMF) (Gillis, 2012; Lee and Seung, 1999). This motivates the development of alternative BSS techniques involving exploitation of source nonnegative nature (Chan et al., 2008; Chen et al., 2011a,b; Wang et al., 2010). The method works by performing convex analysis of mixtures (CAM) that automatically identifies pure-source signals that reside at the vertices of the multifaceted simplex most tightly enclosing the data scatter, enabling geometrically-principled delineation of distinct source patterns from mixtures, with the number of underlying sources being suggested by the minimum description length criterion. Consider a latent variable model x(i) = As(i), where the observation vector x(i) = [x1 (i), ..., xM (i)]T can be expressed as a non-negative linear combination of the source vectors s(i) = [s1 (i), ..., sJ (i)]T , and A = [a1 , ..., aJ ] is the mixing matrix with a j being the jth column vector. This falls neatly within the definition of a convex set (Fig. 1) (Chen et al., 2011a): X= J J ∑ j=1 s j (i)a j |a j ∈ A, s j (i) ≥ 0, ∑ j=1 s j (i) = 1, i = 1, ..., N . Assume that the sources have at least one sample point whose signal is exclusively enriched in a particular source (Wang et al., 2010), we have shown that the vertex points of the observation simplex (Fig. 1) correspond to the column vectors of the mixing matrix (Chen et al., 2011b). Via a minimum-error-margin volume maximization, CAM identifies the optimum set of the vertices (Chen et al., 2011b; Wang et al., 2010). Using the samples attached to the vertices, compartment modeling (CM) (Chen et al., 2011a) obtains a parametric solution of A, nonnegative independent component analysis (nICA) (Oja and Plumbley, 2004) estimates A (and s) that maximizes the independency in s, and nonnegative well-grounded component analysis (nWCA) (Wang et al., 2010) finds the column vectors of A directly from the vertex cluster centers. Figure 1: Schematic and illustrative flowchart of R-Java CAM package. 2900 T HE CAM S OFTWARE IN R-JAVA In this paper we describe a newly developed R-Java CAM package whose analytic functions are written in R, while a graphic user interface (GUI) is implemented in Java, taking full advantages of both programming languages. The core software suite implements CAM functions and includes normalization, clustering, and data visualization. Multi-thread interactions between the R and Java modules are driven and integrated by a Java GUI, which not only provides convenient data or parameter passing and visual progress monitoring but also assures the responsive execution of the entire CAM software. 2. Software Design and Implementation The CAM package mainly consists of R and Java modules. The R module is a collection of main and helper functions, each represented by an R function object and achieving an independent and specific task (Fig. 1). The R module mainly performs various analytic tasks required by CAM: figure plotting, update, or error message generation. The Java module is developed to provide a GUI (Fig. 2). We adopt the model-view-controller (MVC) design strategy, and use different Java classes to separately perform information visualization and human-computer interaction. The Java module also serves as the software driver and integrator that use a multi-thread strategy to facilitate the interactions between the R and Java modules, such as importing raw data, passing algorithmic parameters, calling R scripts, and transporting results and messages. Figure 2: Interactive Java GUI supported by a multi-thread design strategy. 2.1 Analytic and Presentation Tasks Implemented in R The R module performs the CAM algorithm and facilitates a suite of subsequent analyses including CM, nICA, and nWCA. These tasks are performed by the three main functions: CAM-CM.R, CAM-nICA.R, and CAM-nWCA.R, which can be activated by the three R scripts: Java-runCAM-CM.R, Java-runCAM-ICA.R, and Java-runCAM-nWCA.R. The R module also performs auxiliary tasks including automatic R library installation, figure drawing, and result recording; and offers other standard methods such as nonnegative matrix factorization (Lee and Seung, 1999), Fast ICA (Hyvarinen et al., 2001), factor analysis (Child, 2006), principal component analysis, affinity propagation, k-means clustering, and expectation-maximization algorithm for learning standard finite normal mixture model. 