acl acl2013 acl2013-339 acl2013-339-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Leon Derczynski ; Robert Gaizauskas
Abstract: Automatically determining the temporal order of events and times in a text is difficult, though humans can readily perform this task. Sometimes events and times are related through use of an explicit co-ordination which gives information about the temporal relation: expressions like “before ” and “as soon as”. We investigate the r oˆle that these co-ordinating temporal signals have in determining the type of temporal relations in discourse. Using machine learning, we improve upon prior approaches to the problem, achieving over 80% accuracy at labelling the types of temporal relation between events and times that are related by temporal signals.
J. Allen. 1983. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(1 1):832– 843. Y. Bestgen and W. Vonk. 1999. Temporal adverbials as segmentation markers in discourse comprehension. Journal of Memory and Language, 42(1):74–87. S. Bethard, J. Martin, and S. Klingenstein. 2007. Timelines from text: Identification of syntactic temporal relations. In Proceedings of the International Conference on Semantic Computing, pages 11–18. D. Blaheta and E. Charniak. 2000. Assigning function tags to parsed text. In Proceedings of the meeting of the North American chapter of the Association for Computational Linguistics, pages 234–240. ACL. B. Boguraev and R. K. Ando. 2005. TimeBank-Driven TimeML Analysis. In G. Katz, J. Pustejovsky, and F. Schilder, editors, Annotating, Extracting and Reasoning about Time and Events, number 0515 1 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany. Internationales Begegnungs- und Forschungszentrum f u¨r Informatik (IBFI), Schloss Dagstuhl, Germany. D. Br´ ee, A. Feddag, and I. Pratt. 1993. Towards a formalization of the semantics of some temporal prepositions. Time & Society, 2(2):219. L. Breiman. 2001. Random forests. Machine Learning, 45(1):5–32. N. Chambers, S. Wang, and D. Jurafsky. 2007. Classifying temporal relations between events. In Pro- ceedings of the 45th meeting of the Association for Computational Linguistics, pages 173–176. ACL. C.-C. Chang and C.-J. Lin. 2011. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3):27. K. Crammer and Y. Singer. 2002. On the algorithmic implementation of multiclass kernel-based vector machines. The Journal of Machine Learning Research, 2:265–292. H. Daum e´ III. 2008. MegaM: Maximum entropy model optimization package. ACL Data and Code Repository, ADCR2008C003, 50. 649 P. Denis and P. Muller. 2011. Predicting globallycoherent temporal structures from texts via endpoint inference and graph decomposition. In Proceedings ofthe International Joint Conference onArtificial Intelligence, pages 1788–1793. AAAI Press. L. Derczynski and R. Gaizauskas. 2010. Using Signals to Improve Automatic Classification of Temporal Relations. In Proceedings of 15th Student Session of the European Summer School for Logic, Language and Information, pages 224–231 . FoLLI. L. Derczynski and R. Gaizauskas. 2011. A Corpus- based Study of Temporal Signals. In Proceedings of the Corpus Linguistics Conference. L. Derczynski and R. Gaizauskas. 2013. Empirical Validation of Reichenbach’s Tense Framework. In Proceedings of the 10th International Conference on Computational Semantics, pages 71–82. ACL. Q. X. Do, W. Lu, and D. Roth. 2012. Joint inference for event timeline construction. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 677–687. ACL. Y. Freund and R. E. Schapire. 1997. A decisiontheoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1): 119–139. M. Hepple, A. Setzer, and R. Gaizauskas. 2007. USFD: preliminary exploration of features and classifiers for the TempEval-2007 tasks. In Proceedings of the 4th International Workshop on Semantic Evaluations, pages 438–441. ACL. D. Klein and C. D. Manning. 2003. Accurate unlexicalized parsing. In Proceedings of the 41st meeting ofthe Associationfor Computational Linguistics, pages 423–430. ACL. M. Lapata and A. Lascarides. 2006. Learning sentence-internal temporal relations. Journal of Artificial Intelligence Research, 27(1):85–1 17. Y. Liu, Y. Yang, and J. Carbonell. 2002. Boosting to correct inductive bias in text classification. In Proceedings of the 11th international Conference on Information and Knowledge Management, pages 348– 355. ACM. H. Llorens, E. Saquete, and B. Navarro. 2010. TIPSem (English and Spanish): Evaluating CRFs and Semantic Roles in TempEval-2. In Proceedings of SemEval-2010. ACL. I. Mani, B. Wellner, M. Verhagen, and J. Pustejovsky. 2007. Three approaches to learning TLINKS in TimeML. Technical report, CS-07-268, Brandeis University. C. Min, M. Srikanth, and A. Fowler. 2007. LCC-TE: A hybrid approach to temporal relation identification in news text. In Proceedings of the 4th International Workshop on Semantic Evaluations, pages 219–222. ACL. S. A. Mirroshandel, G. Ghassem-Sani, and M. Khayyamian. 2011. Using syntactic-based kernels for classifying temporal relations. Journal of Computer Science and Technology, 26(1):68–80. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12:2825–2830. J. Pustejovsky, R. Sauri, R. Gaizauskas, A. Setzer, L. Ferro, et al. 2003. The TimeBank Corpus. In Proceedings of the Corpus Linguistics Conference, pages 647–656. J. Pustejovsky, J. Castano, R. Ingria, R. Saur ı´, R. Gaizauskas, A. Setzer, G. Katz, and D. Radev. 2005. TimeML: Robust specification of event and temporal expressions in text. In I. Mani, J. Pustejovsky, and R. Gaizauskas, editors, The language of time: a reader. Oxford University Press. J. D. Rennie, L. Shih, J. Teevan, and D. Karger. 2003. Tackling the Poor Assumptions of Naive Bayes Text Classifiers. In Proceedings of the International Conference on Machine Learning. AAAI Press. K. Swampillai and M. Stevenson. 2011. Extracting relations within and across sentences. In Proceedings of the International Conference Recent Advances in Natural Language Processing, pages 25–32. ACL. N. UzZaman, H. Llorens, L. Derczynski, M. Verhagen, J. F. Allen, and J. Pustejovsky. 2013. SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations. In Proceedings of the 7th International Workshop on Semantic Evaluations. M. Verhagen, R. Gaizauskas, F. Schilder, M. Hepple, J. Moszkowicz, and J. Pustejovsky. 2009. The TempEval challenge: identifying temporal relations in text. Language Resources and Evaluation, 43(2):161–179. W. Wang, J. Su, and C. L. Tan. 2010. Kernel based discourse relation recognition with temporal ordering information. In Proceedings of the 48th meeting ofthe Associationfor Computational Linguistics, pages 710–719. ACL. K. Yoshikawa, S. Riedel, M. Asahara, and Y. Matsumoto. 2009. Jointly identifying temporal relations with Markov logic. In Proceedings of the International Joint Conference on Natural Language Processing, pages 405–413. ACL. J. Zhu, H. Zou, S. Rosset, and T. Hastie. 2009. Multiclass AdaBoost. Statistics and Its Interface, 2:349– 360. 650