iccv iccv2013 iccv2013-84 knowledge-graph by maker-knowledge-mining

84 iccv-2013-Complex 3D General Object Reconstruction from Line Drawings


Source: pdf

Author: Linjie Yang, Jianzhuang Liu, Xiaoou Tang

Abstract: An important topic in computer vision is 3D object reconstruction from line drawings. Previous algorithms either deal with simple general objects or are limited to only manifolds (a subset of solids). In this paper, we propose a novel approach to 3D reconstruction of complex general objects, including manifolds, non-manifold solids, and non-solids. Through developing some 3D object properties, we use the degree of freedom of objects to decompose a complex line drawing into multiple simpler line drawings that represent meaningful building blocks of a complex object. After 3D objects are reconstructed from the decomposed line drawings, they are merged to form a complex object from their touching faces, edges, and vertices. Our experiments show a number of reconstruction examples from both complex line drawings and images with line drawings superimposed. Comparisons are also given to indicate that our algorithm can deal with much more complex line drawings of general objects than previous algorithms. 1. Introduction and Related Work A 2D line drawing is the most straightforward way of illustrating a 3D object. Given a line drawing representing a 3D object, our visual system can understand the 3D structure easily. For example, we can interpret without difficulty the line drawing shown in Fig. 1(a) as a castle with four walls and one door. Imitating this ability has been a longstanding and challenging topic in computer vision when a line drawing is as complex as this example. The applications of this work include 3D object design in CAD and for 3D printers, 3D query generation for 3D object retrieval, and 3D modeling from images. In this paper, same as the majority of related work, a line drawing is defined as the orthogonal projection of the Fig.1 (a)Alinedrawing(rae)pres nti gac stle.(b)The3Dm(obd)el of the line drawing. edges and vertices of a 3D object in a generic view, and objects with planar surfaces are considered. A line drawing is represented by an edge-vertex graph. It can be obtained by the user/designer who draws on the screen with a tablet pen, a mouse, or a finger (on a touch sensitive screen), with all, with some, or without hidden edges and vertices. Line labeling is the earliest work to interpret line drawings [1], [17]. It searches for a set of consistent labels such as convex, concave, and occluding from a line drawing to test its correctness and/or realizability. Line labeling itself cannot recover 3D shape from a line drawing. Later, 3D reconstruction from the contours (line drawings) of objects in images is studied [19], [14], [13], which handles simple objects only. Model-based 3D reconstruction [2], [3], [20] can deal with more complex objects, but these methods require to pre-define a set of parametric models. Recently, popular methods of 3D reconstruction from line drawings are optimization based, which are most related to our work and are reviewed next. These methods can be classified into two categories: one dealing with manifolds and the other dealing with general objects. A general object can be a manifold, non-manifold solid, or non-solid. Manifolds are a subset of solids, defined as follows: A manifold, or more rigorously 2D manifold, is a solid where every point on its surface has a neighborhood topologically equivalent to an open diskin the 2D Euclidean space. 1433 In this paper, a solid is a portion of 3D space bounded by planar faces, and a manifold is also bounded by planar faces. Each edge of such manifolds is shared exactly by two faces [4]. Most 3D reconstruction methods from a line drawing assume that the face topology of the line drawing is known in advance. This information can reduce the reconstruction complexity greatly. Algorithms have been developed to find faces from a line drawing in [16], [10], and [9], where [16] and [10] are for general objects and [9] for manifolds. Optimization-based 3D reconstruction depends on some critera (also called image regularities) that simulate our visual perception. Marill proposes a very simple but effective criterion to reconstruct a simple object: minimizing the standard deviation of the angles (MSDA) in the object [11]. Later, other regularities are proposed to deal with more complex objects such as face planarity, line parallelism, isometry, and corner orthogonality [5], [6], [15], [18]. In these methods, an objective function ?C Φ(z1,z2, ...,zNv) = ?ωiφi(z1,z2, ...,zNv) (1) i?= ?1 is minimized to derive the depths z1, z2 , ..., zNv , where Nv is the number of vertices in the line drawing, φi , i = 1, 2, ..., C, are the regularities, and ωi , i = 1, 2, ..., C, are the weights. The main problem in this approach is that these algorithms are easy to get trapped into local minima (obtaining failed results) when a line drawing is complex with many vertices, due to the search in a highdimensional space (Nv dimensions) with the non-convex objective function. For example, the search space is of 56 dimensions for the object in Fig. 1(a). To alleviate this problem, Liu et al. formulate 3D reconstruction in a lower dimensional space so that the optimization procedure has a better chance to find desired results [7]. For the complex object in Fig. 1(a), however, the search in a space with 18 dimensions is still too difficult for it to obtain a satisfactory 3D object (see Section 3). The methods in [5], [6], [15], [18], and [7] reconstruct general objects, and the one in [7] can deal with more complex objects than the other four. But these algorithms cannot avoid the local minimum problem in a high dimensional search space when a line drawing is complex. In [8], a divide-and-conquer (D&C;) strategy is used to tackle this problem. It first separates a complex line drawing into multiple simpler ones, then independently recovers the 3D objects from these line drawings, and finally merges them to form a complete object. Since the separated line drawings are much simpler than the original one, the 3D reconstruction from each of them is an easy task. This D&C; approach handles manifolds only. Based on known faces found by the face identification algorithm in [9], it uses manifold properties to find internal faces Fig.2(a)Asimaeplhdmiafnbo(ldagc)withnae'fahdc'eisfba'nd(obgcn)'eitrnalfce (a, b, c, d). (b) Decomposition result from the internal face. (a) (b) (c) (d) Fig. 3. (a) A non-manifold solid. (b) Expected decomposition of (a). (c) A sheet object. (d) Expected decomposition of (c). from a line drawing and then separates the line drawing from the internal faces. An internal face is defined as an imaginary face lying inside a manifold with only its edges visible on the surface [8]. It is not a real face but can be considered as two coincident real faces of identical shape belonging to two manifolds. For example, Fig. 2(a) shows a manifold with nine faces. The D&C; first finds the internal face (a, b, c, d) and then decomposes the line drawing from this internal face (Fig. 2(b)). However, handling manifolds only limits the applica- tions of [8]. In many applications in computer vision and graphics such as 3D object matching, retrieval, and rendering, it is unnecessary to represent objects as manifolds, in order to facilitate data processing and reduce data storage. For example, a flat ground can be represented by a sheet (one face), but if it is represented by a manifold, a thin box with six faces has to be used. Fig. 1(a), Fig. 3(a), and Fig. 3(c) are line drawings of three non-manifolds. In this paper, we propose a novel approach to 3D reconstruction of complex general objects based on visual perception, object properties, and new line drawing decomposition. Compared with previous methods, ours can deal with much more complex line drawings of general objects. It can handle not only manifolds but also non-manifold solids and non-solids, and is insensitive to sketching errors. 2. General Object Reconstruction We also use the D&C; strategy to deal with 3D reconstruction from a line drawing representing a complex general object. The key is how to decompose a complex line drawing of any objects into multiple simpler line drawings. These decomposed line drawings should represent objects that are in accordance with our visual perception, which makes the 3D reconstruction from these line drawings easier and better because the regularities used to build an objective function for reconstruction follow human perception of 1434 common objects [11], [5], [6], [15], [18]. Before the decomposition of a line drawing, we assume that all the real and internal faces of the object have been obtained from the line drawing using a face identification algorithm. For example, the algorithm in [10] finds 10 faces from the line drawing in Fig. 2(a) (including the internal face), and obtains 12 and 7 faces from the line drawings in Figs. 3(a) and (c), respectively. 2.1. Decomposing line drawings of solids In this subsection, we consider the line drawings of solids first. The decomposition method will be extended to the line drawings of general objects in the next subsection. It is not difficult to see that in general, a complex object, especially a manmade complex object, can be considered as the combinations of multiple smaller objects. The most common combination is the touch of two faces from two different objects such as the one in Fig. 2. Other combinations are the touches among lines, faces, and vertices. Our target is to decompose a complex solid into multiple primitive solids. Before the definition of a primitive solid, we introduce a term called the degree of freedom of a solid. Definition 1. The degree of freedom (DoF) of a 3D solid represented by a line drawing is the minimal number of zcoordinates that can uniquely determine this 3D solid. This is the first time that the concept of DoF is used to decompose line drawings. Now let us consider a simple object in Fig. 4(a). The cube has six faces: (v1, v2 , v3 , v4), (v1, v2, v6, v5), (v1, v4, v8, v5), (v2 , v3, v7, v6), (v4, v3, v7, v8), and (v6, v7, v8, v5). We can show that the cube is determined if the z-coordinates of its four non-coplanar vertices are known. Without loss of generality, suppose z1, z2, z4, and z5 are known. Since the 3D coordinates of v1, v2, and v4 are fixed (remind that the x- and y-coordinates of all the vertices are known under the orthogonal projection), the 3D plane passing through the face (v1, v2 , v3, v4) is determined, and thus z3 can be calculated. Similarly, z6 and z8 can be obtained. Finally, z7 can be computed with the 3D coordinates of v3, v4, and v8 known, which determine the plane passing through the face (v4, v3, v7, v8). So the 3D cube can be determined by the known four z-coordinates, z1, z2, z4, and z5. Further, it can be verified that three 3D vertices cannot determine this object uniquely because they can only define one face in 3D space. Therefore, the DoF of the cube is 4. Similar analysis allows us to know that the solids in Fig. 2(b), Fig. 3(b), and Fig. 4(b) all have DoF 4, while the two solids in Fig. 2(a) and Fig. 3(a) have DoFs 5 and 6, respectively. From these analysis, we can have the intuition that solids with DoF 4 serve as the building blocks of more complex solids whose DoFs are more than 4. Besides, we have the following property: Property 1. There is no solid with DoF less than 4. Fv5(1iga).4v (26a)Av48cubev3w7hos(be)DoFis4.(b)Anedo(tch)fergBasbolifdAwhosfCeDocFji is also 4. (c) Part of a line drawing with each vertex of degree 3. This property is easy to verify. A solid with fewest faces is a tetrahedron. Every two of its four faces are not co-planar. Three 3D vertices of a tetrahedron can only determine one 3D face. Next, we define primitive solids. Definition 2. A 3D solid represented by a line drawing is called a primitive solid if its DoF is 4. Property 2. If every vertex of a 3D solid represented by a line drawing has degree 31, then it is a primitive solid. Proof. Let part of such a line drawing be the one as shown in Fig. 4(c). At each vertex, every two of the three edges form a face, because a solid is bounded by faces without dangling faces and edges. Let the three paths fA, fB, and fC in Fig. 4(c) denote the three faces at vertex a. Without loss of generality, suppose that the four zcoordinates (and thus the four 3D coordinates) of vertices a, b, c, and d are known. Then the three planes passing through fA, fB, and fC are determined in 3D space. With the two known 3D planes passing through fA and fB at vertex b, the 3D coordinates of vertices g and h connected to b can be computed. Similarly, the 3D coordinates of vertices e and f connected to d and the 3D coordinates of vertices i and j connected to c can be obtained. Furthermore, all the 3D coordinates of the other vertices connected to e, f, g, h, i, and j can be derived in the same way. This derivation can propagate to all the vertices of this solid. Therefore, the DoF of this solid is 4 and it is a primitive solid. Property 3. The DoF of a solid is 5 which is obtained by gluing two faces of two primitive solids. Proof. Let the two primitive solids be PS1 and PS2 and their corresponding gluing faces be f1and f2, respectively. The DoFs of PS1 and PS2 are both 4. Suppose that PS1 is determined in 3D space, which requires four z-coordinates. Then f1and f2 are also determined in 3D space. When the z-coordinates of three vertices on PS2 are known based on f2, one more z-coordinate of a vertex not coplanar with f2 on PS2 can determine PS2 in 3D space. Therefore, the DoF of the combined solid is 5. Fig. 2 is a typical example of two primitive solids gluing together along faces. Fig. 3(a) is an example of two primitive solids gluing together along edges. Two primitive solids may also connect at one vertex. The following property is easy to verify. 1The degree of a vertex is the number of edges connected to this vertex. 1435 Property 4. The DoF of a solid is 6 which is obtained by gluing two edges of two primitive solids. The DoF of a solid is 7 which is obtained by gluing two vertices oftwoprimitive solids. From the above properties, we can see that primitive solids are indeed the “smallest” solids in terms of DoF and they can serve as the building blocks to construct more complex solids. Therefore, our next target is to decompose a line drawing representing a complex solid into multiple line drawings representing primitive solids. Before giving Definition 3, we define some terms first. Vertex set of a face. The vertex set V er(f) of a face f is the set of all the vertices of f. Fixed vertex. A fixed vertex is one with its z-coordinate (thus its 3D coordinate) known. Unfixed vertex. An unfixed vertex is one with its zcoordinate unknown. Fixed face. A fixed face is one with its 3D position determined by its three fixed vertices. Unfixed face. An unfixed face is one with its 3D position undetermined. Definition 3. Let the vertex set and the face set of a line drawing be V = {v1, v2 , ..., vn} and F = {f1, f2 , ..., fm}, respectively, w =he {rve n and m are Fthe = n{fumbers of th}e, vertices and the faces, respectively. Also let Vfixed, Ffixed, Vunfixed, and Funfixed be the sets of fixed vertices, fixed faces, unfixed vertices, and unfixed faces, respectively. Suppose that an initial set of two fixed neighboring faces sharing an edge is Finitial with all their fixed vertices in Vinitial. The final Ffixed in Algorithm 1 is called the maximum extended face set (MEFS) from Finitial. In Algorithm 1, a face f that satisfies the condition in step 3 is a face that has been determined in 3D space by the current fixed vertices in Ffixed. When this face is found, it becomes a fixed face and all its vertices become fixed vertices. The DoF of the initial two fixed faces combined is 4. It is not difficult to see that the algorithm does not increase the initial DoF, and thus the final object represented by the MEFS also has DoF 4. Next, let us consider a simple example shown in Fig. 2(a) with the following three cases: Case 1. Suppose that Finitial = {(e, f,g, h) , (e, f,b, a)}, Vinitial = {e, f,g, h, b, a}, and th{e( algorithm a(de,dfs tbh,ea f}a,c Ves into Ffixed ,ing thh,isb aor}d,e ar:n (f th,e g, c, obr)i →m (a, b, c, d) → (e, h, d, a) →i ( tgh, hs, odr, dce)r. T (fhe,gn tch,eb )fin →al object ,fod)und → by t,hhe, algorithm (isg thh,ed c,uc)b.e. Note that the algorithm does not add any triangular faces into Ffixed because they do not satisfy the condition in step 3. Case 2. If Finitial = {(b, i,a) , (b, i,c)}, then the final object found is the pyramid, abn,id, tah)e, algorithm hdoenes t nhoet f iandadl any rectangular faces except (a, b, c, d) into Ffixed. Case 3. If Finitial = {(b, a, i) , (e, f,b, a)}, the algorithm cannot find any othe=r f a{(cebs,a at,oi a)d,(de ,tof Ffixed. tThheus al, gito rfaitihlsto find the cube or pyramid. Algorithm 1 Face extending procedure Initialization: F, F, Initialization: Funfixed = F \ Finitial , Ffixed = Finitial , Vfixed = Vinitial, Vunfixed = FV \ \ FVinitial. 1. do the following steps until no face satisfies the condition in step 3; 2. Find a face f ∈ Funfixed that satisfies 3. the number ofnon-collinear vertices in V er(f) ∩Vfixed is more than 2; 4. Add face f into Ffixed and delete it from Funfixed; 5. For each vertex v ∈ V er(f), if v ∈ Vunfixed, add v into Vfixed and delete it from Vunfixed; Return The final Ffixed. Fig.5(a)Ac(oam)plexinedrawingofn (-bm)anifolds id.(b)The decomposition result by our algorithm. In case 3, the object represented by the MEFS has only two initial faces and this object is discarded. In order not to miss a primitive solid, we run Algorithm 1 multiple times each with a different pair of neighboring faces in Finitial. Then, we can always have Finitial with its two faces from one primitive solid. For the object in Fig. 2(a), we can always find the cube and the pyramid. Note that the same primitive solid may be found multiple times from different Finitial, and finally we keep only one copy of each different object (cube and pyramid in this example). When a complex solid is formed by more than two primitive solids, Algorithm 1 can still be used to find the primitive solids, which is the decomposition result of the complex line drawing. More complex examples are given in Section 3. Besides, Algorithm 1 can also deal with complex solids formed by gluing primitive solids between edges and vertices. Fig. 5(a) is a solid constructed by gluing eight primitive solids between faces, edges, and vertices. Running Algorithm 1multiple times with different pairs of neighboring faces in Finitial generates the primitive solids as shown in Fig. 5(b). 2.2. Decomposing line drawings of general objects A general object can be a manifold, non-manifold solid, or non-solid. Given a line drawing representing a general object, it is unknown whether this object consists of only primitive solids. However, we can always apply Algorithm 1to the line drawing multiple times, each with a 1436 Obj6(4)O b j 15( 94)(ca)O b j 24(9 7)Obj3(7)(bd) Fig. 6. Illustration of our decomposition method. (a) A line drawing. (b) The set of MEFSs from (a). (c) The weighted objectcoexistence graph where the maximum weight clique is shown in bold. (d) The decomposition of (a). different pair of neighboring faces in Finitial, generating a set SMEFS of MEFSs (recall that an MEFS with only two initial neighboring faces is discarded). In what follows, we also call an MEFS an object, which is represented by the MEFS. Note that an MEFS generated from a general line drawing may not be a primitive solid, but its DoF must be 4. Objects of DoF 4 have relatively simple structures and are easy to be reconstructed. A number of decomposition examples of complex general line drawings can be seen from the experimental section. One issue existing in this decomposition method is that two different MEFSs may share many faces. For example, from the line drawing in Fig. 6(a), all different MEFSs found by running Algorithm 1multiple times are shown in Fig. 6(b), where Obj 1and Obj 5 share four faces, and so do Obj 2 and Obj 6. Obviously, Obj 5 and Obj 6 are not necessary. Next we define object coexistence and a rule to choose objects. Definition 4. Two objects are called coexistent if they share no face or share only coplanar faces. Rule 1. Choose a subset of SMEFS such that in the subset, all the objects are coexistent and the number of total faces is maximized. From Definition 4, Obj 1 and Obj 5 are not coexistent in Fig. 6, and Obj 2 and Obj 6 are not either. If Obj 5 and Obj 6 are kept with Obj 1and Obj 2 discarded, many faces in the original object will be missing. Rule 1guarantees that Obj 1and Obj 2 are kept but not Obj 5 and Obj 6. Algorithm 2 Decomposition of a general line drawing Algorithm 2 Decomposition of a general line drawing Input: A Line Drawing: G = (V,E,F). Initialization: SMEFS = ∅, SMWC = ∅. 1. for each pair of neighboring faces {fa , fb} in F do 2. Call Algorithm 1with Finitial = {fa , fb} and Vinitial = V er(fa) ∪ V er(fb); 3. if the returned Ffixed from Algorithm 1contains more than two faces do 4. SMEFS ← Ffixed; 5. Construct the object-coexistence graph Gobj with SMEFS ; 6. SMWC ← the maximum weight clique found from Gobj ; 7. for each face f not contained in SMWC do 8. Attach f to the object in SMWC that contains the maximum number of the vertices of f; Return SMWC. Fig.7 (a)Ashe tobjec(ta)with23faces.(b)Decompositon(br)esult by Algorithm 2 with the modification in Algorithm 1. We formulate Rule 1 as a maximum weight clique problem (MWCP), which is to find a clique2 of the maximum weight from a weighted graph. First, we construct a weighted graph, called the object-coexistence graph, in which a vertex denotes an object in SMEFS and there is an edge connecting two vertices if the two objects represented by the two vertices are coexistent. Besides, each vertex is assigned a weight equal to the number of the faces of the corresponding object. The MWCP is a well-known NP-hard problem. In our application, however, solving this problem is fast enough since an object-coexistence graph usually has less than 20 objects (vertices). We use the algorithm in [12] to deal with this problem. Fig. 6(c) is the object-coexistence graph constructed from the six objects in Fig. 6(b), where the weights of the vertices are denoted by the numbers in the parentheses. The maximum weight clique is shown in bold. From Fig. 6, we see that the face (14, 13, 26, 25) is not contained in SWMC, which is used to store the objects in the maximum weight clique. This face is finally attached to Obj 3. In general, each of the faces not in SWMC is attached to an object that contains the maximum number of the vertices of this face. If there are two or more objects that contain the same number of the vertices of this face, this face is assigned to any of them. 2A clique is a subgraph of a graph such that subgraph are connected by an edge. every two vertices in the 1437 Algorithm 2 shows the complete algorithm to decompose a general line drawing. Steps 7 and 8 attach the faces not in SMWC to some objects in SMWC. A common complex object usually consists of primitive solids and sheets, and Algorithm 2 works well for the decomposition of most complex line drawings. However, there are still some line drawings the algorithm cannot deal with. Such an example is shown in Fig. 7(a) which is a sheet object with 23 faces. In Algorithm 1, with any pair of initial neighboring faces, there is no any other face satisfying the condition in step 3, thus no object of DoF 4 will be found. The following scheme can solve this problem. Given a line drawing, steps 1–6 in Algorithm 2 are used to decompose it into multiple objects of DoF 4. If there are separate groups of faces not in SMWC, where the faces in each group are connected, then attach the groups each with less than four faces to some objects in SMWC3 (the attachment method is similar to steps 7 and 8 in Algorithm 2). For a group with four or more connected faces, Algorithm 2 is applied to it with a minor modification in Algorithm 1. The modification is to set Finitial to contain three connected faces whose combined DoF is 5. This modification allows the search of objects of DoF 5. Suppose the object in Fig. 7(a) is such a group. Applying Algorithm 2 to it with the minor modification generates the decomposition result as shown in Fig. 7(b). 2.3. 3D Reconstruction A complex line drawing can be decomposed into several simpler ones using the method proposed in Sections 2. 1 and 2.2. The next step is to reconstruct a 3D object from each ofthem, which is an easy task because the decomposed line drawings are simple. The method in [6] or [7] can carry out this task very well. We use the one in [6] for our work with the objective function Φ(z1 , z2 , ..., zNv ) constructed by these five image regularities: MSDA, face planarity, line parallelism, isometry, and corner orthogonality. The details of the regularities can be found from [6]. After obtaining the 3D objects from all the decomposed line drawings, the next step is to merge them to form one complex object. When merging two 3D objects, since they are reconstructed separately, the gluing parts (face or edge) of them are usually not of the same size. Then one object is automatically rescaled according to the sizes of the two gluing parts, and the vertices of the gluing part of this object are also adjusted so that the two parts are the same. After merging all the 3D objects, the whole object is fine-tuned by minimizing the objective function Φ on the object. We can also apply our method to reconstruct 3D shapes from objects in images. First, the user draws a line drawing along the visible edges of an object and he/she can also 3The reason to attach a group with less than four faces to an object in SMWC is that this group is small and is not necessary to be an independent object to reconstruct. guess (draw) the hidden edges. Then from this line drawing, our approach described above reconstructs the 3D geometry of the object in the image. 3. Experimental Results In this section, we show a number of complex 3D reconstruction examples from both line drawings and images to demonstrate the performance of our approach. The first set of experiments in Fig. 8 has nine complex line drawings. Fig. 8(a) is a manifold, and the others are nonmanifold solids or non-solids. The decompositions of the line drawings are also given in the figure, from which we can see that the results are in accordance with our visual perception very well. All the primitive solids are found by our algorithm. It is the successful decompositions that make the 3D reconstructions from these complex line drawings possible. The expected satisfactory reconstruction results are shown also in Fig. 8 each in two views. Fig. 9 shows another set of 3D reconstructions from objects in images with line drawings drawn on the objects. The decomposition results are omitted due to the space limitation. Each reconstruction result obtained by our algorithm is shown in two views with the texture from the image mapped onto the surface. We can see that the results are very good. The details of the objects and the line drawings can be shown by enlarging the figures on the screen. Among all the previous algorithms for general object reconstruction, the one in [7] can deal with most complex objects. Due to the local minimum problem in a high dimensional search space, however, this algorithm cannot handle line drawings as complex as those in Figs. 8 and 9. For example, Fig. 10(a) shows its reconstruction result from the line drawing in Fig. 8(c), which is a failure. The reader may wonder what happens if the 3D reconstruction is based on an arbitrary decomposition of a complex line drawing, instead of the proposed one. Fig. 10(b) shows such a decomposition from Fig. 8(c). Based on this decomposition, the 3D reconstruction result obtained by the scheme described in Section 2.3 is given in Fig. 10(c), which is a failure. The failure is caused by two reasons: (i) An arbitrary decomposition usually does not generate common objects, which makes the image regularities less meaningful for the 3D reconstruction. (ii) The gluing of 3D objects from the decomposition in Fig. 10(b) is difficult because of the irregular touches between the objects. The fine-tuning processing (see Section 2.3) cannot reduce the large distortion to an acceptable result. Note that since our algorithm is not limited to manifolds, it can deal with line drawings with some or without hidden lines. The third line drawing in Fig. 9 is an example where some hidden lines are not drawn. Most of the line drawings in this paper look tidy. This 1438 (g)(h)(i) Fig. 8. Nine complex line drawings, their decompositons, and 3D reconstruction results in two views wher dif er nt col rs are used to denote the faces (better viewed on the screen). Fig.9 Fourimages,thecorespondi glinedrawings,andther constructed3Dobjectswith exturemap ed,eachs owni twoviews. The details can be seen by enlarging the figures on the screen. 1439 Fig.10(.a( ) Afailedreconstru(cb)tionbythealgorithm(ci)n[7].(b)An Fig.1 .(a ) Alinedrawingwith(bs)trongsketchingero(sc.)(b)(c) arbitrary decomposition of the line drawing in Fig. 8(c) without using our decomposition method. (c) Failed 3D reconstruction based on the decomposition in (b). Two views ofthe successful reconstruction result by our algorithm. is for easy observation of the objects. In fact, our algorithm is not sensitive to sketching errors. Take Fig. 8(a) as an example and assume it is an accurate projection of the 3D object. Then, random variations are generated with the Gaussian distribution N(0, σ2) on the 2D locations of the vertices. Fig. 11(a) is a resulting noisy line drawing with σ = W/200 where W is the width of the line drawing in Fig. 8(a). From Fig. 11, we see that even for this line drawing with strong sketching errors, our algorithm can still obtain the good reconstruction result. Our algorithm is implemented in C++. The computational time includes two parts: line drawing decomposition and 3D reconstruction. The main computation is consumed by the second part. On average, a common PC takes about one minute to obtain the reconstruction from each of the line drawings in Figs. 8 and 9. 4. Conclusion Previous algorithms of 3D object reconstruction from line drawings either deal with simple general objects or are limited to only manifolds (a subset of solids). In this paper, we have proposed a novel approach that can handle complex general objects, including manifolds, nonmanifold solids, and non-solids. It decomposes a complex line drawing into simpler ones according to the degree of freedom of objects, which is based on the developed 3D object properties. After 3D objects are reconstructed from the decomposed line drawings, they are merged to form a complex object. We have shown a number of reconstruction examples with comparison to the best previous algorithm. The results indicate that our algorithm can tackle much more complex line drawings of general objects and is insensitive to sketching errors. The future work includes (i) the correction of the distortions of 3D objects reconstructed from images caused by the perspective projection, and (ii) the extension of this work to objects with curved faces. Acknowledgements This work was supported by grants from Natural Science Foundation of China (No. try, Trade, and Information Shenzhen Municipality, and Guangdong Science, Technology Commission China (No. Innovative 201001D0104648280). 61070148), Indusof JC201005270378A), Research Team Program (No. Jianzhuang Liu is the correspond- ing author. References [1] M. Clowes. On seeing things. Artificial Intelligence, 2:79–1 16, 1971. [2] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. Proc. ACM SIGGRAPH, pages 11–20, 1996. [3] D. Jelinek and C. Taylor. Reconstruction of linearly parameterized models from single images with a camera of unknown focal length. IEEE T-PAMI, 23(7):767–773, 2001. [4] D. E. LaCourse. Handbook of Solid Modeling. McGraw-Hill, 1995. [5] Y. Leclerc and M. Fischler. An optimization-based approach to the interpretation of single line drawings as 3D wire frames. IJCV, 9(2): 113–136, 1992. [6] H. Lipson and M. Shpitalni. Optimization-based reconstruction of a 3d object from a single freehand line drawing. Computer-Aided Design, 28(7):651–663, 1996. [7] J. Liu, L. Cao, Z. Li, and X. Tang. Plane-based optimization for 3D object reconstruction from single line drawings. IEEE T-PAMI, 30(2):315–327, 2008. [8] J. Liu, Y. Chen, and X. Tang. Decomposition of complex line drawings with hidden lines for 3d planar-faced manifold object [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] reconstruction. IEEE T-PAMI, 33(1):3–15, 2011. J. Liu, Y. Lee, and W. Cham. Identifying faces in a 2D line drawing representing a manifold object. IEEE T-PAMI, 24(12): 1579–1593, 2002. J. Liu and X. Tang. Evolutionary search for faces from line drawings. IEEE T-PAMI, 27(6):861–872, 2005. T. Marill. Emulating the human interpretation of line-drawings as three-dimensional objects. IJCV, 6(2): 147–161, 1991 . P. R. J. O¨sterg a˚rd. A new algorithm for the maximum-weight clique problem. Nordic J. of Computing, 8(4):424–436, Dec. 2001 . H. Shimodaira. A shape-from-shading method of polyhedral objects using prior information. IEEE T-PAMI, 28(4):612–624, 2006. I. Shimshoni and J. Ponce. Recovering the shape of polyhedra using line-drawing analysis and complex reflectance models. Computer Vision and Image Understanding, 65(2):296–3 10, 1997. K. Shoji, K. Kato, and F. Toyama. 3-d interpretation of single line drawings based on entropy minimization principle. CVPR, 2001. M. Shpitalni and H. Lipson. Identification of faces in a 2d line drawing projection of a wireframe object. IEEE T-PAMI, 18(10), 1996. K. Sugihara. Machine interpretation of line drawings. MIT Press, 1986. A. Turner, D. Chapman, and A. Penn. Sketching space. Computer and Graphics, 24:869–879, 2000. F. Ulupinar and R. Nevatia. Shape from contour: straight homogeneous generalized cylinders and constant cross-section generalized cylinders. IEEE T-PAMI, 17(2): 120–135, 1995. T. Xue, J. Liu, and X. Tang. Example-based 3d object reconstruction from line drawings. CVPR, 2012. 1440

