acl acl2013 acl2013-380 acl2013-380-reference knowledge-graph by maker-knowledge-mining

380 acl-2013-VSEM: An open library for visual semantics representation


Source: pdf

Author: Elia Bruni ; Ulisse Bordignon ; Adam Liska ; Jasper Uijlings ; Irina Sergienya

Abstract: VSEM is an open library for visual semantics. Starting from a collection of tagged images, it is possible to automatically construct an image-based representation of concepts by using off-theshelf VSEM functionalities. VSEM is entirely written in MATLAB and its objectoriented design allows a large flexibility and reusability. The software is accompanied by a website with supporting documentation and examples.


reference text

Mark Andrews, Gabriella Vigliocco, and David Vinson. 2009. Integrating experiential and distributional data to learn semantic representations. Psychological Review, 116(3):463–498. Kobus Barnard, Pinar Duygulu, David Forsyth, Nando de Freitas, David Blei, and Michael Jordan. 2003. Matching words and pictures. Journal of Machine Learning Research, 3: 1107–1 135. Marco Baroni and Alessandro Lenci. 2008. Concepts and properties in word spaces. Italian Journal of Linguistics, 20(1):55–88. Marco Baroni, Eduard Barbu, Brian Murphy, and Massimo Poesio. 2010. Strudel: A distributional semantic model based on properties and types. Cognitive Science, 34(2):222–254. Tamara Berg, Alexander Berg, and Jonathan Shih. 2010. Automatic attribute discovery and characterization from noisy Web data. In ECCV, pages 663– 676, Crete, Greece. Shane Bergsma and Randy Goebel. 2011. Using vi- sual information to predict lexical preference. In Proceedings ofRANLP, pages 399–405, Hissar, Bulgaria. David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993–1022. Elia Bruni, Giang Binh Tran, and Marco Baroni. 2011. Distributional semantics from text and images. In Proceedings of the EMNLP GEMS Workshop, pages 22–32, Edinburgh, UK. Elia Bruni, Gemma Boleda, Marco Baroni, and Nam Khanh Tran. 2012a. Distributional semantics in Technicolor. In Proceedings of ACL, pages 136– 145, Jeju Island, Korea. Elia Bruni, Jasper Uijlings, Marco Baroni, and Nicu Sebe. 2012b. Distributional semantics with eyes: Using image analysis to improve computational representations of word meaning. In Proceedings of ACM Multimedia, pages 1219–1228, Nara, Japan. Ken Chatfield, Victor Lempitsky, Andrea Vedaldi, and Andrew Zisserman. 2011. The devil is in the details: an evaluation of recent feature encoding methods. In Proceedings of BMVC, Dundee, UK. 191 Stefan Evert. 2005. The Statistics of Word Cooccurrences. Dissertation, Stuttgart University. Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. 2009. Describing objects by their attributes. In Proceedings of CVPR, pages 1778– 1785, Miami Beach, FL. Yansong Feng and Mirella Lapata. 2010. Visual information in semantic representation. In Proceedings of HLT-NAACL, pages 91–99, Los Angeles, CA. Kristen Grauman and Bastian Leibe. 2011. Visual Object Recognition. Morgan & Claypool, San Francisco. Geoffrey Hinton and Ruslan Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786):504 507. – Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming Li, Yejin Choi, Alexander C. Berg, and Tamara L. Berg. 2011. Baby talk: Understanding and generating simple image descriptions. In Proceedings of CVPR, Colorado Springs, MSA. Thomas Landauer and Susan Dumais. 1997. A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. 240. Psychological Review, 104(2):21 1– Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. 2006. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proceedings of CVPR, pages 2169–2178, Washington, DC. Daniel D. Lee and H. Sebastian Seung. 2001. Algorithms for non-negative matrix factorization. In In NIPS, pages 556–562. MIT Press. Chee Wee Leong and Rada Mihalcea. 2011. Going beyond text: A hybrid image-text approach for measuring word relatedness. In Proceedings of IJCNLP, pages 1403–1407. David Lowe. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), November. Chris Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press, Cambridge, UK. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool. 2005. A Comparison of Affine Region De- tectors. International Journal of Computer Vision, 65(1). Florent Perronnin, Jorge Sanchez, and Thomas Mensink. 2010. Improving the fisher kernel for large-scale image classification. In Proceedings of ECCV, pages 143–156, Berlin, Heidelberg. Brian Riordan and Michael Jones. 2011. Redundancy in perceptual and linguistic experience: Comparing feature-based and distributional models of semantic representation. Topics in Cognitive Science, 3(2): 1– 43. Josef Sivic and Andrew Zisserman. 2003. Video Google: A text retrieval approach to object matching in videos. In Proceedings of ICCV, pages 1470– 1477, Nice, France. Peter Turney and Patrick Pantel. 2010. From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37: 141–188. J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeulders. 2013. Selective search for object recognition. IJCV. Andrea Vedaldi and Brian Fulkerson. 2010. Vlfeat an open and portable library of computer vision algorithms. In Proceedings of ACM Multimedia, – pages 1469–1472, Firenze, Italy. 192