2.2 Graphic User Interface Written in Java Swing The Java GUI module allows users to import data, select algorithms and parameters, and display results. The module encloses two packages: guiView contains classes for handling frames and 2901 WANG , M ENG , C HEN , M ADHAVAN , C LARKE , H OFFMAN , X UAN AND WANG Figure 3: Application of R-Java CAM to deconvolving dynamic medical image sequence. dialogs for managing user inputs; guiModel contains classes for representing result data sets and for interacting with the R script caller. Packaged as one jar file, the GUI module runs automatically. 2.3 Functional Interaction Between R and Java We adopt the open-source program RCaller (http://code.google.com/p/rcaller) to implement the interaction between R and Java modules (Fig. 2), supported by explicitly designed R scripts such as Java-runCAM-CM.R. Specifically, five featured Java classes are introduced to interact with R for importing data or parameters, running algorithms, passing on or recording results, displaying figures, and handing over error messages. The examples of these classes include guiModel.MyRCaller.java, guiModel.MyRCaller.readResults(), and guiView.MyRPlotViewer. 3. Case Studies and Experimental Results The CAM package has been successfully applied to various data types. Using dynamic contrastenhanced magnetic resonance imaging data set of an advanced breast cancer case (Chen, et al., 2011b),“double click” (or command lines under Ubuntu) activated execution of CAM-Java.jar reveals two biologically interpretable vascular compartments with distinct kinetic patterns: fast clearance in the peripheral “rim” and slow clearance in the inner “core”. These outcomes are consistent with previously reported intratumor heterogeneity (Fig. 3). Angiogenesis is essential to tumor development beyond 1-2mm3 . It has been widely observed that active angiogenesis is often observed in advanced breast tumors occurring in the peripheral “rim” with co-occurrence of inner-core hypoxia. This pattern is largely due to the defective endothelial barrier function and outgrowth blood supply. In another application to natural image mixtures, CAM algorithm successfully recovered the source images in a large number of trials (see Users Manual). 4. Summary and Acknowledgements We have developed a R-Java CAM package for blindly separating mixed nonnegative sources. The open-source cross-platform software is easy-to-use and effective, validated in several real-world applications leading to plausible scientific discoveries. The software is freely downloadable from http://mloss.org/software/view/437/. We intend to maintain and support this package in the future. This work was supported in part by the US National Institutes of Health under Grants CA109872, CA 100970, and NS29525. We thank T.H. Chan, F.Y. Wang, Y. Zhu, and D.J. Miller for technical discussions. 2902 T HE CAM S OFTWARE IN R-JAVA References T.H. Chan, W.K. Ma, C.Y. Chi, and Y. Wang. A convex analysis framework for blind separation of non-negative sources. IEEE Transactions on Signal Processing, 56:5120–5143, 2008. L. Chen, T.H. Chan, P.L. Choyke, and E.M. Hillman et al. Cam-cm: a signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues. Bioinformatics, 27:2607–2609, 2011a. L. Chen, P.L. Choyke, T.H. Chan, and C.Y. Chi et al. Tissue-specific compartmental analysis for dynamic contrast-enhanced mr imaging of complex tumors. IEEE Transactions on Medical Imaging, 30:2044–2058, 2011b. D. Child. The essentials of factor analysis. Continuum International, 2006. S.A. Cruces-Alvarez, Andrzej Cichocki, and Shun ichi Amari. From blind signal extraction to blind instantaneous signal separation: criteria, algorithms, and stability. IEEE Transactions on Neural Networks, 15:859–873, 2004. N. Gillis. Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning Research, 13:3349–3386, 2012. E.M.C. Hillman and A. Moore. All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nature Photonics, 1:526–530, 2007. A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley, New York, 2001. N. Keshava and J.F. Mustard. Spectral unmixing. IEEE Signal Processing Magazine, 19:44–57, 2002. D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788–791, 1999. E. Oja and M. Plumbley. Blind separation of positive sources by globally convergent gradient search. Neural Computation, 16:1811–1825, 2004. F.Y. Wang, C.Y. Chi, T.H. Chan, and Y. Wang. Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:857–888, 2010. 2903