Reference: text


Summary: the most important sentenses genereted by tfidf model

sentIndex sentText sentNum sentScore

1 Through developing some 3D object properties, we use the degree of freedom of objects to decompose a complex line drawing into multiple simpler line drawings that represent meaningful building blocks of a complex object. [sent-9, score-1.676]

2 After 3D objects are reconstructed from the decomposed line drawings, they are merged to form a complex object from their touching faces, edges, and vertices. [sent-10, score-0.472]

3 Our experiments show a number of reconstruction examples from both complex line drawings and images with line drawings superimposed. [sent-11, score-1.616]

4 Comparisons are also given to indicate that our algorithm can deal with much more complex line drawings of general objects than previous algorithms. [sent-12, score-0.909]

5 Introduction and Related Work A 2D line drawing is the most straightforward way of illustrating a 3D object. [sent-14, score-0.61]

6 Given a line drawing representing a 3D object, our visual system can understand the 3D structure easily. [sent-15, score-0.61]

7 For example, we can interpret without difficulty the line drawing shown in Fig. [sent-16, score-0.61]

8 Imitating this ability has been a longstanding and challenging topic in computer vision when a line drawing is as complex as this example. [sent-18, score-0.683]

9 In this paper, same as the majority of related work, a line drawing is defined as the orthogonal projection of the Fig. [sent-20, score-0.61]

10 A line drawing is represented by an edge-vertex graph. [sent-24, score-0.61]

11 Line labeling is the earliest work to interpret line drawings [1], [17]. [sent-26, score-0.723]

12 It searches for a set of consistent labels such as convex, concave, and occluding from a line drawing to test its correctness and/or realizability. [sent-27, score-0.61]

13 Recently, popular methods of 3D reconstruction from line drawings are optimization based, which are most related to our work and are reviewed next. [sent-31, score-0.82]

14 Most 3D reconstruction methods from a line drawing assume that the face topology of the line drawing is known in advance. [sent-37, score-1.398]

15 Algorithms have been developed to find faces from a line drawing in [16], [10], and [9], where [16] and [10] are for general objects and [9] for manifolds. [sent-39, score-0.878]

16 Later, other regularities are proposed to deal with more complex objects such as face planarity, line parallelism, isometry, and corner orthogonality [5], [6], [15], [18]. [sent-42, score-0.579]

17 , zNv , where Nv is the number of vertices in the line drawing, φi , i = 1, 2, . [sent-56, score-0.456]

18 The main problem in this approach is that these algorithms are easy to get trapped into local minima (obtaining failed results) when a line drawing is complex with many vertices, due to the search in a highdimensional space (Nv dimensions) with the non-convex objective function. [sent-63, score-0.703]

19 But these algorithms cannot avoid the local minimum problem in a high dimensional search space when a line drawing is complex. [sent-71, score-0.61]

20 It first separates a complex line drawing into multiple simpler ones, then independently recovers the 3D objects from these line drawings, and finally merges them to form a complete object. [sent-73, score-1.045]

21 Since the separated line drawings are much simpler than the original one, the 3D reconstruction from each of them is an easy task. [sent-74, score-0.866]

22 Based on known faces found by the face identification algorithm in [9], it uses manifold properties to find internal faces Fig. [sent-76, score-0.578]

23 from a line drawing and then separates the line drawing from the internal faces. [sent-85, score-1.279]

24 The D&C; first finds the internal face (a, b, c, d) and then decomposes the line drawing from this internal face (Fig. [sent-90, score-0.858]

25 In this paper, we propose a novel approach to 3D reconstruction of complex general objects based on visual perception, object properties, and new line drawing decomposition. [sent-99, score-0.888]

26 Compared with previous methods, ours can deal with much more complex line drawings of general objects. [sent-100, score-0.857]

27 It can handle not only manifolds but also non-manifold solids and non-solids, and is insensitive to sketching errors. [sent-101, score-0.529]

28 General Object Reconstruction We also use the D&C; strategy to deal with 3D reconstruction from a line drawing representing a complex general object. [sent-103, score-0.841]

29 The key is how to decompose a complex line drawing of any objects into multiple simpler line drawings. [sent-104, score-1.066]

30 Before the decomposition of a line drawing, we assume that all the real and internal faces of the object have been obtained from the line drawing using a face identification algorithm. [sent-106, score-1.331]

31 For example, the algorithm in [10] finds 10 faces from the line drawing in Fig. [sent-107, score-0.801]

32 2(a) (including the internal face), and obtains 12 and 7 faces from the line drawings in Figs. [sent-108, score-0.957]

33 Decomposing line drawings of solids In this subsection, we consider the line drawings of solids first. [sent-112, score-2.222]

34 The decomposition method will be extended to the line drawings of general objects in the next subsection. [sent-113, score-0.89]

35 Our target is to decompose a complex solid into multiple primitive solids. [sent-118, score-0.466]

36 The degree of freedom (DoF) of a 3D solid represented by a line drawing is the minimal number of zcoordinates that can uniquely determine this 3D solid. [sent-121, score-0.834]

37 From these analysis, we can have the intuition that solids with DoF 4 serve as the building blocks of more complex solids whose DoFs are more than 4. [sent-140, score-0.849]

38 (c) Part of a line drawing with each vertex of degree 3. [sent-146, score-0.744]

39 A 3D solid represented by a line drawing is called a primitive solid if its DoF is 4. [sent-153, score-1.126]

40 If every vertex of a 3D solid represented by a line drawing has degree 31, then it is a primitive solid. [sent-155, score-1.1]

41 Let part of such a line drawing be the one as shown in Fig. [sent-157, score-0.61]

42 At each vertex, every two of the three edges form a face, because a solid is bounded by faces without dangling faces and edges. [sent-159, score-0.567]

43 Similarly, the 3D coordinates of vertices e and f connected to d and the 3D coordinates of vertices i and j connected to c can be obtained. [sent-165, score-0.488]

44 The DoF of a solid is 5 which is obtained by gluing two faces of two primitive solids. [sent-170, score-0.719]

45 Let the two primitive solids be PS1 and PS2 and their corresponding gluing faces be f1and f2, respectively. [sent-172, score-0.963]

46 2 is a typical example of two primitive solids gluing together along faces. [sent-179, score-0.772]

47 3(a) is an example of two primitive solids gluing together along edges. [sent-181, score-0.772]

48 Two primitive solids may also connect at one vertex. [sent-182, score-0.6]

49 The DoF of a solid is 6 which is obtained by gluing two edges of two primitive solids. [sent-186, score-0.553]

50 The DoF of a solid is 7 which is obtained by gluing two vertices oftwoprimitive solids. [sent-187, score-0.504]

51 From the above properties, we can see that primitive solids are indeed the “smallest” solids in terms of DoF and they can serve as the building blocks to construct more complex solids. [sent-188, score-1.061]

52 Therefore, our next target is to decompose a line drawing representing a complex solid into multiple line drawings representing primitive solids. [sent-189, score-1.799]

53 Let the vertex set and the face set of a line drawing be V = {v1, v2 , . [sent-202, score-0.798]

54 Suppose that an initial set of two fixed neighboring faces sharing an edge is Finitial with all their fixed vertices in Vinitial. [sent-210, score-0.441]

55 When a complex solid is formed by more than two primitive solids, Algorithm 1 can still be used to find the primitive solids, which is the decomposition result of the complex line drawing. [sent-243, score-1.072]

56 Besides, Algorithm 1 can also deal with complex solids formed by gluing primitive solids between edges and vertices. [sent-245, score-1.294]

57 5(a) is a solid constructed by gluing eight primitive solids between faces, edges, and vertices. [sent-247, score-0.916]

58 Running Algorithm 1multiple times with different pairs of neighboring faces in Finitial generates the primitive solids as shown in Fig. [sent-248, score-0.817]

59 Decomposing line drawings of general objects A general object can be a manifold, non-manifold solid, or non-solid. [sent-252, score-0.856]

60 Given a line drawing representing a general object, it is unknown whether this object consists of only primitive solids. [sent-253, score-0.878]

61 However, we can always apply Algorithm 1to the line drawing multiple times, each with a 1436 Obj6(4)O b j 15( 94)(ca)O b j 24(9 7)Obj3(7)(bd) Fig. [sent-254, score-0.61]

62 different pair of neighboring faces in Finitial, generating a set SMEFS of MEFSs (recall that an MEFS with only two initial neighboring faces is discarded). [sent-261, score-0.434]

63 Note that an MEFS generated from a general line drawing may not be a primitive solid, but its DoF must be 4. [sent-263, score-0.847]

64 A number of decomposition examples of complex general line drawings can be seen from the experimental section. [sent-265, score-0.911]

65 Algorithm 2 Decomposition of a general line drawing Algorithm 2 Decomposition of a general line drawing Input: A Line Drawing: G = (V,E,F). [sent-280, score-1.27]

66 First, we construct a weighted graph, called the object-coexistence graph, in which a vertex denotes an object in SMEFS and there is an edge connecting two vertices if the two objects represented by the two vertices are coexistent. [sent-295, score-0.582]

67 every two vertices in the 1437 Algorithm 2 shows the complete algorithm to decompose a general line drawing. [sent-310, score-0.518]

68 A common complex object usually consists of primitive solids and sheets, and Algorithm 2 works well for the decomposition of most complex line drawings. [sent-312, score-1.135]

69 However, there are still some line drawings the algorithm cannot deal with. [sent-313, score-0.759]

70 If there are separate groups of faces not in SMWC, where the faces in each group are connected, then attach the groups each with less than four faces to some objects in SMWC3 (the attachment method is similar to steps 7 and 8 in Algorithm 2). [sent-319, score-0.683]

71 3D Reconstruction A complex line drawing can be decomposed into several simpler ones using the method proposed in Sections 2. [sent-329, score-0.739]

72 The next step is to reconstruct a 3D object from each ofthem, which is an easy task because the decomposed line drawings are simple. [sent-332, score-0.822]

73 Then one object is automatically rescaled according to the sizes of the two gluing parts, and the vertices of the gluing part of this object are also adjusted so that the two parts are the same. [sent-341, score-0.594]

74 First, the user draws a line drawing along the visible edges of an object and he/she can also 3The reason to attach a group with less than four faces to an object in SMWC is that this group is small and is not necessary to be an independent object to reconstruct. [sent-344, score-0.993]

75 Experimental Results In this section, we show a number of complex 3D reconstruction examples from both line drawings and images to demonstrate the performance of our approach. [sent-348, score-0.893]

76 The decompositions of the line drawings are also given in the figure, from which we can see that the results are in accordance with our visual perception very well. [sent-353, score-0.779]

77 All the primitive solids are found by our algorithm. [sent-354, score-0.6]

78 It is the successful decompositions that make the 3D reconstructions from these complex line drawings possible. [sent-355, score-0.813]

79 9 shows another set of 3D reconstructions from objects in images with line drawings drawn on the objects. [sent-359, score-0.775]

80 The details of the objects and the line drawings can be shown by enlarging the figures on the screen. [sent-363, score-0.796]

81 Due to the local minimum problem in a high dimensional search space, however, this algorithm cannot handle line drawings as complex as those in Figs. [sent-365, score-0.796]

82 10(a) shows its reconstruction result from the line drawing in Fig. [sent-368, score-0.707]

83 The reader may wonder what happens if the 3D reconstruction is based on an arbitrary decomposition of a complex line drawing, instead of the proposed one. [sent-370, score-0.528]

84 Note that since our algorithm is not limited to manifolds, it can deal with line drawings with some or without hidden lines. [sent-382, score-0.779]

85 Most of the line drawings in this paper look tidy. [sent-385, score-0.723]

86 Nine complex line drawings, their decompositons, and 3D reconstruction results in two views wher dif er nt col rs are used to denote the faces (better viewed on the screen). [sent-388, score-0.651]

87 )(b)(c) arbitrary decomposition of the line drawing in Fig. [sent-398, score-0.7]

88 11(a) is a resulting noisy line drawing with σ = W/200 where W is the width of the line drawing in Fig. [sent-408, score-1.22]

89 11, we see that even for this line drawing with strong sketching errors, our algorithm can still obtain the good reconstruction result. [sent-411, score-0.766]

90 The computational time includes two parts: line drawing decomposition and 3D reconstruction. [sent-413, score-0.7]

91 On average, a common PC takes about one minute to obtain the reconstruction from each of the line drawings in Figs. [sent-415, score-0.82]

92 Conclusion Previous algorithms of 3D object reconstruction from line drawings either deal with simple general objects or are limited to only manifolds (a subset of solids). [sent-418, score-1.046]

93 It decomposes a complex line drawing into simpler ones according to the degree of freedom of objects, which is based on the developed 3D object properties. [sent-420, score-0.791]

94 After 3D objects are reconstructed from the decomposed line drawings, they are merged to form a complex object. [sent-421, score-0.441]

95 The results indicate that our algorithm can tackle much more complex line drawings of general objects and is insensitive to sketching errors. [sent-423, score-0.932]

96 An optimization-based approach to the interpretation of single line drawings as 3D wire frames. [sent-454, score-0.744]

97 Decomposition of complex line drawings with hidden lines for 3d planar-faced manifold object [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] reconstruction. [sent-472, score-0.902]

98 Identifying faces in a 2D line drawing representing a manifold object. [sent-478, score-0.856]

99 3-d interpretation of single line drawings based on entropy minimization principle. [sent-510, score-0.744]

100 Identification of faces in a 2d line drawing projection of a wireframe object. [sent-515, score-0.801]


similar papers computed by tfidf model

tfidf for this paper:

wordName wordTfidf (topN-words)

[('drawings', 0.455), ('solids', 0.388), ('drawing', 0.342), ('line', 0.268), ('primitive', 0.212), ('faces', 0.191), ('vertices', 0.188), ('obj', 0.186), ('finitial', 0.172), ('gluing', 0.172), ('dof', 0.164), ('solid', 0.144), ('ffixed', 0.115), ('vertex', 0.107), ('smwc', 0.101), ('reconstruction', 0.097), ('decomposition', 0.09), ('mefs', 0.086), ('smefs', 0.086), ('unfixed', 0.086), ('manifolds', 0.082), ('face', 0.081), ('complex', 0.073), ('regularities', 0.069), ('sketching', 0.059), ('funfixed', 0.057), ('mefss', 0.057), ('vfixed', 0.057), ('vunfixed', 0.057), ('cube', 0.056), ('manifold', 0.055), ('objects', 0.052), ('fb', 0.045), ('clique', 0.044), ('coexistent', 0.043), ('vinitial', 0.043), ('internal', 0.043), ('attach', 0.042), ('dofs', 0.038), ('decompose', 0.037), ('deal', 0.036), ('modification', 0.034), ('connected', 0.031), ('object', 0.031), ('sheet', 0.03), ('decomposed', 0.03), ('gobj', 0.029), ('msda', 0.029), ('mwcp', 0.029), ('nonmanifold', 0.029), ('swmc', 0.029), ('zcoordinates', 0.029), ('fa', 0.029), ('degree', 0.027), ('simpler', 0.026), ('neighboring', 0.026), ('coordinates', 0.025), ('jianzhuang', 0.025), ('znv', 0.025), ('edges', 0.025), ('general', 0.025), ('freedom', 0.024), ('suppose', 0.024), ('definition', 0.023), ('screen', 0.023), ('coplanar', 0.022), ('parallelism', 0.022), ('er', 0.022), ('determined', 0.022), ('perception', 0.022), ('rule', 0.022), ('property', 0.021), ('enlarging', 0.021), ('shenzhen', 0.021), ('interpretation', 0.021), ('passing', 0.021), ('easy', 0.02), ('hidden', 0.02), ('delete', 0.02), ('planarity', 0.02), ('nine', 0.019), ('touches', 0.019), ('isometry', 0.018), ('fixed', 0.018), ('reconstruct', 0.018), ('china', 0.018), ('touch', 0.018), ('reconstructed', 0.018), ('subgraph', 0.017), ('accordance', 0.017), ('identification', 0.017), ('decompositions', 0.017), ('four', 0.016), ('bounded', 0.016), ('draws', 0.016), ('separates', 0.016), ('discarded', 0.016), ('planar', 0.016), ('called', 0.016), ('condition', 0.015)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 1.0000002 84 iccv-2013-Complex 3D General Object Reconstruction from Line Drawings