3 0.98975039 8 jmlr-2013-A Theory of Multiclass Boosting

Author: Indraneel Mukherjee, Robert E. Schapire

Abstract: Boosting combines weak classifiers to form highly accurate predictors. Although the case of binary classification is well understood, in the multiclass setting, the “correct” requirements on the weak classifier, or the notion of the most efficient boosting algorithms are missing. In this paper, we create a broad and general framework, within which we make precise and identify the optimal requirements on the weak-classifier, as well as design the most effective, in a certain sense, boosting algorithms that assume such requirements. Keywords: multiclass, boosting, weak learning condition, drifting games

4 0.98533899 87 jmlr-2013-Performance Bounds for λ Policy Iteration and Application to the Game of Tetris

Author: Bruno Scherrer

Abstract: We consider the discrete-time infinite-horizon optimal control problem formalized by Markov decision processes (Puterman, 1994; Bertsekas and Tsitsiklis, 1996). We revisit the work of Bertsekas and Ioffe (1996), that introduced λ policy iteration—a family of algorithms parametrized by a parameter λ—that generalizes the standard algorithms value and policy iteration, and has some deep connections with the temporal-difference algorithms described by Sutton and Barto (1998). We deepen the original theory developed by the authors by providing convergence rate bounds which generalize standard bounds for value iteration described for instance by Puterman (1994). Then, the main contribution of this paper is to develop the theory of this algorithm when it is used in an approximate form. We extend and unify the separate analyzes developed by Munos for approximate value iteration (Munos, 2007) and approximate policy iteration (Munos, 2003), and provide performance bounds in the discounted and the undiscounted situations. Finally, we revisit the use of this algorithm in the training of a Tetris playing controller as originally done by Bertsekas and Ioffe (1996). Our empirical results are different from those of Bertsekas and Ioffe (which were originally qualified as “paradoxical” and “intriguing”). We track down the reason to be a minor implementation error of the algorithm, which suggests that, in practice, λ policy iteration may be more stable than previously thought. Keywords: stochastic optimal control, reinforcement learning, Markov decision processes, analysis of algorithms

5 0.98193991 84 jmlr-2013-PC Algorithm for Nonparanormal Graphical Models

Author: Naftali Harris, Mathias Drton

Abstract: The PC algorithm uses conditional independence tests for model selection in graphical modeling with acyclic directed graphs. In Gaussian models, tests of conditional independence are typically based on Pearson correlations, and high-dimensional consistency results have been obtained for the PC algorithm in this setting. Analyzing the error propagation from marginal to partial correlations, we prove that high-dimensional consistency carries over to a broader class of Gaussian copula or nonparanormal models when using rank-based measures of correlation. For graph sequences with bounded degree, our consistency result is as strong as prior Gaussian results. In simulations, the ‘Rank PC’ algorithm works as well as the ‘Pearson PC’ algorithm for normal data and considerably better for non-normal data, all the while incurring a negligible increase of computation time. While our interest is in the PC algorithm, the presented analysis of error propagation could be applied to other algorithms that test the vanishing of low-order partial correlations. Keywords: Gaussian copula, graphical model, model selection, multivariate normal distribution, nonparanormal distribution

6 0.96138573 15 jmlr-2013-Bayesian Canonical Correlation Analysis

7 0.94355339 114 jmlr-2013-The Rate of Convergence of AdaBoost

8 0.8793605 10 jmlr-2013-Algorithms and Hardness Results for Parallel Large Margin Learning

9 0.87781632 119 jmlr-2013-Variable Selection in High-Dimension with Random Designs and Orthogonal Matching Pursuit

10 0.87008512 20 jmlr-2013-CODA: High Dimensional Copula Discriminant Analysis

11 0.86176461 4 jmlr-2013-A Max-Norm Constrained Minimization Approach to 1-Bit Matrix Completion

12 0.85110903 73 jmlr-2013-Multicategory Large-Margin Unified Machines

13 0.8472898 17 jmlr-2013-Belief Propagation for Continuous State Spaces: Stochastic Message-Passing with Quantitative Guarantees

14 0.84645021 36 jmlr-2013-Distributions of Angles in Random Packing on Spheres

15 0.84021461 25 jmlr-2013-Communication-Efficient Algorithms for Statistical Optimization

16 0.83370876 64 jmlr-2013-Lovasz theta function, SVMs and Finding Dense Subgraphs

17 0.82741284 92 jmlr-2013-Random Spanning Trees and the Prediction of Weighted Graphs

18 0.82546175 53 jmlr-2013-Improving CUR Matrix Decomposition and the Nystrom Approximation via Adaptive Sampling

19 0.82505977 39 jmlr-2013-Efficient Active Learning of Halfspaces: An Aggressive Approach

20 0.81778616 9 jmlr-2013-A Widely Applicable Bayesian Information Criterion