Author: Linjie Yang, Jianzhuang Liu, Xiaoou Tang

Abstract: An important topic in computer vision is 3D object reconstruction from line drawings. Previous algorithms either deal with simple general objects or are limited to only manifolds (a subset of solids). In this paper, we propose a novel approach to 3D reconstruction of complex general objects, including manifolds, non-manifold solids, and non-solids. Through developing some 3D object properties, we use the degree of freedom of objects to decompose a complex line drawing into multiple simpler line drawings that represent meaningful building blocks of a complex object. After 3D objects are reconstructed from the decomposed line drawings, they are merged to form a complex object from their touching faces, edges, and vertices. Our experiments show a number of reconstruction examples from both complex line drawings and images with line drawings superimposed. Comparisons are also given to indicate that our algorithm can deal with much more complex line drawings of general objects than previous algorithms. 1. Introduction and Related Work A 2D line drawing is the most straightforward way of illustrating a 3D object. Given a line drawing representing a 3D object, our visual system can understand the 3D structure easily. For example, we can interpret without difficulty the line drawing shown in Fig. 1(a) as a castle with four walls and one door. Imitating this ability has been a longstanding and challenging topic in computer vision when a line drawing is as complex as this example. The applications of this work include 3D object design in CAD and for 3D printers, 3D query generation for 3D object retrieval, and 3D modeling from images. In this paper, same as the majority of related work, a line drawing is defined as the orthogonal projection of the Fig.1 (a)Alinedrawing(rae)pres nti gac stle.(b)The3Dm(obd)el of the line drawing. edges and vertices of a 3D object in a generic view, and objects with planar surfaces are considered. A line drawing is represented by an edge-vertex graph. It can be obtained by the user/designer who draws on the screen with a tablet pen, a mouse, or a finger (on a touch sensitive screen), with all, with some, or without hidden edges and vertices. Line labeling is the earliest work to interpret line drawings [1], [17]. It searches for a set of consistent labels such as convex, concave, and occluding from a line drawing to test its correctness and/or realizability. Line labeling itself cannot recover 3D shape from a line drawing. Later, 3D reconstruction from the contours (line drawings) of objects in images is studied [19], [14], [13], which handles simple objects only. Model-based 3D reconstruction [2], [3], [20] can deal with more complex objects, but these methods require to pre-define a set of parametric models. Recently, popular methods of 3D reconstruction from line drawings are optimization based, which are most related to our work and are reviewed next. These methods can be classified into two categories: one dealing with manifolds and the other dealing with general objects. A general object can be a manifold, non-manifold solid, or non-solid. Manifolds are a subset of solids, defined as follows: A manifold, or more rigorously 2D manifold, is a solid where every point on its surface has a neighborhood topologically equivalent to an open diskin the 2D Euclidean space. 1433 In this paper, a solid is a portion of 3D space bounded by planar faces, and a manifold is also bounded by planar faces. Each edge of such manifolds is shared exactly by two faces [4]. Most 3D reconstruction methods from a line drawing assume that the face topology of the line drawing is known in advance. This information can reduce the reconstruction complexity greatly. Algorithms have been developed to find faces from a line drawing in [16], [10], and [9], where [16] and [10] are for general objects and [9] for manifolds. Optimization-based 3D reconstruction depends on some critera (also called image regularities) that simulate our visual perception. Marill proposes a very simple but effective criterion to reconstruct a simple object: minimizing the standard deviation of the angles (MSDA) in the object [11]. Later, other regularities are proposed to deal with more complex objects such as face planarity, line parallelism, isometry, and corner orthogonality [5], [6], [15], [18]. In these methods, an objective function ?C Φ(z1,z2, ...,zNv) = ?ωiφi(z1,z2, ...,zNv) (1) i?= ?1 is minimized to derive the depths z1, z2 , ..., zNv , where Nv is the number of vertices in the line drawing, φi , i = 1, 2, ..., C, are the regularities, and ωi , i = 1, 2, ..., C, are the weights. The main problem in this approach is that these algorithms are easy to get trapped into local minima (obtaining failed results) when a line drawing is complex with many vertices, due to the search in a highdimensional space (Nv dimensions) with the non-convex objective function. For example, the search space is of 56 dimensions for the object in Fig. 1(a). To alleviate this problem, Liu et al. formulate 3D reconstruction in a lower dimensional space so that the optimization procedure has a better chance to find desired results [7]. For the complex object in Fig. 1(a), however, the search in a space with 18 dimensions is still too difficult for it to obtain a satisfactory 3D object (see Section 3). The methods in [5], [6], [15], [18], and [7] reconstruct general objects, and the one in [7] can deal with more complex objects than the other four. But these algorithms cannot avoid the local minimum problem in a high dimensional search space when a line drawing is complex. In [8], a divide-and-conquer (D&C;) strategy is used to tackle this problem. It first separates a complex line drawing into multiple simpler ones, then independently recovers the 3D objects from these line drawings, and finally merges them to form a complete object. Since the separated line drawings are much simpler than the original one, the 3D reconstruction from each of them is an easy task. This D&C; approach handles manifolds only. Based on known faces found by the face identification algorithm in [9], it uses manifold properties to find internal faces Fig.2(a)Asimaeplhdmiafnbo(ldagc)withnae'fahdc'eisfba'nd(obgcn)'eitrnalfce (a, b, c, d). (b) Decomposition result from the internal face. (a) (b) (c) (d) Fig. 3. (a) A non-manifold solid. (b) Expected decomposition of (a). (c) A sheet object. (d) Expected decomposition of (c). from a line drawing and then separates the line drawing from the internal faces. An internal face is defined as an imaginary face lying inside a manifold with only its edges visible on the surface [8]. It is not a real face but can be considered as two coincident real faces of identical shape belonging to two manifolds. For example, Fig. 2(a) shows a manifold with nine faces. The D&C; first finds the internal face (a, b, c, d) and then decomposes the line drawing from this internal face (Fig. 2(b)). However, handling manifolds only limits the applica- tions of [8]. In many applications in computer vision and graphics such as 3D object matching, retrieval, and rendering, it is unnecessary to represent objects as manifolds, in order to facilitate data processing and reduce data storage. For example, a flat ground can be represented by a sheet (one face), but if it is represented by a manifold, a thin box with six faces has to be used. Fig. 1(a), Fig. 3(a), and Fig. 3(c) are line drawings of three non-manifolds. In this paper, we propose a novel approach to 3D reconstruction of complex general objects based on visual perception, object properties, and new line drawing decomposition. Compared with previous methods, ours can deal with much more complex line drawings of general objects. It can handle not only manifolds but also non-manifold solids and non-solids, and is insensitive to sketching errors. 2. General Object Reconstruction We also use the D&C; strategy to deal with 3D reconstruction from a line drawing representing a complex general object. The key is how to decompose a complex line drawing of any objects into multiple simpler line drawings. These decomposed line drawings should represent objects that are in accordance with our visual perception, which makes the 3D reconstruction from these line drawings easier and better because the regularities used to build an objective function for reconstruction follow human perception of 1434 common objects [11], [5], [6], [15], [18]. Before the decomposition of a line drawing, we assume that all the real and internal faces of the object have been obtained from the line drawing using a face identification algorithm. For example, the algorithm in [10] finds 10 faces from the line drawing in Fig. 2(a) (including the internal face), and obtains 12 and 7 faces from the line drawings in Figs. 3(a) and (c), respectively. 2.1. Decomposing line drawings of solids In this subsection, we consider the line drawings of solids first. The decomposition method will be extended to the line drawings of general objects in the next subsection. It is not difficult to see that in general, a complex object, especially a manmade complex object, can be considered as the combinations of multiple smaller objects. The most common combination is the touch of two faces from two different objects such as the one in Fig. 2. Other combinations are the touches among lines, faces, and vertices. Our target is to decompose a complex solid into multiple primitive solids. Before the definition of a primitive solid, we introduce a term called the degree of freedom of a solid. Definition 1. The degree of freedom (DoF) of a 3D solid represented by a line drawing is the minimal number of zcoordinates that can uniquely determine this 3D solid. This is the first time that the concept of DoF is used to decompose line drawings. Now let us consider a simple object in Fig. 4(a). The cube has six faces: (v1, v2 , v3 , v4), (v1, v2, v6, v5), (v1, v4, v8, v5), (v2 , v3, v7, v6), (v4, v3, v7, v8), and (v6, v7, v8, v5). We can show that the cube is determined if the z-coordinates of its four non-coplanar vertices are known. Without loss of generality, suppose z1, z2, z4, and z5 are known. Since the 3D coordinates of v1, v2, and v4 are fixed (remind that the x- and y-coordinates of all the vertices are known under the orthogonal projection), the 3D plane passing through the face (v1, v2 , v3, v4) is determined, and thus z3 can be calculated. Similarly, z6 and z8 can be obtained. Finally, z7 can be computed with the 3D coordinates of v3, v4, and v8 known, which determine the plane passing through the face (v4, v3, v7, v8). So the 3D cube can be determined by the known four z-coordinates, z1, z2, z4, and z5. Further, it can be verified that three 3D vertices cannot determine this object uniquely because they can only define one face in 3D space. Therefore, the DoF of the cube is 4. Similar analysis allows us to know that the solids in Fig. 2(b), Fig. 3(b), and Fig. 4(b) all have DoF 4, while the two solids in Fig. 2(a) and Fig. 3(a) have DoFs 5 and 6, respectively. From these analysis, we can have the intuition that solids with DoF 4 serve as the building blocks of more complex solids whose DoFs are more than 4. Besides, we have the following property: Property 1. There is no solid with DoF less than 4. Fv5(1iga).4v (26a)Av48cubev3w7hos(be)DoFis4.(b)Anedo(tch)fergBasbolifdAwhosfCeDocFji is also 4. (c) Part of a line drawing with each vertex of degree 3. This property is easy to verify. A solid with fewest faces is a tetrahedron. Every two of its four faces are not co-planar. Three 3D vertices of a tetrahedron can only determine one 3D face. Next, we define primitive solids. Definition 2. A 3D solid represented by a line drawing is called a primitive solid if its DoF is 4. Property 2. If every vertex of a 3D solid represented by a line drawing has degree 31, then it is a primitive solid. Proof. Let part of such a line drawing be the one as shown in Fig. 4(c). At each vertex, every two of the three edges form a face, because a solid is bounded by faces without dangling faces and edges. Let the three paths fA, fB, and fC in Fig. 4(c) denote the three faces at vertex a. Without loss of generality, suppose that the four zcoordinates (and thus the four 3D coordinates) of vertices a, b, c, and d are known. Then the three planes passing through fA, fB, and fC are determined in 3D space. With the two known 3D planes passing through fA and fB at vertex b, the 3D coordinates of vertices g and h connected to b can be computed. Similarly, the 3D coordinates of vertices e and f connected to d and the 3D coordinates of vertices i and j connected to c can be obtained. Furthermore, all the 3D coordinates of the other vertices connected to e, f, g, h, i, and j can be derived in the same way. This derivation can propagate to all the vertices of this solid. Therefore, the DoF of this solid is 4 and it is a primitive solid. Property 3. The DoF of a solid is 5 which is obtained by gluing two faces of two primitive solids. Proof. Let the two primitive solids be PS1 and PS2 and their corresponding gluing faces be f1and f2, respectively. The DoFs of PS1 and PS2 are both 4. Suppose that PS1 is determined in 3D space, which requires four z-coordinates. Then f1and f2 are also determined in 3D space. When the z-coordinates of three vertices on PS2 are known based on f2, one more z-coordinate of a vertex not coplanar with f2 on PS2 can determine PS2 in 3D space. Therefore, the DoF of the combined solid is 5. Fig. 2 is a typical example of two primitive solids gluing together along faces. Fig. 3(a) is an example of two primitive solids gluing together along edges. Two primitive solids may also connect at one vertex. The following property is easy to verify. 1The degree of a vertex is the number of edges connected to this vertex. 1435 Property 4. The DoF of a solid is 6 which is obtained by gluing two edges of two primitive solids. The DoF of a solid is 7 which is obtained by gluing two vertices oftwoprimitive solids. From the above properties, we can see that primitive solids are indeed the “smallest” solids in terms of DoF and they can serve as the building blocks to construct more complex solids. Therefore, our next target is to decompose a line drawing representing a complex solid into multiple line drawings representing primitive solids. Before giving Definition 3, we define some terms first. Vertex set of a face. The vertex set V er(f) of a face f is the set of all the vertices of f. Fixed vertex. A fixed vertex is one with its z-coordinate (thus its 3D coordinate) known. Unfixed vertex. An unfixed vertex is one with its zcoordinate unknown. Fixed face. A fixed face is one with its 3D position determined by its three fixed vertices. Unfixed face. An unfixed face is one with its 3D position undetermined. Definition 3. Let the vertex set and the face set of a line drawing be V = {v1, v2 , ..., vn} and F = {f1, f2 , ..., fm}, respectively, w =he {rve n and m are Fthe = n{fumbers of th}e, vertices and the faces, respectively. Also let Vfixed, Ffixed, Vunfixed, and Funfixed be the sets of fixed vertices, fixed faces, unfixed vertices, and unfixed faces, respectively. Suppose that an initial set of two fixed neighboring faces sharing an edge is Finitial with all their fixed vertices in Vinitial. The final Ffixed in Algorithm 1 is called the maximum extended face set (MEFS) from Finitial. In Algorithm 1, a face f that satisfies the condition in step 3 is a face that has been determined in 3D space by the current fixed vertices in Ffixed. When this face is found, it becomes a fixed face and all its vertices become fixed vertices. The DoF of the initial two fixed faces combined is 4. It is not difficult to see that the algorithm does not increase the initial DoF, and thus the final object represented by the MEFS also has DoF 4. Next, let us consider a simple example shown in Fig. 2(a) with the following three cases: Case 1. Suppose that Finitial = {(e, f,g, h) , (e, f,b, a)}, Vinitial = {e, f,g, h, b, a}, and th{e( algorithm a(de,dfs tbh,ea f}a,c Ves into Ffixed ,ing thh,isb aor}d,e ar:n (f th,e g, c, obr)i →m (a, b, c, d) → (e, h, d, a) →i ( tgh, hs, odr, dce)r. T (fhe,gn tch,eb )fin →al object ,fod)und → by t,hhe, algorithm (isg thh,ed c,uc)b.e. Note that the algorithm does not add any triangular faces into Ffixed because they do not satisfy the condition in step 3. Case 2. If Finitial = {(b, i,a) , (b, i,c)}, then the final object found is the pyramid, abn,id, tah)e, algorithm hdoenes t nhoet f iandadl any rectangular faces except (a, b, c, d) into Ffixed. Case 3. If Finitial = {(b, a, i) , (e, f,b, a)}, the algorithm cannot find any othe=r f a{(cebs,a at,oi a)d,(de ,tof Ffixed. tThheus al, gito rfaitihlsto find the cube or pyramid. Algorithm 1 Face extending procedure Initialization: F, F, Initialization: Funfixed = F \ Finitial , Ffixed = Finitial , Vfixed = Vinitial, Vunfixed = FV \ \ FVinitial. 1. do the following steps until no face satisfies the condition in step 3; 2. Find a face f ∈ Funfixed that satisfies 3. the number ofnon-collinear vertices in V er(f) ∩Vfixed is more than 2; 4. Add face f into Ffixed and delete it from Funfixed; 5. For each vertex v ∈ V er(f), if v ∈ Vunfixed, add v into Vfixed and delete it from Vunfixed; Return The final Ffixed. Fig.5(a)Ac(oam)plexinedrawingofn (-bm)anifolds id.(b)The decomposition result by our algorithm. In case 3, the object represented by the MEFS has only two initial faces and this object is discarded. In order not to miss a primitive solid, we run Algorithm 1 multiple times each with a different pair of neighboring faces in Finitial. Then, we can always have Finitial with its two faces from one primitive solid. For the object in Fig. 2(a), we can always find the cube and the pyramid. Note that the same primitive solid may be found multiple times from different Finitial, and finally we keep only one copy of each different object (cube and pyramid in this example). When a complex solid is formed by more than two primitive solids, Algorithm 1 can still be used to find the primitive solids, which is the decomposition result of the complex line drawing. More complex examples are given in Section 3. Besides, Algorithm 1 can also deal with complex solids formed by gluing primitive solids between edges and vertices. Fig. 5(a) is a solid constructed by gluing eight primitive solids between faces, edges, and vertices. Running Algorithm 1multiple times with different pairs of neighboring faces in Finitial generates the primitive solids as shown in Fig. 5(b). 2.2. Decomposing line drawings of general objects A general object can be a manifold, non-manifold solid, or non-solid. Given a line drawing representing a general object, it is unknown whether this object consists of only primitive solids. However, we can always apply Algorithm 1to the line drawing multiple times, each with a 1436 Obj6(4)O b j 15( 94)(ca)O b j 24(9 7)Obj3(7)(bd) Fig. 6. Illustration of our decomposition method. (a) A line drawing. (b) The set of MEFSs from (a). (c) The weighted objectcoexistence graph where the maximum weight clique is shown in bold. (d) The decomposition of (a). different pair of neighboring faces in Finitial, generating a set SMEFS of MEFSs (recall that an MEFS with only two initial neighboring faces is discarded). In what follows, we also call an MEFS an object, which is represented by the MEFS. Note that an MEFS generated from a general line drawing may not be a primitive solid, but its DoF must be 4. Objects of DoF 4 have relatively simple structures and are easy to be reconstructed. A number of decomposition examples of complex general line drawings can be seen from the experimental section. One issue existing in this decomposition method is that two different MEFSs may share many faces. For example, from the line drawing in Fig. 6(a), all different MEFSs found by running Algorithm 1multiple times are shown in Fig. 6(b), where Obj 1and Obj 5 share four faces, and so do Obj 2 and Obj 6. Obviously, Obj 5 and Obj 6 are not necessary. Next we define object coexistence and a rule to choose objects. Definition 4. Two objects are called coexistent if they share no face or share only coplanar faces. Rule 1. Choose a subset of SMEFS such that in the subset, all the objects are coexistent and the number of total faces is maximized. From Definition 4, Obj 1 and Obj 5 are not coexistent in Fig. 6, and Obj 2 and Obj 6 are not either. If Obj 5 and Obj 6 are kept with Obj 1and Obj 2 discarded, many faces in the original object will be missing. Rule 1guarantees that Obj 1and Obj 2 are kept but not Obj 5 and Obj 6. Algorithm 2 Decomposition of a general line drawing Algorithm 2 Decomposition of a general line drawing Input: A Line Drawing: G = (V,E,F). Initialization: SMEFS = ∅, SMWC = ∅. 1. for each pair of neighboring faces {fa , fb} in F do 2. Call Algorithm 1with Finitial = {fa , fb} and Vinitial = V er(fa) ∪ V er(fb); 3. if the returned Ffixed from Algorithm 1contains more than two faces do 4. SMEFS ← Ffixed; 5. Construct the object-coexistence graph Gobj with SMEFS ; 6. SMWC ← the maximum weight clique found from Gobj ; 7. for each face f not contained in SMWC do 8. Attach f to the object in SMWC that contains the maximum number of the vertices of f; Return SMWC. Fig.7 (a)Ashe tobjec(ta)with23faces.(b)Decompositon(br)esult by Algorithm 2 with the modification in Algorithm 1. We formulate Rule 1 as a maximum weight clique problem (MWCP), which is to find a clique2 of the maximum weight from a weighted graph. First, we construct a weighted graph, called the object-coexistence graph, in which a vertex denotes an object in SMEFS and there is an edge connecting two vertices if the two objects represented by the two vertices are coexistent. Besides, each vertex is assigned a weight equal to the number of the faces of the corresponding object. The MWCP is a well-known NP-hard problem. In our application, however, solving this problem is fast enough since an object-coexistence graph usually has less than 20 objects (vertices). We use the algorithm in [12] to deal with this problem. Fig. 6(c) is the object-coexistence graph constructed from the six objects in Fig. 6(b), where the weights of the vertices are denoted by the numbers in the parentheses. The maximum weight clique is shown in bold. From Fig. 6, we see that the face (14, 13, 26, 25) is not contained in SWMC, which is used to store the objects in the maximum weight clique. This face is finally attached to Obj 3. In general, each of the faces not in SWMC is attached to an object that contains the maximum number of the vertices of this face. If there are two or more objects that contain the same number of the vertices of this face, this face is assigned to any of them. 2A clique is a subgraph of a graph such that subgraph are connected by an edge. every two vertices in the 1437 Algorithm 2 shows the complete algorithm to decompose a general line drawing. Steps 7 and 8 attach the faces not in SMWC to some objects in SMWC. A common complex object usually consists of primitive solids and sheets, and Algorithm 2 works well for the decomposition of most complex line drawings. However, there are still some line drawings the algorithm cannot deal with. Such an example is shown in Fig. 7(a) which is a sheet object with 23 faces. In Algorithm 1, with any pair of initial neighboring faces, there is no any other face satisfying the condition in step 3, thus no object of DoF 4 will be found. The following scheme can solve this problem. Given a line drawing, steps 1–6 in Algorithm 2 are used to decompose it into multiple objects of DoF 4. If there are separate groups of faces not in SMWC, where the faces in each group are connected, then attach the groups each with less than four faces to some objects in SMWC3 (the attachment method is similar to steps 7 and 8 in Algorithm 2). For a group with four or more connected faces, Algorithm 2 is applied to it with a minor modification in Algorithm 1. The modification is to set Finitial to contain three connected faces whose combined DoF is 5. This modification allows the search of objects of DoF 5. Suppose the object in Fig. 7(a) is such a group. Applying Algorithm 2 to it with the minor modification generates the decomposition result as shown in Fig. 7(b). 2.3. 3D Reconstruction A complex line drawing can be decomposed into several simpler ones using the method proposed in Sections 2. 1 and 2.2. The next step is to reconstruct a 3D object from each ofthem, which is an easy task because the decomposed line drawings are simple. The method in [6] or [7] can carry out this task very well. We use the one in [6] for our work with the objective function Φ(z1 , z2 , ..., zNv ) constructed by these five image regularities: MSDA, face planarity, line parallelism, isometry, and corner orthogonality. The details of the regularities can be found from [6]. After obtaining the 3D objects from all the decomposed line drawings, the next step is to merge them to form one complex object. When merging two 3D objects, since they are reconstructed separately, the gluing parts (face or edge) of them are usually not of the same size. Then one object is automatically rescaled according to the sizes of the two gluing parts, and the vertices of the gluing part of this object are also adjusted so that the two parts are the same. After merging all the 3D objects, the whole object is fine-tuned by minimizing the objective function Φ on the object. We can also apply our method to reconstruct 3D shapes from objects in images. First, the user draws a line drawing along the visible edges of an object and he/she can also 3The reason to attach a group with less than four faces to an object in SMWC is that this group is small and is not necessary to be an independent object to reconstruct. guess (draw) the hidden edges. Then from this line drawing, our approach described above reconstructs the 3D geometry of the object in the image. 3. Experimental Results In this section, we show a number of complex 3D reconstruction examples from both line drawings and images to demonstrate the performance of our approach. The first set of experiments in Fig. 8 has nine complex line drawings. Fig. 8(a) is a manifold, and the others are nonmanifold solids or non-solids. The decompositions of the line drawings are also given in the figure, from which we can see that the results are in accordance with our visual perception very well. All the primitive solids are found by our algorithm. It is the successful decompositions that make the 3D reconstructions from these complex line drawings possible. The expected satisfactory reconstruction results are shown also in Fig. 8 each in two views. Fig. 9 shows another set of 3D reconstructions from objects in images with line drawings drawn on the objects. The decomposition results are omitted due to the space limitation. Each reconstruction result obtained by our algorithm is shown in two views with the texture from the image mapped onto the surface. We can see that the results are very good. The details of the objects and the line drawings can be shown by enlarging the figures on the screen. Among all the previous algorithms for general object reconstruction, the one in [7] can deal with most complex objects. Due to the local minimum problem in a high dimensional search space, however, this algorithm cannot handle line drawings as complex as those in Figs. 8 and 9. For example, Fig. 10(a) shows its reconstruction result from the line drawing in Fig. 8(c), which is a failure. The reader may wonder what happens if the 3D reconstruction is based on an arbitrary decomposition of a complex line drawing, instead of the proposed one. Fig. 10(b) shows such a decomposition from Fig. 8(c). Based on this decomposition, the 3D reconstruction result obtained by the scheme described in Section 2.3 is given in Fig. 10(c), which is a failure. The failure is caused by two reasons: (i) An arbitrary decomposition usually does not generate common objects, which makes the image regularities less meaningful for the 3D reconstruction. (ii) The gluing of 3D objects from the decomposition in Fig. 10(b) is difficult because of the irregular touches between the objects. The fine-tuning processing (see Section 2.3) cannot reduce the large distortion to an acceptable result. Note that since our algorithm is not limited to manifolds, it can deal with line drawings with some or without hidden lines. The third line drawing in Fig. 9 is an example where some hidden lines are not drawn. Most of the line drawings in this paper look tidy. This 1438 (g)(h)(i) Fig. 8. Nine complex line drawings, their decompositons, and 3D reconstruction results in two views wher dif er nt col rs are used to denote the faces (better viewed on the screen). Fig.9 Fourimages,thecorespondi glinedrawings,andther constructed3Dobjectswith exturemap ed,eachs owni twoviews. The details can be seen by enlarging the figures on the screen. 1439 Fig.10(.a( ) Afailedreconstru(cb)tionbythealgorithm(ci)n[7].(b)An Fig.1 .(a ) Alinedrawingwith(bs)trongsketchingero(sc.)(b)(c) arbitrary decomposition of the line drawing in Fig. 8(c) without using our decomposition method. (c) Failed 3D reconstruction based on the decomposition in (b). Two views ofthe successful reconstruction result by our algorithm. is for easy observation of the objects. In fact, our algorithm is not sensitive to sketching errors. Take Fig. 8(a) as an example and assume it is an accurate projection of the 3D object. Then, random variations are generated with the Gaussian distribution N(0, σ2) on the 2D locations of the vertices. Fig. 11(a) is a resulting noisy line drawing with σ = W/200 where W is the width of the line drawing in Fig. 8(a). From Fig. 11, we see that even for this line drawing with strong sketching errors, our algorithm can still obtain the good reconstruction result. Our algorithm is implemented in C++. The computational time includes two parts: line drawing decomposition and 3D reconstruction. The main computation is consumed by the second part. On average, a common PC takes about one minute to obtain the reconstruction from each of the line drawings in Figs. 8 and 9. 4. Conclusion Previous algorithms of 3D object reconstruction from line drawings either deal with simple general objects or are limited to only manifolds (a subset of solids). In this paper, we have proposed a novel approach that can handle complex general objects, including manifolds, nonmanifold solids, and non-solids. It decomposes a complex line drawing into simpler ones according to the degree of freedom of objects, which is based on the developed 3D object properties. After 3D objects are reconstructed from the decomposed line drawings, they are merged to form a complex object. We have shown a number of reconstruction examples with comparison to the best previous algorithm. The results indicate that our algorithm can tackle much more complex line drawings of general objects and is insensitive to sketching errors. The future work includes (i) the correction of the distortions of 3D objects reconstructed from images caused by the perspective projection, and (ii) the extension of this work to objects with curved faces. Acknowledgements This work was supported by grants from Natural Science Foundation of China (No. try, Trade, and Information Shenzhen Municipality, and Guangdong Science, Technology Commission China (No. Innovative 201001D0104648280). 61070148), Indusof JC201005270378A), Research Team Program (No. Jianzhuang Liu is the correspond- ing author. References [1] M. Clowes. On seeing things. Artificial Intelligence, 2:79–1 16, 1971. [2] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. Proc. ACM SIGGRAPH, pages 11–20, 1996. [3] D. Jelinek and C. Taylor. Reconstruction of linearly parameterized models from single images with a camera of unknown focal length. IEEE T-PAMI, 23(7):767–773, 2001. [4] D. E. LaCourse. Handbook of Solid Modeling. McGraw-Hill, 1995. [5] Y. Leclerc and M. Fischler. An optimization-based approach to the interpretation of single line drawings as 3D wire frames. IJCV, 9(2): 113–136, 1992. [6] H. Lipson and M. Shpitalni. Optimization-based reconstruction of a 3d object from a single freehand line drawing. Computer-Aided Design, 28(7):651–663, 1996. [7] J. Liu, L. Cao, Z. Li, and X. Tang. Plane-based optimization for 3D object reconstruction from single line drawings. IEEE T-PAMI, 30(2):315–327, 2008. [8] J. Liu, Y. Chen, and X. Tang. Decomposition of complex line drawings with hidden lines for 3d planar-faced manifold object [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] reconstruction. IEEE T-PAMI, 33(1):3–15, 2011. J. Liu, Y. Lee, and W. Cham. Identifying faces in a 2D line drawing representing a manifold object. IEEE T-PAMI, 24(12): 1579–1593, 2002. J. Liu and X. Tang. Evolutionary search for faces from line drawings. IEEE T-PAMI, 27(6):861–872, 2005. T. Marill. Emulating the human interpretation of line-drawings as three-dimensional objects. IJCV, 6(2): 147–161, 1991 . P. R. J. O¨sterg a˚rd. A new algorithm for the maximum-weight clique problem. Nordic J. of Computing, 8(4):424–436, Dec. 2001 . H. Shimodaira. A shape-from-shading method of polyhedral objects using prior information. IEEE T-PAMI, 28(4):612–624, 2006. I. Shimshoni and J. Ponce. Recovering the shape of polyhedra using line-drawing analysis and complex reflectance models. Computer Vision and Image Understanding, 65(2):296–3 10, 1997. K. Shoji, K. Kato, and F. Toyama. 3-d interpretation of single line drawings based on entropy minimization principle. CVPR, 2001. M. Shpitalni and H. Lipson. Identification of faces in a 2d line drawing projection of a wireframe object. IEEE T-PAMI, 18(10), 1996. K. Sugihara. Machine interpretation of line drawings. MIT Press, 1986. A. Turner, D. Chapman, and A. Penn. Sketching space. Computer and Graphics, 24:869–879, 2000. F. Ulupinar and R. Nevatia. Shape from contour: straight homogeneous generalized cylinders and constant cross-section generalized cylinders. IEEE T-PAMI, 17(2): 120–135, 1995. T. Xue, J. Liu, and X. Tang. Example-based 3d object reconstruction from line drawings. CVPR, 2012. 1440

2 0.19280016 250 iccv-2013-Lifting 3D Manhattan Lines from a Single Image

Author: Srikumar Ramalingam, Matthew Brand

Abstract: We propose a novel and an efficient method for reconstructing the 3D arrangement of lines extracted from a single image, using vanishing points, orthogonal structure, and an optimization procedure that considers all plausible connectivity constraints between lines. Line detection identifies a large number of salient lines that intersect or nearly intersect in an image, but relatively a few of these apparent junctions correspond to real intersections in the 3D scene. We use linear programming (LP) to identify a minimal set of least-violated connectivity constraints that are sufficient to unambiguously reconstruct the 3D lines. In contrast to prior solutions that primarily focused on well-behaved synthetic line drawings with severely restricting assumptions, we develop an algorithm that can work on real images. The algorithm produces line reconstruction by identifying 95% correct connectivity constraints in York Urban database, with a total computation time of 1 second per image.

3 0.11136138 343 iccv-2013-Real-World Normal Map Capture for Nearly Flat Reflective Surfaces

Author: Bastien Jacquet, Christian Häne, Kevin Köser, Marc Pollefeys

Abstract: Although specular objects have gained interest in recent years, virtually no approaches exist for markerless reconstruction of reflective scenes in the wild. In this work, we present a practical approach to capturing normal maps in real-world scenes using video only. We focus on nearly planar surfaces such as windows, facades from glass or metal, or frames, screens and other indoor objects and show how normal maps of these can be obtained without the use of an artificial calibration object. Rather, we track the reflections of real-world straight lines, while moving with a hand-held or vehicle-mounted camera in front of the object. In contrast to error-prone local edge tracking, we obtain the reflections by a robust, global segmentation technique of an ortho-rectified 3D video cube that also naturally allows efficient user interaction. Then, at each point of the reflective surface, the resulting 2D-curve to 3D-line correspondence provides a novel quadratic constraint on the local surface normal. This allows to globally solve for the shape by integrability and smoothness constraints and easily supports the usage of multiple lines. We demonstrate the technique on several objects and facades.

4 0.10403337 335 iccv-2013-Random Faces Guided Sparse Many-to-One Encoder for Pose-Invariant Face Recognition

Author: Yizhe Zhang, Ming Shao, Edward K. Wong, Yun Fu

Abstract: One of the most challenging task in face recognition is to identify people with varied poses. Namely, the test faces have significantly different poses compared with the registered faces. In this paper, we propose a high-level feature learning scheme to extract pose-invariant identity feature for face recognition. First, we build a single-hiddenlayer neural network with sparse constraint, to extractposeinvariant feature in a supervised fashion. Second, we further enhance the discriminative capability of the proposed feature by using multiple random faces as the target values for multiple encoders. By enforcing the target values to be uniquefor inputfaces over differentposes, the learned highlevel feature that is represented by the neurons in the hidden layer is pose free and only relevant to the identity information. Finally, we conduct face identification on CMU MultiPIE, and verification on Labeled Faces in the Wild (LFW) databases, where identification rank-1 accuracy and face verification accuracy with ROC curve are reported. These experiments demonstrate that our model is superior to oth- er state-of-the-art approaches on handling pose variations.

5 0.095122576 157 iccv-2013-Fast Face Detector Training Using Tailored Views

Author: Kristina Scherbaum, James Petterson, Rogerio S. Feris, Volker Blanz, Hans-Peter Seidel

Abstract: Face detection is an important task in computer vision and often serves as the first step for a variety of applications. State-of-the-art approaches use efficient learning algorithms and train on large amounts of manually labeled imagery. Acquiring appropriate training images, however, is very time-consuming and does not guarantee that the collected training data is representative in terms of data variability. Moreover, available data sets are often acquired under controlled settings, restricting, for example, scene illumination or 3D head pose to a narrow range. This paper takes a look into the automated generation of adaptive training samples from a 3D morphable face model. Using statistical insights, the tailored training data guarantees full data variability and is enriched by arbitrary facial attributes such as age or body weight. Moreover, it can automatically adapt to environmental constraints, such as illumination or viewing angle of recorded video footage from surveillance cameras. We use the tailored imagery to train a new many-core imple- mentation of Viola Jones ’ AdaBoost object detection framework. The new implementation is not only faster but also enables the use of multiple feature channels such as color features at training time. In our experiments we trained seven view-dependent face detectors and evaluate these on the Face Detection Data Set and Benchmark (FDDB). Our experiments show that the use of tailored training imagery outperforms state-of-the-art approaches on this challenging dataset.

6 0.093143821 97 iccv-2013-Coupling Alignments with Recognition for Still-to-Video Face Recognition

7 0.086805351 444 iccv-2013-Viewing Real-World Faces in 3D

8 0.075135 276 iccv-2013-Multi-attributed Dictionary Learning for Sparse Coding

9 0.068072356 102 iccv-2013-Data-Driven 3D Primitives for Single Image Understanding

10 0.065810129 366 iccv-2013-STAR3D: Simultaneous Tracking and Reconstruction of 3D Objects Using RGB-D Data

11 0.063290291 57 iccv-2013-BOLD Features to Detect Texture-less Objects

12 0.06205355 153 iccv-2013-Face Recognition Using Face Patch Networks

13 0.057077803 21 iccv-2013-A Method of Perceptual-Based Shape Decomposition

14 0.052556623 436 iccv-2013-Unsupervised Intrinsic Calibration from a Single Frame Using a "Plumb-Line" Approach

15 0.052476298 259 iccv-2013-Manifold Based Face Synthesis from Sparse Samples

16 0.051993646 3 iccv-2013-3D Sub-query Expansion for Improving Sketch-Based Multi-view Image Retrieval

17 0.050121326 219 iccv-2013-Internet Based Morphable Model

18 0.04800288 323 iccv-2013-Pose Estimation with Unknown Focal Length Using Points, Directions and Lines

19 0.047931883 328 iccv-2013-Probabilistic Elastic Part Model for Unsupervised Face Detector Adaptation

20 0.046962816 180 iccv-2013-From Where and How to What We See


similar papers computed by lsi model

lsi for this paper:

topicId topicWeight

[(0, 0.105), (1, -0.045), (2, -0.043), (3, -0.033), (4, -0.021), (5, -0.031), (6, 0.072), (7, -0.015), (8, 0.013), (9, -0.013), (10, 0.008), (11, 0.032), (12, -0.027), (13, 0.032), (14, 0.008), (15, 0.015), (16, 0.007), (17, 0.021), (18, -0.056), (19, -0.001), (20, -0.029), (21, -0.078), (22, 0.074), (23, -0.04), (24, -0.01), (25, 0.081), (26, -0.053), (27, 0.01), (28, -0.017), (29, 0.015), (30, -0.054), (31, 0.041), (32, -0.016), (33, -0.056), (34, -0.059), (35, -0.014), (36, -0.033), (37, -0.011), (38, -0.027), (39, -0.068), (40, 0.028), (41, -0.042), (42, -0.045), (43, 0.024), (44, 0.021), (45, 0.028), (46, 0.028), (47, 0.038), (48, -0.025), (49, 0.013)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.95235139 84 iccv-2013-Complex 3D General Object Reconstruction from Line Drawings

Author: Linjie Yang, Jianzhuang Liu, Xiaoou Tang

Abstract: An important topic in computer vision is 3D object reconstruction from line drawings. Previous algorithms either deal with simple general objects or are limited to only manifolds (a subset of solids). In this paper, we propose a novel approach to 3D reconstruction of complex general objects, including manifolds, non-manifold solids, and non-solids. Through developing some 3D object properties, we use the degree of freedom of objects to decompose a complex line drawing into multiple simpler line drawings that represent meaningful building blocks of a complex object. After 3D objects are reconstructed from the decomposed line drawings, they are merged to form a complex object from their touching faces, edges, and vertices. Our experiments show a number of reconstruction examples from both complex line drawings and images with line drawings superimposed. Comparisons are also given to indicate that our algorithm can deal with much more complex line drawings of general objects than previous algorithms. 1. Introduction and Related Work A 2D line drawing is the most straightforward way of illustrating a 3D object. Given a line drawing representing a 3D object, our visual system can understand the 3D structure easily. For example, we can interpret without difficulty the line drawing shown in Fig. 1(a) as a castle with four walls and one door. Imitating this ability has been a longstanding and challenging topic in computer vision when a line drawing is as complex as this example. The applications of this work include 3D object design in CAD and for 3D printers, 3D query generation for 3D object retrieval, and 3D modeling from images. In this paper, same as the majority of related work, a line drawing is defined as the orthogonal projection of the Fig.1 (a)Alinedrawing(rae)pres nti gac stle.(b)The3Dm(obd)el of the line drawing. edges and vertices of a 3D object in a generic view, and objects with planar surfaces are considered. A line drawing is represented by an edge-vertex graph. It can be obtained by the user/designer who draws on the screen with a tablet pen, a mouse, or a finger (on a touch sensitive screen), with all, with some, or without hidden edges and vertices. Line labeling is the earliest work to interpret line drawings [1], [17]. It searches for a set of consistent labels such as convex, concave, and occluding from a line drawing to test its correctness and/or realizability. Line labeling itself cannot recover 3D shape from a line drawing. Later, 3D reconstruction from the contours (line drawings) of objects in images is studied [19], [14], [13], which handles simple objects only. Model-based 3D reconstruction [2], [3], [20] can deal with more complex objects, but these methods require to pre-define a set of parametric models. Recently, popular methods of 3D reconstruction from line drawings are optimization based, which are most related to our work and are reviewed next. These methods can be classified into two categories: one dealing with manifolds and the other dealing with general objects. A general object can be a manifold, non-manifold solid, or non-solid. Manifolds are a subset of solids, defined as follows: A manifold, or more rigorously 2D manifold, is a solid where every point on its surface has a neighborhood topologically equivalent to an open diskin the 2D Euclidean space. 1433 In this paper, a solid is a portion of 3D space bounded by planar faces, and a manifold is also bounded by planar faces. Each edge of such manifolds is shared exactly by two faces [4]. Most 3D reconstruction methods from a line drawing assume that the face topology of the line drawing is known in advance. This information can reduce the reconstruction complexity greatly. Algorithms have been developed to find faces from a line drawing in [16], [10], and [9], where [16] and [10] are for general objects and [9] for manifolds. Optimization-based 3D reconstruction depends on some critera (also called image regularities) that simulate our visual perception. Marill proposes a very simple but effective criterion to reconstruct a simple object: minimizing the standard deviation of the angles (MSDA) in the object [11]. Later, other regularities are proposed to deal with more complex objects such as face planarity, line parallelism, isometry, and corner orthogonality [5], [6], [15], [18]. In these methods, an objective function ?C Φ(z1,z2, ...,zNv) = ?ωiφi(z1,z2, ...,zNv) (1) i?= ?1 is minimized to derive the depths z1, z2 , ..., zNv , where Nv is the number of vertices in the line drawing, φi , i = 1, 2, ..., C, are the regularities, and ωi , i = 1, 2, ..., C, are the weights. The main problem in this approach is that these algorithms are easy to get trapped into local minima (obtaining failed results) when a line drawing is complex with many vertices, due to the search in a highdimensional space (Nv dimensions) with the non-convex objective function. For example, the search space is of 56 dimensions for the object in Fig. 1(a). To alleviate this problem, Liu et al. formulate 3D reconstruction in a lower dimensional space so that the optimization procedure has a better chance to find desired results [7]. For the complex object in Fig. 1(a), however, the search in a space with 18 dimensions is still too difficult for it to obtain a satisfactory 3D object (see Section 3). The methods in [5], [6], [15], [18], and [7] reconstruct general objects, and the one in [7] can deal with more complex objects than the other four. But these algorithms cannot avoid the local minimum problem in a high dimensional search space when a line drawing is complex. In [8], a divide-and-conquer (D&C;) strategy is used to tackle this problem. It first separates a complex line drawing into multiple simpler ones, then independently recovers the 3D objects from these line drawings, and finally merges them to form a complete object. Since the separated line drawings are much simpler than the original one, the 3D reconstruction from each of them is an easy task. This D&C; approach handles manifolds only. Based on known faces found by the face identification algorithm in [9], it uses manifold properties to find internal faces Fig.2(a)Asimaeplhdmiafnbo(ldagc)withnae'fahdc'eisfba'nd(obgcn)'eitrnalfce (a, b, c, d). (b) Decomposition result from the internal face. (a) (b) (c) (d) Fig. 3. (a) A non-manifold solid. (b) Expected decomposition of (a). (c) A sheet object. (d) Expected decomposition of (c). from a line drawing and then separates the line drawing from the internal faces. An internal face is defined as an imaginary face lying inside a manifold with only its edges visible on the surface [8]. It is not a real face but can be considered as two coincident real faces of identical shape belonging to two manifolds. For example, Fig. 2(a) shows a manifold with nine faces. The D&C; first finds the internal face (a, b, c, d) and then decomposes the line drawing from this internal face (Fig. 2(b)). However, handling manifolds only limits the applica- tions of [8]. In many applications in computer vision and graphics such as 3D object matching, retrieval, and rendering, it is unnecessary to represent objects as manifolds, in order to facilitate data processing and reduce data storage. For example, a flat ground can be represented by a sheet (one face), but if it is represented by a manifold, a thin box with six faces has to be used. Fig. 1(a), Fig. 3(a), and Fig. 3(c) are line drawings of three non-manifolds. In this paper, we propose a novel approach to 3D reconstruction of complex general objects based on visual perception, object properties, and new line drawing decomposition. Compared with previous methods, ours can deal with much more complex line drawings of general objects. It can handle not only manifolds but also non-manifold solids and non-solids, and is insensitive to sketching errors. 2. General Object Reconstruction We also use the D&C; strategy to deal with 3D reconstruction from a line drawing representing a complex general object. The key is how to decompose a complex line drawing of any objects into multiple simpler line drawings. These decomposed line drawings should represent objects that are in accordance with our visual perception, which makes the 3D reconstruction from these line drawings easier and better because the regularities used to build an objective function for reconstruction follow human perception of 1434 common objects [11], [5], [6], [15], [18]. Before the decomposition of a line drawing, we assume that all the real and internal faces of the object have been obtained from the line drawing using a face identification algorithm. For example, the algorithm in [10] finds 10 faces from the line drawing in Fig. 2(a) (including the internal face), and obtains 12 and 7 faces from the line drawings in Figs. 3(a) and (c), respectively. 2.1. Decomposing line drawings of solids In this subsection, we consider the line drawings of solids first. The decomposition method will be extended to the line drawings of general objects in the next subsection. It is not difficult to see that in general, a complex object, especially a manmade complex object, can be considered as the combinations of multiple smaller objects. The most common combination is the touch of two faces from two different objects such as the one in Fig. 2. Other combinations are the touches among lines, faces, and vertices. Our target is to decompose a complex solid into multiple primitive solids. Before the definition of a primitive solid, we introduce a term called the degree of freedom of a solid. Definition 1. The degree of freedom (DoF) of a 3D solid represented by a line drawing is the minimal number of zcoordinates that can uniquely determine this 3D solid. This is the first time that the concept of DoF is used to decompose line drawings. Now let us consider a simple object in Fig. 4(a). The cube has six faces: (v1, v2 , v3 , v4), (v1, v2, v6, v5), (v1, v4, v8, v5), (v2 , v3, v7, v6), (v4, v3, v7, v8), and (v6, v7, v8, v5). We can show that the cube is determined if the z-coordinates of its four non-coplanar vertices are known. Without loss of generality, suppose z1, z2, z4, and z5 are known. Since the 3D coordinates of v1, v2, and v4 are fixed (remind that the x- and y-coordinates of all the vertices are known under the orthogonal projection), the 3D plane passing through the face (v1, v2 , v3, v4) is determined, and thus z3 can be calculated. Similarly, z6 and z8 can be obtained. Finally, z7 can be computed with the 3D coordinates of v3, v4, and v8 known, which determine the plane passing through the face (v4, v3, v7, v8). So the 3D cube can be determined by the known four z-coordinates, z1, z2, z4, and z5. Further, it can be verified that three 3D vertices cannot determine this object uniquely because they can only define one face in 3D space. Therefore, the DoF of the cube is 4. Similar analysis allows us to know that the solids in Fig. 2(b), Fig. 3(b), and Fig. 4(b) all have DoF 4, while the two solids in Fig. 2(a) and Fig. 3(a) have DoFs 5 and 6, respectively. From these analysis, we can have the intuition that solids with DoF 4 serve as the building blocks of more complex solids whose DoFs are more than 4. Besides, we have the following property: Property 1. There is no solid with DoF less than 4. Fv5(1iga).4v (26a)Av48cubev3w7hos(be)DoFis4.(b)Anedo(tch)fergBasbolifdAwhosfCeDocFji is also 4. (c) Part of a line drawing with each vertex of degree 3. This property is easy to verify. A solid with fewest faces is a tetrahedron. Every two of its four faces are not co-planar. Three 3D vertices of a tetrahedron can only determine one 3D face. Next, we define primitive solids. Definition 2. A 3D solid represented by a line drawing is called a primitive solid if its DoF is 4. Property 2. If every vertex of a 3D solid represented by a line drawing has degree 31, then it is a primitive solid. Proof. Let part of such a line drawing be the one as shown in Fig. 4(c). At each vertex, every two of the three edges form a face, because a solid is bounded by faces without dangling faces and edges. Let the three paths fA, fB, and fC in Fig. 4(c) denote the three faces at vertex a. Without loss of generality, suppose that the four zcoordinates (and thus the four 3D coordinates) of vertices a, b, c, and d are known. Then the three planes passing through fA, fB, and fC are determined in 3D space. With the two known 3D planes passing through fA and fB at vertex b, the 3D coordinates of vertices g and h connected to b can be computed. Similarly, the 3D coordinates of vertices e and f connected to d and the 3D coordinates of vertices i and j connected to c can be obtained. Furthermore, all the 3D coordinates of the other vertices connected to e, f, g, h, i, and j can be derived in the same way. This derivation can propagate to all the vertices of this solid. Therefore, the DoF of this solid is 4 and it is a primitive solid. Property 3. The DoF of a solid is 5 which is obtained by gluing two faces of two primitive solids. Proof. Let the two primitive solids be PS1 and PS2 and their corresponding gluing faces be f1and f2, respectively. The DoFs of PS1 and PS2 are both 4. Suppose that PS1 is determined in 3D space, which requires four z-coordinates. Then f1and f2 are also determined in 3D space. When the z-coordinates of three vertices on PS2 are known based on f2, one more z-coordinate of a vertex not coplanar with f2 on PS2 can determine PS2 in 3D space. Therefore, the DoF of the combined solid is 5. Fig. 2 is a typical example of two primitive solids gluing together along faces. Fig. 3(a) is an example of two primitive solids gluing together along edges. Two primitive solids may also connect at one vertex. The following property is easy to verify. 1The degree of a vertex is the number of edges connected to this vertex. 1435 Property 4. The DoF of a solid is 6 which is obtained by gluing two edges of two primitive solids. The DoF of a solid is 7 which is obtained by gluing two vertices oftwoprimitive solids. From the above properties, we can see that primitive solids are indeed the “smallest” solids in terms of DoF and they can serve as the building blocks to construct more complex solids. Therefore, our next target is to decompose a line drawing representing a complex solid into multiple line drawings representing primitive solids. Before giving Definition 3, we define some terms first. Vertex set of a face. The vertex set V er(f) of a face f is the set of all the vertices of f. Fixed vertex. A fixed vertex is one with its z-coordinate (thus its 3D coordinate) known. Unfixed vertex. An unfixed vertex is one with its zcoordinate unknown. Fixed face. A fixed face is one with its 3D position determined by its three fixed vertices. Unfixed face. An unfixed face is one with its 3D position undetermined. Definition 3. Let the vertex set and the face set of a line drawing be V = {v1, v2 , ..., vn} and F = {f1, f2 , ..., fm}, respectively, w =he {rve n and m are Fthe = n{fumbers of th}e, vertices and the faces, respectively. Also let Vfixed, Ffixed, Vunfixed, and Funfixed be the sets of fixed vertices, fixed faces, unfixed vertices, and unfixed faces, respectively. Suppose that an initial set of two fixed neighboring faces sharing an edge is Finitial with all their fixed vertices in Vinitial. The final Ffixed in Algorithm 1 is called the maximum extended face set (MEFS) from Finitial. In Algorithm 1, a face f that satisfies the condition in step 3 is a face that has been determined in 3D space by the current fixed vertices in Ffixed. When this face is found, it becomes a fixed face and all its vertices become fixed vertices. The DoF of the initial two fixed faces combined is 4. It is not difficult to see that the algorithm does not increase the initial DoF, and thus the final object represented by the MEFS also has DoF 4. Next, let us consider a simple example shown in Fig. 2(a) with the following three cases: Case 1. Suppose that Finitial = {(e, f,g, h) , (e, f,b, a)}, Vinitial = {e, f,g, h, b, a}, and th{e( algorithm a(de,dfs tbh,ea f}a,c Ves into Ffixed ,ing thh,isb aor}d,e ar:n (f th,e g, c, obr)i →m (a, b, c, d) → (e, h, d, a) →i ( tgh, hs, odr, dce)r. T (fhe,gn tch,eb )fin →al object ,fod)und → by t,hhe, algorithm (isg thh,ed c,uc)b.e. Note that the algorithm does not add any triangular faces into Ffixed because they do not satisfy the condition in step 3. Case 2. If Finitial = {(b, i,a) , (b, i,c)}, then the final object found is the pyramid, abn,id, tah)e, algorithm hdoenes t nhoet f iandadl any rectangular faces except (a, b, c, d) into Ffixed. Case 3. If Finitial = {(b, a, i) , (e, f,b, a)}, the algorithm cannot find any othe=r f a{(cebs,a at,oi a)d,(de ,tof Ffixed. tThheus al, gito rfaitihlsto find the cube or pyramid. Algorithm 1 Face extending procedure Initialization: F, F, Initialization: Funfixed = F \ Finitial , Ffixed = Finitial , Vfixed = Vinitial, Vunfixed = FV \ \ FVinitial. 1. do the following steps until no face satisfies the condition in step 3; 2. Find a face f ∈ Funfixed that satisfies 3. the number ofnon-collinear vertices in V er(f) ∩Vfixed is more than 2; 4. Add face f into Ffixed and delete it from Funfixed; 5. For each vertex v ∈ V er(f), if v ∈ Vunfixed, add v into Vfixed and delete it from Vunfixed; Return The final Ffixed. Fig.5(a)Ac(oam)plexinedrawingofn (-bm)anifolds id.(b)The decomposition result by our algorithm. In case 3, the object represented by the MEFS has only two initial faces and this object is discarded. In order not to miss a primitive solid, we run Algorithm 1 multiple times each with a different pair of neighboring faces in Finitial. Then, we can always have Finitial with its two faces from one primitive solid. For the object in Fig. 2(a), we can always find the cube and the pyramid. Note that the same primitive solid may be found multiple times from different Finitial, and finally we keep only one copy of each different object (cube and pyramid in this example). When a complex solid is formed by more than two primitive solids, Algorithm 1 can still be used to find the primitive solids, which is the decomposition result of the complex line drawing. More complex examples are given in Section 3. Besides, Algorithm 1 can also deal with complex solids formed by gluing primitive solids between edges and vertices. Fig. 5(a) is a solid constructed by gluing eight primitive solids between faces, edges, and vertices. Running Algorithm 1multiple times with different pairs of neighboring faces in Finitial generates the primitive solids as shown in Fig. 5(b). 2.2. Decomposing line drawings of general objects A general object can be a manifold, non-manifold solid, or non-solid. Given a line drawing representing a general object, it is unknown whether this object consists of only primitive solids. However, we can always apply Algorithm 1to the line drawing multiple times, each with a 1436 Obj6(4)O b j 15( 94)(ca)O b j 24(9 7)Obj3(7)(bd) Fig. 6. Illustration of our decomposition method. (a) A line drawing. (b) The set of MEFSs from (a). (c) The weighted objectcoexistence graph where the maximum weight clique is shown in bold. (d) The decomposition of (a). different pair of neighboring faces in Finitial, generating a set SMEFS of MEFSs (recall that an MEFS with only two initial neighboring faces is discarded). In what follows, we also call an MEFS an object, which is represented by the MEFS. Note that an MEFS generated from a general line drawing may not be a primitive solid, but its DoF must be 4. Objects of DoF 4 have relatively simple structures and are easy to be reconstructed. A number of decomposition examples of complex general line drawings can be seen from the experimental section. One issue existing in this decomposition method is that two different MEFSs may share many faces. For example, from the line drawing in Fig. 6(a), all different MEFSs found by running Algorithm 1multiple times are shown in Fig. 6(b), where Obj 1and Obj 5 share four faces, and so do Obj 2 and Obj 6. Obviously, Obj 5 and Obj 6 are not necessary. Next we define object coexistence and a rule to choose objects. Definition 4. Two objects are called coexistent if they share no face or share only coplanar faces. Rule 1. Choose a subset of SMEFS such that in the subset, all the objects are coexistent and the number of total faces is maximized. From Definition 4, Obj 1 and Obj 5 are not coexistent in Fig. 6, and Obj 2 and Obj 6 are not either. If Obj 5 and Obj 6 are kept with Obj 1and Obj 2 discarded, many faces in the original object will be missing. Rule 1guarantees that Obj 1and Obj 2 are kept but not Obj 5 and Obj 6. Algorithm 2 Decomposition of a general line drawing Algorithm 2 Decomposition of a general line drawing Input: A Line Drawing: G = (V,E,F). Initialization: SMEFS = ∅, SMWC = ∅. 1. for each pair of neighboring faces {fa , fb} in F do 2. Call Algorithm 1with Finitial = {fa , fb} and Vinitial = V er(fa) ∪ V er(fb); 3. if the returned Ffixed from Algorithm 1contains more than two faces do 4. SMEFS ← Ffixed; 5. Construct the object-coexistence graph Gobj with SMEFS ; 6. SMWC ← the maximum weight clique found from Gobj ; 7. for each face f not contained in SMWC do 8. Attach f to the object in SMWC that contains the maximum number of the vertices of f; Return SMWC. Fig.7 (a)Ashe tobjec(ta)with23faces.(b)Decompositon(br)esult by Algorithm 2 with the modification in Algorithm 1. We formulate Rule 1 as a maximum weight clique problem (MWCP), which is to find a clique2 of the maximum weight from a weighted graph. First, we construct a weighted graph, called the object-coexistence graph, in which a vertex denotes an object in SMEFS and there is an edge connecting two vertices if the two objects represented by the two vertices are coexistent. Besides, each vertex is assigned a weight equal to the number of the faces of the corresponding object. The MWCP is a well-known NP-hard problem. In our application, however, solving this problem is fast enough since an object-coexistence graph usually has less than 20 objects (vertices). We use the algorithm in [12] to deal with this problem. Fig. 6(c) is the object-coexistence graph constructed from the six objects in Fig. 6(b), where the weights of the vertices are denoted by the numbers in the parentheses. The maximum weight clique is shown in bold. From Fig. 6, we see that the face (14, 13, 26, 25) is not contained in SWMC, which is used to store the objects in the maximum weight clique. This face is finally attached to Obj 3. In general, each of the faces not in SWMC is attached to an object that contains the maximum number of the vertices of this face. If there are two or more objects that contain the same number of the vertices of this face, this face is assigned to any of them. 2A clique is a subgraph of a graph such that subgraph are connected by an edge. every two vertices in the 1437 Algorithm 2 shows the complete algorithm to decompose a general line drawing. Steps 7 and 8 attach the faces not in SMWC to some objects in SMWC. A common complex object usually consists of primitive solids and sheets, and Algorithm 2 works well for the decomposition of most complex line drawings. However, there are still some line drawings the algorithm cannot deal with. Such an example is shown in Fig. 7(a) which is a sheet object with 23 faces. In Algorithm 1, with any pair of initial neighboring faces, there is no any other face satisfying the condition in step 3, thus no object of DoF 4 will be found. The following scheme can solve this problem. Given a line drawing, steps 1–6 in Algorithm 2 are used to decompose it into multiple objects of DoF 4. If there are separate groups of faces not in SMWC, where the faces in each group are connected, then attach the groups each with less than four faces to some objects in SMWC3 (the attachment method is similar to steps 7 and 8 in Algorithm 2). For a group with four or more connected faces, Algorithm 2 is applied to it with a minor modification in Algorithm 1. The modification is to set Finitial to contain three connected faces whose combined DoF is 5. This modification allows the search of objects of DoF 5. Suppose the object in Fig. 7(a) is such a group. Applying Algorithm 2 to it with the minor modification generates the decomposition result as shown in Fig. 7(b). 2.3. 3D Reconstruction A complex line drawing can be decomposed into several simpler ones using the method proposed in Sections 2. 1 and 2.2. The next step is to reconstruct a 3D object from each ofthem, which is an easy task because the decomposed line drawings are simple. The method in [6] or [7] can carry out this task very well. We use the one in [6] for our work with the objective function Φ(z1 , z2 , ..., zNv ) constructed by these five image regularities: MSDA, face planarity, line parallelism, isometry, and corner orthogonality. The details of the regularities can be found from [6]. After obtaining the 3D objects from all the decomposed line drawings, the next step is to merge them to form one complex object. When merging two 3D objects, since they are reconstructed separately, the gluing parts (face or edge) of them are usually not of the same size. Then one object is automatically rescaled according to the sizes of the two gluing parts, and the vertices of the gluing part of this object are also adjusted so that the two parts are the same. After merging all the 3D objects, the whole object is fine-tuned by minimizing the objective function Φ on the object. We can also apply our method to reconstruct 3D shapes from objects in images. First, the user draws a line drawing along the visible edges of an object and he/she can also 3The reason to attach a group with less than four faces to an object in SMWC is that this group is small and is not necessary to be an independent object to reconstruct. guess (draw) the hidden edges. Then from this line drawing, our approach described above reconstructs the 3D geometry of the object in the image. 3. Experimental Results In this section, we show a number of complex 3D reconstruction examples from both line drawings and images to demonstrate the performance of our approach. The first set of experiments in Fig. 8 has nine complex line drawings. Fig. 8(a) is a manifold, and the others are nonmanifold solids or non-solids. The decompositions of the line drawings are also given in the figure, from which we can see that the results are in accordance with our visual perception very well. All the primitive solids are found by our algorithm. It is the successful decompositions that make the 3D reconstructions from these complex line drawings possible. The expected satisfactory reconstruction results are shown also in Fig. 8 each in two views. Fig. 9 shows another set of 3D reconstructions from objects in images with line drawings drawn on the objects. The decomposition results are omitted due to the space limitation. Each reconstruction result obtained by our algorithm is shown in two views with the texture from the image mapped onto the surface. We can see that the results are very good. The details of the objects and the line drawings can be shown by enlarging the figures on the screen. Among all the previous algorithms for general object reconstruction, the one in [7] can deal with most complex objects. Due to the local minimum problem in a high dimensional search space, however, this algorithm cannot handle line drawings as complex as those in Figs. 8 and 9. For example, Fig. 10(a) shows its reconstruction result from the line drawing in Fig. 8(c), which is a failure. The reader may wonder what happens if the 3D reconstruction is based on an arbitrary decomposition of a complex line drawing, instead of the proposed one. Fig. 10(b) shows such a decomposition from Fig. 8(c). Based on this decomposition, the 3D reconstruction result obtained by the scheme described in Section 2.3 is given in Fig. 10(c), which is a failure. The failure is caused by two reasons: (i) An arbitrary decomposition usually does not generate common objects, which makes the image regularities less meaningful for the 3D reconstruction. (ii) The gluing of 3D objects from the decomposition in Fig. 10(b) is difficult because of the irregular touches between the objects. The fine-tuning processing (see Section 2.3) cannot reduce the large distortion to an acceptable result. Note that since our algorithm is not limited to manifolds, it can deal with line drawings with some or without hidden lines. The third line drawing in Fig. 9 is an example where some hidden lines are not drawn. Most of the line drawings in this paper look tidy. This 1438 (g)(h)(i) Fig. 8. Nine complex line drawings, their decompositons, and 3D reconstruction results in two views wher dif er nt col rs are used to denote the faces (better viewed on the screen). Fig.9 Fourimages,thecorespondi glinedrawings,andther constructed3Dobjectswith exturemap ed,eachs owni twoviews. The details can be seen by enlarging the figures on the screen. 1439 Fig.10(.a( ) Afailedreconstru(cb)tionbythealgorithm(ci)n[7].(b)An Fig.1 .(a ) Alinedrawingwith(bs)trongsketchingero(sc.)(b)(c) arbitrary decomposition of the line drawing in Fig. 8(c) without using our decomposition method. (c) Failed 3D reconstruction based on the decomposition in (b). Two views ofthe successful reconstruction result by our algorithm. is for easy observation of the objects. In fact, our algorithm is not sensitive to sketching errors. Take Fig. 8(a) as an example and assume it is an accurate projection of the 3D object. Then, random variations are generated with the Gaussian distribution N(0, σ2) on the 2D locations of the vertices. Fig. 11(a) is a resulting noisy line drawing with σ = W/200 where W is the width of the line drawing in Fig. 8(a). From Fig. 11, we see that even for this line drawing with strong sketching errors, our algorithm can still obtain the good reconstruction result. Our algorithm is implemented in C++. The computational time includes two parts: line drawing decomposition and 3D reconstruction. The main computation is consumed by the second part. On average, a common PC takes about one minute to obtain the reconstruction from each of the line drawings in Figs. 8 and 9. 4. Conclusion Previous algorithms of 3D object reconstruction from line drawings either deal with simple general objects or are limited to only manifolds (a subset of solids). In this paper, we have proposed a novel approach that can handle complex general objects, including manifolds, nonmanifold solids, and non-solids. It decomposes a complex line drawing into simpler ones according to the degree of freedom of objects, which is based on the developed 3D object properties. After 3D objects are reconstructed from the decomposed line drawings, they are merged to form a complex object. We have shown a number of reconstruction examples with comparison to the best previous algorithm. The results indicate that our algorithm can tackle much more complex line drawings of general objects and is insensitive to sketching errors. The future work includes (i) the correction of the distortions of 3D objects reconstructed from images caused by the perspective projection, and (ii) the extension of this work to objects with curved faces. Acknowledgements This work was supported by grants from Natural Science Foundation of China (No. try, Trade, and Information Shenzhen Municipality, and Guangdong Science, Technology Commission China (No. Innovative 201001D0104648280). 61070148), Indusof JC201005270378A), Research Team Program (No. Jianzhuang Liu is the correspond- ing author. References [1] M. Clowes. On seeing things. Artificial Intelligence, 2:79–1 16, 1971. [2] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. Proc. ACM SIGGRAPH, pages 11–20, 1996. [3] D. Jelinek and C. Taylor. Reconstruction of linearly parameterized models from single images with a camera of unknown focal length. IEEE T-PAMI, 23(7):767–773, 2001. [4] D. E. LaCourse. Handbook of Solid Modeling. McGraw-Hill, 1995. [5] Y. Leclerc and M. Fischler. An optimization-based approach to the interpretation of single line drawings as 3D wire frames. IJCV, 9(2): 113–136, 1992. [6] H. Lipson and M. Shpitalni. Optimization-based reconstruction of a 3d object from a single freehand line drawing. Computer-Aided Design, 28(7):651–663, 1996. [7] J. Liu, L. Cao, Z. Li, and X. Tang. Plane-based optimization for 3D object reconstruction from single line drawings. IEEE T-PAMI, 30(2):315–327, 2008. [8] J. Liu, Y. Chen, and X. Tang. Decomposition of complex line drawings with hidden lines for 3d planar-faced manifold object [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] reconstruction. IEEE T-PAMI, 33(1):3–15, 2011. J. Liu, Y. Lee, and W. Cham. Identifying faces in a 2D line drawing representing a manifold object. IEEE T-PAMI, 24(12): 1579–1593, 2002. J. Liu and X. Tang. Evolutionary search for faces from line drawings. IEEE T-PAMI, 27(6):861–872, 2005. T. Marill. Emulating the human interpretation of line-drawings as three-dimensional objects. IJCV, 6(2): 147–161, 1991 . P. R. J. O¨sterg a˚rd. A new algorithm for the maximum-weight clique problem. Nordic J. of Computing, 8(4):424–436, Dec. 2001 . H. Shimodaira. A shape-from-shading method of polyhedral objects using prior information. IEEE T-PAMI, 28(4):612–624, 2006. I. Shimshoni and J. Ponce. Recovering the shape of polyhedra using line-drawing analysis and complex reflectance models. Computer Vision and Image Understanding, 65(2):296–3 10, 1997. K. Shoji, K. Kato, and F. Toyama. 3-d interpretation of single line drawings based on entropy minimization principle. CVPR, 2001. M. Shpitalni and H. Lipson. Identification of faces in a 2d line drawing projection of a wireframe object. IEEE T-PAMI, 18(10), 1996. K. Sugihara. Machine interpretation of line drawings. MIT Press, 1986. A. Turner, D. Chapman, and A. Penn. Sketching space. Computer and Graphics, 24:869–879, 2000. F. Ulupinar and R. Nevatia. Shape from contour: straight homogeneous generalized cylinders and constant cross-section generalized cylinders. IEEE T-PAMI, 17(2): 120–135, 1995. T. Xue, J. Liu, and X. Tang. Example-based 3d object reconstruction from line drawings. CVPR, 2012. 1440

2 0.70589805 250 iccv-2013-Lifting 3D Manhattan Lines from a Single Image

Author: Srikumar Ramalingam, Matthew Brand

Abstract: We propose a novel and an efficient method for reconstructing the 3D arrangement of lines extracted from a single image, using vanishing points, orthogonal structure, and an optimization procedure that considers all plausible connectivity constraints between lines. Line detection identifies a large number of salient lines that intersect or nearly intersect in an image, but relatively a few of these apparent junctions correspond to real intersections in the 3D scene. We use linear programming (LP) to identify a minimal set of least-violated connectivity constraints that are sufficient to unambiguously reconstruct the 3D lines. In contrast to prior solutions that primarily focused on well-behaved synthetic line drawings with severely restricting assumptions, we develop an algorithm that can work on real images. The algorithm produces line reconstruction by identifying 95% correct connectivity constraints in York Urban database, with a total computation time of 1 second per image.

3 0.64851916 346 iccv-2013-Rectangling Stereographic Projection for Wide-Angle Image Visualization

Author: Che-Han Chang, Min-Chun Hu, Wen-Huang Cheng, Yung-Yu Chuang

Abstract: This paper proposes a new projection model for mapping a hemisphere to a plane. Such a model can be useful for viewing wide-angle images. Our model consists of two steps. In the first step, the hemisphere is projected onto a swung surface constructed by a circular profile and a rounded rectangular trajectory. The second step maps the projected image on the swung surface onto the image plane through the perspective projection. We also propose a method for automatically determining proper parameters for the projection model based on image content. The proposed model has several advantages. It is simple, efficient and easy to control. Most importantly, it makes a better compromise between distortion minimization and line preserving than popular projection models, such as stereographic and Pannini projections. Experiments and analysis demonstrate the effectiveness of our model.

4 0.60626447 343 iccv-2013-Real-World Normal Map Capture for Nearly Flat Reflective Surfaces

Author: Bastien Jacquet, Christian Häne, Kevin Köser, Marc Pollefeys

Abstract: Although specular objects have gained interest in recent years, virtually no approaches exist for markerless reconstruction of reflective scenes in the wild. In this work, we present a practical approach to capturing normal maps in real-world scenes using video only. We focus on nearly planar surfaces such as windows, facades from glass or metal, or frames, screens and other indoor objects and show how normal maps of these can be obtained without the use of an artificial calibration object. Rather, we track the reflections of real-world straight lines, while moving with a hand-held or vehicle-mounted camera in front of the object. In contrast to error-prone local edge tracking, we obtain the reflections by a robust, global segmentation technique of an ortho-rectified 3D video cube that also naturally allows efficient user interaction. Then, at each point of the reflective surface, the resulting 2D-curve to 3D-line correspondence provides a novel quadratic constraint on the local surface normal. This allows to globally solve for the shape by integrability and smoothness constraints and easily supports the usage of multiple lines. We demonstrate the technique on several objects and facades.

5 0.59492862 154 iccv-2013-Face Recognition via Archetype Hull Ranking

Author: Yuanjun Xiong, Wei Liu, Deli Zhao, Xiaoou Tang

Abstract: The archetype hull model is playing an important role in large-scale data analytics and mining, but rarely applied to vision problems. In this paper, we migrate such a geometric model to address face recognition and verification together through proposing a unified archetype hull ranking framework. Upon a scalable graph characterized by a compact set of archetype exemplars whose convex hull encompasses most of the training images, the proposed framework explicitly captures the relevance between any query and the stored archetypes, yielding a rank vector over the archetype hull. The archetype hull ranking is then executed on every block of face images to generate a blockwise similarity measure that is achieved by comparing two different rank vectors with respect to the same archetype hull. After integrating blockwise similarity measurements with learned importance weights, we accomplish a sensible face similarity measure which can support robust and effective face recognition and verification. We evaluate the face similarity measure in terms of experiments performed on three benchmark face databases Multi-PIE, Pubfig83, and LFW, demonstrat- ing its performance superior to the state-of-the-arts.

6 0.57507652 106 iccv-2013-Deep Learning Identity-Preserving Face Space

7 0.57248157 335 iccv-2013-Random Faces Guided Sparse Many-to-One Encoder for Pose-Invariant Face Recognition

8 0.56844062 436 iccv-2013-Unsupervised Intrinsic Calibration from a Single Frame Using a "Plumb-Line" Approach

9 0.56058705 157 iccv-2013-Fast Face Detector Training Using Tailored Views

10 0.55408174 97 iccv-2013-Coupling Alignments with Recognition for Still-to-Video Face Recognition

11 0.55048186 153 iccv-2013-Face Recognition Using Face Patch Networks

12 0.54416394 261 iccv-2013-Markov Network-Based Unified Classifier for Face Identification

13 0.54401284 152 iccv-2013-Extrinsic Camera Calibration without a Direct View Using Spherical Mirror

14 0.5224756 206 iccv-2013-Hybrid Deep Learning for Face Verification

15 0.52092314 356 iccv-2013-Robust Feature Set Matching for Partial Face Recognition

16 0.52016395 348 iccv-2013-Refractive Structure-from-Motion on Underwater Images

17 0.50850219 195 iccv-2013-Hidden Factor Analysis for Age Invariant Face Recognition

18 0.50747329 158 iccv-2013-Fast High Dimensional Vector Multiplication Face Recognition

19 0.49791405 272 iccv-2013-Modifying the Memorability of Face Photographs

20 0.49769884 49 iccv-2013-An Enhanced Structure-from-Motion Paradigm Based on the Absolute Dual Quadric and Images of Circular Points


similar papers computed by lda model

lda for this paper:

topicId topicWeight

[(2, 0.047), (7, 0.033), (12, 0.01), (26, 0.083), (31, 0.033), (35, 0.016), (38, 0.32), (42, 0.09), (64, 0.036), (73, 0.021), (78, 0.018), (89, 0.149)]

similar papers list:

simIndex simValue paperId paperTitle

same-paper 1 0.73998362 84 iccv-2013-Complex 3D General Object Reconstruction from Line Drawings

Author: Linjie Yang, Jianzhuang Liu, Xiaoou Tang

Abstract: An important topic in computer vision is 3D object reconstruction from line drawings. Previous algorithms either deal with simple general objects or are limited to only manifolds (a subset of solids). In this paper, we propose a novel approach to 3D reconstruction of complex general objects, including manifolds, non-manifold solids, and non-solids. Through developing some 3D object properties, we use the degree of freedom of objects to decompose a complex line drawing into multiple simpler line drawings that represent meaningful building blocks of a complex object. After 3D objects are reconstructed from the decomposed line drawings, they are merged to form a complex object from their touching faces, edges, and vertices. Our experiments show a number of reconstruction examples from both complex line drawings and images with line drawings superimposed. Comparisons are also given to indicate that our algorithm can deal with much more complex line drawings of general objects than previous algorithms. 1. Introduction and Related Work A 2D line drawing is the most straightforward way of illustrating a 3D object. Given a line drawing representing a 3D object, our visual system can understand the 3D structure easily. For example, we can interpret without difficulty the line drawing shown in Fig. 1(a) as a castle with four walls and one door. Imitating this ability has been a longstanding and challenging topic in computer vision when a line drawing is as complex as this example. The applications of this work include 3D object design in CAD and for 3D printers, 3D query generation for 3D object retrieval, and 3D modeling from images. In this paper, same as the majority of related work, a line drawing is defined as the orthogonal projection of the Fig.1 (a)Alinedrawing(rae)pres nti gac stle.(b)The3Dm(obd)el of the line drawing. edges and vertices of a 3D object in a generic view, and objects with planar surfaces are considered. A line drawing is represented by an edge-vertex graph. It can be obtained by the user/designer who draws on the screen with a tablet pen, a mouse, or a finger (on a touch sensitive screen), with all, with some, or without hidden edges and vertices. Line labeling is the earliest work to interpret line drawings [1], [17]. It searches for a set of consistent labels such as convex, concave, and occluding from a line drawing to test its correctness and/or realizability. Line labeling itself cannot recover 3D shape from a line drawing. Later, 3D reconstruction from the contours (line drawings) of objects in images is studied [19], [14], [13], which handles simple objects only. Model-based 3D reconstruction [2], [3], [20] can deal with more complex objects, but these methods require to pre-define a set of parametric models. Recently, popular methods of 3D reconstruction from line drawings are optimization based, which are most related to our work and are reviewed next. These methods can be classified into two categories: one dealing with manifolds and the other dealing with general objects. A general object can be a manifold, non-manifold solid, or non-solid. Manifolds are a subset of solids, defined as follows: A manifold, or more rigorously 2D manifold, is a solid where every point on its surface has a neighborhood topologically equivalent to an open diskin the 2D Euclidean space. 1433 In this paper, a solid is a portion of 3D space bounded by planar faces, and a manifold is also bounded by planar faces. Each edge of such manifolds is shared exactly by two faces [4]. Most 3D reconstruction methods from a line drawing assume that the face topology of the line drawing is known in advance. This information can reduce the reconstruction complexity greatly. Algorithms have been developed to find faces from a line drawing in [16], [10], and [9], where [16] and [10] are for general objects and [9] for manifolds. Optimization-based 3D reconstruction depends on some critera (also called image regularities) that simulate our visual perception. Marill proposes a very simple but effective criterion to reconstruct a simple object: minimizing the standard deviation of the angles (MSDA) in the object [11]. Later, other regularities are proposed to deal with more complex objects such as face planarity, line parallelism, isometry, and corner orthogonality [5], [6], [15], [18]. In these methods, an objective function ?C Φ(z1,z2, ...,zNv) = ?ωiφi(z1,z2, ...,zNv) (1) i?= ?1 is minimized to derive the depths z1, z2 , ..., zNv , where Nv is the number of vertices in the line drawing, φi , i = 1, 2, ..., C, are the regularities, and ωi , i = 1, 2, ..., C, are the weights. The main problem in this approach is that these algorithms are easy to get trapped into local minima (obtaining failed results) when a line drawing is complex with many vertices, due to the search in a highdimensional space (Nv dimensions) with the non-convex objective function. For example, the search space is of 56 dimensions for the object in Fig. 1(a). To alleviate this problem, Liu et al. formulate 3D reconstruction in a lower dimensional space so that the optimization procedure has a better chance to find desired results [7]. For the complex object in Fig. 1(a), however, the search in a space with 18 dimensions is still too difficult for it to obtain a satisfactory 3D object (see Section 3). The methods in [5], [6], [15], [18], and [7] reconstruct general objects, and the one in [7] can deal with more complex objects than the other four. But these algorithms cannot avoid the local minimum problem in a high dimensional search space when a line drawing is complex. In [8], a divide-and-conquer (D&C;) strategy is used to tackle this problem. It first separates a complex line drawing into multiple simpler ones, then independently recovers the 3D objects from these line drawings, and finally merges them to form a complete object. Since the separated line drawings are much simpler than the original one, the 3D reconstruction from each of them is an easy task. This D&C; approach handles manifolds only. Based on known faces found by the face identification algorithm in [9], it uses manifold properties to find internal faces Fig.2(a)Asimaeplhdmiafnbo(ldagc)withnae'fahdc'eisfba'nd(obgcn)'eitrnalfce (a, b, c, d). (b) Decomposition result from the internal face. (a) (b) (c) (d) Fig. 3. (a) A non-manifold solid. (b) Expected decomposition of (a). (c) A sheet object. (d) Expected decomposition of (c). from a line drawing and then separates the line drawing from the internal faces. An internal face is defined as an imaginary face lying inside a manifold with only its edges visible on the surface [8]. It is not a real face but can be considered as two coincident real faces of identical shape belonging to two manifolds. For example, Fig. 2(a) shows a manifold with nine faces. The D&C; first finds the internal face (a, b, c, d) and then decomposes the line drawing from this internal face (Fig. 2(b)). However, handling manifolds only limits the applica- tions of [8]. In many applications in computer vision and graphics such as 3D object matching, retrieval, and rendering, it is unnecessary to represent objects as manifolds, in order to facilitate data processing and reduce data storage. For example, a flat ground can be represented by a sheet (one face), but if it is represented by a manifold, a thin box with six faces has to be used. Fig. 1(a), Fig. 3(a), and Fig. 3(c) are line drawings of three non-manifolds. In this paper, we propose a novel approach to 3D reconstruction of complex general objects based on visual perception, object properties, and new line drawing decomposition. Compared with previous methods, ours can deal with much more complex line drawings of general objects. It can handle not only manifolds but also non-manifold solids and non-solids, and is insensitive to sketching errors. 2. General Object Reconstruction We also use the D&C; strategy to deal with 3D reconstruction from a line drawing representing a complex general object. The key is how to decompose a complex line drawing of any objects into multiple simpler line drawings. These decomposed line drawings should represent objects that are in accordance with our visual perception, which makes the 3D reconstruction from these line drawings easier and better because the regularities used to build an objective function for reconstruction follow human perception of 1434 common objects [11], [5], [6], [15], [18]. Before the decomposition of a line drawing, we assume that all the real and internal faces of the object have been obtained from the line drawing using a face identification algorithm. For example, the algorithm in [10] finds 10 faces from the line drawing in Fig. 2(a) (including the internal face), and obtains 12 and 7 faces from the line drawings in Figs. 3(a) and (c), respectively. 2.1. Decomposing line drawings of solids In this subsection, we consider the line drawings of solids first. The decomposition method will be extended to the line drawings of general objects in the next subsection. It is not difficult to see that in general, a complex object, especially a manmade complex object, can be considered as the combinations of multiple smaller objects. The most common combination is the touch of two faces from two different objects such as the one in Fig. 2. Other combinations are the touches among lines, faces, and vertices. Our target is to decompose a complex solid into multiple primitive solids. Before the definition of a primitive solid, we introduce a term called the degree of freedom of a solid. Definition 1. The degree of freedom (DoF) of a 3D solid represented by a line drawing is the minimal number of zcoordinates that can uniquely determine this 3D solid. This is the first time that the concept of DoF is used to decompose line drawings. Now let us consider a simple object in Fig. 4(a). The cube has six faces: (v1, v2 , v3 , v4), (v1, v2, v6, v5), (v1, v4, v8, v5), (v2 , v3, v7, v6), (v4, v3, v7, v8), and (v6, v7, v8, v5). We can show that the cube is determined if the z-coordinates of its four non-coplanar vertices are known. Without loss of generality, suppose z1, z2, z4, and z5 are known. Since the 3D coordinates of v1, v2, and v4 are fixed (remind that the x- and y-coordinates of all the vertices are known under the orthogonal projection), the 3D plane passing through the face (v1, v2 , v3, v4) is determined, and thus z3 can be calculated. Similarly, z6 and z8 can be obtained. Finally, z7 can be computed with the 3D coordinates of v3, v4, and v8 known, which determine the plane passing through the face (v4, v3, v7, v8). So the 3D cube can be determined by the known four z-coordinates, z1, z2, z4, and z5. Further, it can be verified that three 3D vertices cannot determine this object uniquely because they can only define one face in 3D space. Therefore, the DoF of the cube is 4. Similar analysis allows us to know that the solids in Fig. 2(b), Fig. 3(b), and Fig. 4(b) all have DoF 4, while the two solids in Fig. 2(a) and Fig. 3(a) have DoFs 5 and 6, respectively. From these analysis, we can have the intuition that solids with DoF 4 serve as the building blocks of more complex solids whose DoFs are more than 4. Besides, we have the following property: Property 1. There is no solid with DoF less than 4. Fv5(1iga).4v (26a)Av48cubev3w7hos(be)DoFis4.(b)Anedo(tch)fergBasbolifdAwhosfCeDocFji is also 4. (c) Part of a line drawing with each vertex of degree 3. This property is easy to verify. A solid with fewest faces is a tetrahedron. Every two of its four faces are not co-planar. Three 3D vertices of a tetrahedron can only determine one 3D face. Next, we define primitive solids. Definition 2. A 3D solid represented by a line drawing is called a primitive solid if its DoF is 4. Property 2. If every vertex of a 3D solid represented by a line drawing has degree 31, then it is a primitive solid. Proof. Let part of such a line drawing be the one as shown in Fig. 4(c). At each vertex, every two of the three edges form a face, because a solid is bounded by faces without dangling faces and edges. Let the three paths fA, fB, and fC in Fig. 4(c) denote the three faces at vertex a. Without loss of generality, suppose that the four zcoordinates (and thus the four 3D coordinates) of vertices a, b, c, and d are known. Then the three planes passing through fA, fB, and fC are determined in 3D space. With the two known 3D planes passing through fA and fB at vertex b, the 3D coordinates of vertices g and h connected to b can be computed. Similarly, the 3D coordinates of vertices e and f connected to d and the 3D coordinates of vertices i and j connected to c can be obtained. Furthermore, all the 3D coordinates of the other vertices connected to e, f, g, h, i, and j can be derived in the same way. This derivation can propagate to all the vertices of this solid. Therefore, the DoF of this solid is 4 and it is a primitive solid. Property 3. The DoF of a solid is 5 which is obtained by gluing two faces of two primitive solids. Proof. Let the two primitive solids be PS1 and PS2 and their corresponding gluing faces be f1and f2, respectively. The DoFs of PS1 and PS2 are both 4. Suppose that PS1 is determined in 3D space, which requires four z-coordinates. Then f1and f2 are also determined in 3D space. When the z-coordinates of three vertices on PS2 are known based on f2, one more z-coordinate of a vertex not coplanar with f2 on PS2 can determine PS2 in 3D space. Therefore, the DoF of the combined solid is 5. Fig. 2 is a typical example of two primitive solids gluing together along faces. Fig. 3(a) is an example of two primitive solids gluing together along edges. Two primitive solids may also connect at one vertex. The following property is easy to verify. 1The degree of a vertex is the number of edges connected to this vertex. 1435 Property 4. The DoF of a solid is 6 which is obtained by gluing two edges of two primitive solids. The DoF of a solid is 7 which is obtained by gluing two vertices oftwoprimitive solids. From the above properties, we can see that primitive solids are indeed the “smallest” solids in terms of DoF and they can serve as the building blocks to construct more complex solids. Therefore, our next target is to decompose a line drawing representing a complex solid into multiple line drawings representing primitive solids. Before giving Definition 3, we define some terms first. Vertex set of a face. The vertex set V er(f) of a face f is the set of all the vertices of f. Fixed vertex. A fixed vertex is one with its z-coordinate (thus its 3D coordinate) known. Unfixed vertex. An unfixed vertex is one with its zcoordinate unknown. Fixed face. A fixed face is one with its 3D position determined by its three fixed vertices. Unfixed face. An unfixed face is one with its 3D position undetermined. Definition 3. Let the vertex set and the face set of a line drawing be V = {v1, v2 , ..., vn} and F = {f1, f2 , ..., fm}, respectively, w =he {rve n and m are Fthe = n{fumbers of th}e, vertices and the faces, respectively. Also let Vfixed, Ffixed, Vunfixed, and Funfixed be the sets of fixed vertices, fixed faces, unfixed vertices, and unfixed faces, respectively. Suppose that an initial set of two fixed neighboring faces sharing an edge is Finitial with all their fixed vertices in Vinitial. The final Ffixed in Algorithm 1 is called the maximum extended face set (MEFS) from Finitial. In Algorithm 1, a face f that satisfies the condition in step 3 is a face that has been determined in 3D space by the current fixed vertices in Ffixed. When this face is found, it becomes a fixed face and all its vertices become fixed vertices. The DoF of the initial two fixed faces combined is 4. It is not difficult to see that the algorithm does not increase the initial DoF, and thus the final object represented by the MEFS also has DoF 4. Next, let us consider a simple example shown in Fig. 2(a) with the following three cases: Case 1. Suppose that Finitial = {(e, f,g, h) , (e, f,b, a)}, Vinitial = {e, f,g, h, b, a}, and th{e( algorithm a(de,dfs tbh,ea f}a,c Ves into Ffixed ,ing thh,isb aor}d,e ar:n (f th,e g, c, obr)i →m (a, b, c, d) → (e, h, d, a) →i ( tgh, hs, odr, dce)r. T (fhe,gn tch,eb )fin →al object ,fod)und → by t,hhe, algorithm (isg thh,ed c,uc)b.e. Note that the algorithm does not add any triangular faces into Ffixed because they do not satisfy the condition in step 3. Case 2. If Finitial = {(b, i,a) , (b, i,c)}, then the final object found is the pyramid, abn,id, tah)e, algorithm hdoenes t nhoet f iandadl any rectangular faces except (a, b, c, d) into Ffixed. Case 3. If Finitial = {(b, a, i) , (e, f,b, a)}, the algorithm cannot find any othe=r f a{(cebs,a at,oi a)d,(de ,tof Ffixed. tThheus al, gito rfaitihlsto find the cube or pyramid. Algorithm 1 Face extending procedure Initialization: F, F, Initialization: Funfixed = F \ Finitial , Ffixed = Finitial , Vfixed = Vinitial, Vunfixed = FV \ \ FVinitial. 1. do the following steps until no face satisfies the condition in step 3; 2. Find a face f ∈ Funfixed that satisfies 3. the number ofnon-collinear vertices in V er(f) ∩Vfixed is more than 2; 4. Add face f into Ffixed and delete it from Funfixed; 5. For each vertex v ∈ V er(f), if v ∈ Vunfixed, add v into Vfixed and delete it from Vunfixed; Return The final Ffixed. Fig.5(a)Ac(oam)plexinedrawingofn (-bm)anifolds id.(b)The decomposition result by our algorithm. In case 3, the object represented by the MEFS has only two initial faces and this object is discarded. In order not to miss a primitive solid, we run Algorithm 1 multiple times each with a different pair of neighboring faces in Finitial. Then, we can always have Finitial with its two faces from one primitive solid. For the object in Fig. 2(a), we can always find the cube and the pyramid. Note that the same primitive solid may be found multiple times from different Finitial, and finally we keep only one copy of each different object (cube and pyramid in this example). When a complex solid is formed by more than two primitive solids, Algorithm 1 can still be used to find the primitive solids, which is the decomposition result of the complex line drawing. More complex examples are given in Section 3. Besides, Algorithm 1 can also deal with complex solids formed by gluing primitive solids between edges and vertices. Fig. 5(a) is a solid constructed by gluing eight primitive solids between faces, edges, and vertices. Running Algorithm 1multiple times with different pairs of neighboring faces in Finitial generates the primitive solids as shown in Fig. 5(b). 2.2. Decomposing line drawings of general objects A general object can be a manifold, non-manifold solid, or non-solid. Given a line drawing representing a general object, it is unknown whether this object consists of only primitive solids. However, we can always apply Algorithm 1to the line drawing multiple times, each with a 1436 Obj6(4)O b j 15( 94)(ca)O b j 24(9 7)Obj3(7)(bd) Fig. 6. Illustration of our decomposition method. (a) A line drawing. (b) The set of MEFSs from (a). (c) The weighted objectcoexistence graph where the maximum weight clique is shown in bold. (d) The decomposition of (a). different pair of neighboring faces in Finitial, generating a set SMEFS of MEFSs (recall that an MEFS with only two initial neighboring faces is discarded). In what follows, we also call an MEFS an object, which is represented by the MEFS. Note that an MEFS generated from a general line drawing may not be a primitive solid, but its DoF must be 4. Objects of DoF 4 have relatively simple structures and are easy to be reconstructed. A number of decomposition examples of complex general line drawings can be seen from the experimental section. One issue existing in this decomposition method is that two different MEFSs may share many faces. For example, from the line drawing in Fig. 6(a), all different MEFSs found by running Algorithm 1multiple times are shown in Fig. 6(b), where Obj 1and Obj 5 share four faces, and so do Obj 2 and Obj 6. Obviously, Obj 5 and Obj 6 are not necessary. Next we define object coexistence and a rule to choose objects. Definition 4. Two objects are called coexistent if they share no face or share only coplanar faces. Rule 1. Choose a subset of SMEFS such that in the subset, all the objects are coexistent and the number of total faces is maximized. From Definition 4, Obj 1 and Obj 5 are not coexistent in Fig. 6, and Obj 2 and Obj 6 are not either. If Obj 5 and Obj 6 are kept with Obj 1and Obj 2 discarded, many faces in the original object will be missing. Rule 1guarantees that Obj 1and Obj 2 are kept but not Obj 5 and Obj 6. Algorithm 2 Decomposition of a general line drawing Algorithm 2 Decomposition of a general line drawing Input: A Line Drawing: G = (V,E,F). Initialization: SMEFS = ∅, SMWC = ∅. 1. for each pair of neighboring faces {fa , fb} in F do 2. Call Algorithm 1with Finitial = {fa , fb} and Vinitial = V er(fa) ∪ V er(fb); 3. if the returned Ffixed from Algorithm 1contains more than two faces do 4. SMEFS ← Ffixed; 5. Construct the object-coexistence graph Gobj with SMEFS ; 6. SMWC ← the maximum weight clique found from Gobj ; 7. for each face f not contained in SMWC do 8. Attach f to the object in SMWC that contains the maximum number of the vertices of f; Return SMWC. Fig.7 (a)Ashe tobjec(ta)with23faces.(b)Decompositon(br)esult by Algorithm 2 with the modification in Algorithm 1. We formulate Rule 1 as a maximum weight clique problem (MWCP), which is to find a clique2 of the maximum weight from a weighted graph. First, we construct a weighted graph, called the object-coexistence graph, in which a vertex denotes an object in SMEFS and there is an edge connecting two vertices if the two objects represented by the two vertices are coexistent. Besides, each vertex is assigned a weight equal to the number of the faces of the corresponding object. The MWCP is a well-known NP-hard problem. In our application, however, solving this problem is fast enough since an object-coexistence graph usually has less than 20 objects (vertices). We use the algorithm in [12] to deal with this problem. Fig. 6(c) is the object-coexistence graph constructed from the six objects in Fig. 6(b), where the weights of the vertices are denoted by the numbers in the parentheses. The maximum weight clique is shown in bold. From Fig. 6, we see that the face (14, 13, 26, 25) is not contained in SWMC, which is used to store the objects in the maximum weight clique. This face is finally attached to Obj 3. In general, each of the faces not in SWMC is attached to an object that contains the maximum number of the vertices of this face. If there are two or more objects that contain the same number of the vertices of this face, this face is assigned to any of them. 2A clique is a subgraph of a graph such that subgraph are connected by an edge. every two vertices in the 1437 Algorithm 2 shows the complete algorithm to decompose a general line drawing. Steps 7 and 8 attach the faces not in SMWC to some objects in SMWC. A common complex object usually consists of primitive solids and sheets, and Algorithm 2 works well for the decomposition of most complex line drawings. However, there are still some line drawings the algorithm cannot deal with. Such an example is shown in Fig. 7(a) which is a sheet object with 23 faces. In Algorithm 1, with any pair of initial neighboring faces, there is no any other face satisfying the condition in step 3, thus no object of DoF 4 will be found. The following scheme can solve this problem. Given a line drawing, steps 1–6 in Algorithm 2 are used to decompose it into multiple objects of DoF 4. If there are separate groups of faces not in SMWC, where the faces in each group are connected, then attach the groups each with less than four faces to some objects in SMWC3 (the attachment method is similar to steps 7 and 8 in Algorithm 2). For a group with four or more connected faces, Algorithm 2 is applied to it with a minor modification in Algorithm 1. The modification is to set Finitial to contain three connected faces whose combined DoF is 5. This modification allows the search of objects of DoF 5. Suppose the object in Fig. 7(a) is such a group. Applying Algorithm 2 to it with the minor modification generates the decomposition result as shown in Fig. 7(b). 2.3. 3D Reconstruction A complex line drawing can be decomposed into several simpler ones using the method proposed in Sections 2. 1 and 2.2. The next step is to reconstruct a 3D object from each ofthem, which is an easy task because the decomposed line drawings are simple. The method in [6] or [7] can carry out this task very well. We use the one in [6] for our work with the objective function Φ(z1 , z2 , ..., zNv ) constructed by these five image regularities: MSDA, face planarity, line parallelism, isometry, and corner orthogonality. The details of the regularities can be found from [6]. After obtaining the 3D objects from all the decomposed line drawings, the next step is to merge them to form one complex object. When merging two 3D objects, since they are reconstructed separately, the gluing parts (face or edge) of them are usually not of the same size. Then one object is automatically rescaled according to the sizes of the two gluing parts, and the vertices of the gluing part of this object are also adjusted so that the two parts are the same. After merging all the 3D objects, the whole object is fine-tuned by minimizing the objective function Φ on the object. We can also apply our method to reconstruct 3D shapes from objects in images. First, the user draws a line drawing along the visible edges of an object and he/she can also 3The reason to attach a group with less than four faces to an object in SMWC is that this group is small and is not necessary to be an independent object to reconstruct. guess (draw) the hidden edges. Then from this line drawing, our approach described above reconstructs the 3D geometry of the object in the image. 3. Experimental Results In this section, we show a number of complex 3D reconstruction examples from both line drawings and images to demonstrate the performance of our approach. The first set of experiments in Fig. 8 has nine complex line drawings. Fig. 8(a) is a manifold, and the others are nonmanifold solids or non-solids. The decompositions of the line drawings are also given in the figure, from which we can see that the results are in accordance with our visual perception very well. All the primitive solids are found by our algorithm. It is the successful decompositions that make the 3D reconstructions from these complex line drawings possible. The expected satisfactory reconstruction results are shown also in Fig. 8 each in two views. Fig. 9 shows another set of 3D reconstructions from objects in images with line drawings drawn on the objects. The decomposition results are omitted due to the space limitation. Each reconstruction result obtained by our algorithm is shown in two views with the texture from the image mapped onto the surface. We can see that the results are very good. The details of the objects and the line drawings can be shown by enlarging the figures on the screen. Among all the previous algorithms for general object reconstruction, the one in [7] can deal with most complex objects. Due to the local minimum problem in a high dimensional search space, however, this algorithm cannot handle line drawings as complex as those in Figs. 8 and 9. For example, Fig. 10(a) shows its reconstruction result from the line drawing in Fig. 8(c), which is a failure. The reader may wonder what happens if the 3D reconstruction is based on an arbitrary decomposition of a complex line drawing, instead of the proposed one. Fig. 10(b) shows such a decomposition from Fig. 8(c). Based on this decomposition, the 3D reconstruction result obtained by the scheme described in Section 2.3 is given in Fig. 10(c), which is a failure. The failure is caused by two reasons: (i) An arbitrary decomposition usually does not generate common objects, which makes the image regularities less meaningful for the 3D reconstruction. (ii) The gluing of 3D objects from the decomposition in Fig. 10(b) is difficult because of the irregular touches between the objects. The fine-tuning processing (see Section 2.3) cannot reduce the large distortion to an acceptable result. Note that since our algorithm is not limited to manifolds, it can deal with line drawings with some or without hidden lines. The third line drawing in Fig. 9 is an example where some hidden lines are not drawn. Most of the line drawings in this paper look tidy. This 1438 (g)(h)(i) Fig. 8. Nine complex line drawings, their decompositons, and 3D reconstruction results in two views wher dif er nt col rs are used to denote the faces (better viewed on the screen). Fig.9 Fourimages,thecorespondi glinedrawings,andther constructed3Dobjectswith exturemap ed,eachs owni twoviews. The details can be seen by enlarging the figures on the screen. 1439 Fig.10(.a( ) Afailedreconstru(cb)tionbythealgorithm(ci)n[7].(b)An Fig.1 .(a ) Alinedrawingwith(bs)trongsketchingero(sc.)(b)(c) arbitrary decomposition of the line drawing in Fig. 8(c) without using our decomposition method. (c) Failed 3D reconstruction based on the decomposition in (b). Two views ofthe successful reconstruction result by our algorithm. is for easy observation of the objects. In fact, our algorithm is not sensitive to sketching errors. Take Fig. 8(a) as an example and assume it is an accurate projection of the 3D object. Then, random variations are generated with the Gaussian distribution N(0, σ2) on the 2D locations of the vertices. Fig. 11(a) is a resulting noisy line drawing with σ = W/200 where W is the width of the line drawing in Fig. 8(a). From Fig. 11, we see that even for this line drawing with strong sketching errors, our algorithm can still obtain the good reconstruction result. Our algorithm is implemented in C++. The computational time includes two parts: line drawing decomposition and 3D reconstruction. The main computation is consumed by the second part. On average, a common PC takes about one minute to obtain the reconstruction from each of the line drawings in Figs. 8 and 9. 4. Conclusion Previous algorithms of 3D object reconstruction from line drawings either deal with simple general objects or are limited to only manifolds (a subset of solids). In this paper, we have proposed a novel approach that can handle complex general objects, including manifolds, nonmanifold solids, and non-solids. It decomposes a complex line drawing into simpler ones according to the degree of freedom of objects, which is based on the developed 3D object properties. After 3D objects are reconstructed from the decomposed line drawings, they are merged to form a complex object. We have shown a number of reconstruction examples with comparison to the best previous algorithm. The results indicate that our algorithm can tackle much more complex line drawings of general objects and is insensitive to sketching errors. The future work includes (i) the correction of the distortions of 3D objects reconstructed from images caused by the perspective projection, and (ii) the extension of this work to objects with curved faces. Acknowledgements This work was supported by grants from Natural Science Foundation of China (No. try, Trade, and Information Shenzhen Municipality, and Guangdong Science, Technology Commission China (No. Innovative 201001D0104648280). 61070148), Indusof JC201005270378A), Research Team Program (No. Jianzhuang Liu is the correspond- ing author. References [1] M. Clowes. On seeing things. Artificial Intelligence, 2:79–1 16, 1971. [2] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. Proc. ACM SIGGRAPH, pages 11–20, 1996. [3] D. Jelinek and C. Taylor. Reconstruction of linearly parameterized models from single images with a camera of unknown focal length. IEEE T-PAMI, 23(7):767–773, 2001. [4] D. E. LaCourse. Handbook of Solid Modeling. McGraw-Hill, 1995. [5] Y. Leclerc and M. Fischler. An optimization-based approach to the interpretation of single line drawings as 3D wire frames. IJCV, 9(2): 113–136, 1992. [6] H. Lipson and M. Shpitalni. Optimization-based reconstruction of a 3d object from a single freehand line drawing. Computer-Aided Design, 28(7):651–663, 1996. [7] J. Liu, L. Cao, Z. Li, and X. Tang. Plane-based optimization for 3D object reconstruction from single line drawings. IEEE T-PAMI, 30(2):315–327, 2008. [8] J. Liu, Y. Chen, and X. Tang. Decomposition of complex line drawings with hidden lines for 3d planar-faced manifold object [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] reconstruction. IEEE T-PAMI, 33(1):3–15, 2011. J. Liu, Y. Lee, and W. Cham. Identifying faces in a 2D line drawing representing a manifold object. IEEE T-PAMI, 24(12): 1579–1593, 2002. J. Liu and X. Tang. Evolutionary search for faces from line drawings. IEEE T-PAMI, 27(6):861–872, 2005. T. Marill. Emulating the human interpretation of line-drawings as three-dimensional objects. IJCV, 6(2): 147–161, 1991 . P. R. J. O¨sterg a˚rd. A new algorithm for the maximum-weight clique problem. Nordic J. of Computing, 8(4):424–436, Dec. 2001 . H. Shimodaira. A shape-from-shading method of polyhedral objects using prior information. IEEE T-PAMI, 28(4):612–624, 2006. I. Shimshoni and J. Ponce. Recovering the shape of polyhedra using line-drawing analysis and complex reflectance models. Computer Vision and Image Understanding, 65(2):296–3 10, 1997. K. Shoji, K. Kato, and F. Toyama. 3-d interpretation of single line drawings based on entropy minimization principle. CVPR, 2001. M. Shpitalni and H. Lipson. Identification of faces in a 2d line drawing projection of a wireframe object. IEEE T-PAMI, 18(10), 1996. K. Sugihara. Machine interpretation of line drawings. MIT Press, 1986. A. Turner, D. Chapman, and A. Penn. Sketching space. Computer and Graphics, 24:869–879, 2000. F. Ulupinar and R. Nevatia. Shape from contour: straight homogeneous generalized cylinders and constant cross-section generalized cylinders. IEEE T-PAMI, 17(2): 120–135, 1995. T. Xue, J. Liu, and X. Tang. Example-based 3d object reconstruction from line drawings. CVPR, 2012. 1440

2 0.63502264 267 iccv-2013-Model Recommendation with Virtual Probes for Egocentric Hand Detection

Author: Cheng Li, Kris M. Kitani

Abstract: Egocentric cameras can be used to benefit such tasks as analyzing fine motor skills, recognizing gestures and learning about hand-object manipulation. To enable such technology, we believe that the hands must detected on thepixellevel to gain important information about the shape of the hands and fingers. We show that the problem of pixel-wise hand detection can be effectively solved, by posing the problem as a model recommendation task. As such, the goal of a recommendation system is to recommend the n-best hand detectors based on the probe set a small amount of labeled data from the test distribution. This requirement of a probe set is a serious limitation in many applications, such as ego-centric hand detection, where the test distribution may be continually changing. To address this limitation, we propose the use of virtual probes which can be automatically extracted from the test distribution. The key idea is – that many features, such as the color distribution or relative performance between two detectors, can be used as a proxy to the probe set. In our experiments we show that the recommendation paradigm is well-equipped to handle complex changes in the appearance of the hands in firstperson vision. In particular, we show how our system is able to generalize to new scenarios by testing our model across multiple users.

3 0.61204398 437 iccv-2013-Unsupervised Random Forest Manifold Alignment for Lipreading

Author: Yuru Pei, Tae-Kyun Kim, Hongbin Zha

Abstract: Lipreading from visual channels remains a challenging topic considering the various speaking characteristics. In this paper, we address an efficient lipreading approach by investigating the unsupervised random forest manifold alignment (RFMA). The density random forest is employed to estimate affinity of patch trajectories in speaking facial videos. We propose novel criteria for node splitting to avoid the rank-deficiency in learning density forests. By virtue of the hierarchical structure of random forests, the trajectory affinities are measured efficiently, which are used to find embeddings of the speaking video clips by a graph-based algorithm. Lipreading is formulated as matching between manifolds of query and reference video clips. We employ the manifold alignment technique for matching, where the L∞norm-based manifold-to-manifold distance is proposed to find the matching pairs. We apply this random forest manifold alignment technique to various video data sets captured by consumer cameras. The experiments demonstrate that lipreading can be performed effectively, and outperform state-of-the-arts.

4 0.61097109 10 iccv-2013-A Framework for Shape Analysis via Hilbert Space Embedding

Author: Sadeep Jayasumana, Mathieu Salzmann, Hongdong Li, Mehrtash Harandi

Abstract: We propose a framework for 2D shape analysis using positive definite kernels defined on Kendall’s shape manifold. Different representations of 2D shapes are known to generate different nonlinear spaces. Due to the nonlinearity of these spaces, most existing shape classification algorithms resort to nearest neighbor methods and to learning distances on shape spaces. Here, we propose to map shapes on Kendall’s shape manifold to a high dimensional Hilbert space where Euclidean geometry applies. To this end, we introduce a kernel on this manifold that permits such a mapping, and prove its positive definiteness. This kernel lets us extend kernel-based algorithms developed for Euclidean spaces, such as SVM, MKL and kernel PCA, to the shape manifold. We demonstrate the benefits of our approach over the state-of-the-art methods on shape classification, clustering and retrieval.

5 0.61064148 95 iccv-2013-Cosegmentation and Cosketch by Unsupervised Learning

Author: Jifeng Dai, Ying Nian Wu, Jie Zhou, Song-Chun Zhu

Abstract: Cosegmentation refers to theproblem ofsegmenting multiple images simultaneously by exploiting the similarities between the foreground and background regions in these images. The key issue in cosegmentation is to align common objects between these images. To address this issue, we propose an unsupervised learning framework for cosegmentation, by coupling cosegmentation with what we call “cosketch ”. The goal of cosketch is to automatically discover a codebook of deformable shape templates shared by the input images. These shape templates capture distinct image patterns and each template is matched to similar image patches in different images. Thus the cosketch of the images helps to align foreground objects, thereby providing crucial information for cosegmentation. We present a statistical model whose energy function couples cosketch and cosegmentation. We then present an unsupervised learning algorithm that performs cosketch and cosegmentation by energy minimization. Experiments show that our method outperforms state of the art methods for cosegmentation on the challenging MSRC and iCoseg datasets. We also illustrate our method on a new dataset called Coseg-Rep where cosegmentation can be performed within a single image with repetitive patterns.

6 0.59029657 197 iccv-2013-Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition

7 0.53952181 150 iccv-2013-Exemplar Cut

8 0.53527087 156 iccv-2013-Fast Direct Super-Resolution by Simple Functions

9 0.53405392 379 iccv-2013-Semantic Segmentation without Annotating Segments

10 0.53366876 330 iccv-2013-Proportion Priors for Image Sequence Segmentation

11 0.53338909 349 iccv-2013-Regionlets for Generic Object Detection

12 0.53190118 21 iccv-2013-A Method of Perceptual-Based Shape Decomposition

13 0.53161854 196 iccv-2013-Hierarchical Data-Driven Descent for Efficient Optimal Deformation Estimation

14 0.53151321 326 iccv-2013-Predicting Sufficient Annotation Strength for Interactive Foreground Segmentation

15 0.53079343 6 iccv-2013-A Convex Optimization Framework for Active Learning

16 0.53065062 291 iccv-2013-No Matter Where You Are: Flexible Graph-Guided Multi-task Learning for Multi-view Head Pose Classification under Target Motion

17 0.53030258 107 iccv-2013-Deformable Part Descriptors for Fine-Grained Recognition and Attribute Prediction

18 0.53000879 376 iccv-2013-Scene Text Localization and Recognition with Oriented Stroke Detection

19 0.52993792 414 iccv-2013-Temporally Consistent Superpixels

20 0.5297209 180 iccv-2013-From Where and How to What We See