acl acl2013 acl2013-224 acl2013-224-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Brendan O'Connor ; Brandon M. Stewart ; Noah A. Smith
Abstract: We describe a new probabilistic model for extracting events between major political actors from news corpora. Our unsupervised model brings together familiar components in natural language processing (like parsers and topic models) with contextual political information— temporal and dyad dependence—to infer latent event classes. We quantitatively evaluate the model’s performance on political science benchmarks: recovering expert-assigned event class valences, and detecting real-world conflict. We also conduct a small case study based on our model’s inferences. A supplementary appendix, and replication software/data are available online, at: http://brenocon.com/irevents
Azar, E. E. and Sloan, T. (1975). Dimensions of interactions. Technical report, University Center of International Studies, University of Pittsburgh, Pittsburgh. 1102 Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007). Open Information Extraction from the Web. IJCAI. Bejan, C. A. (2008). Unsupervised discovery of event scenarios from texts. In Proceedings of the 21st Florida Artificial Intelligence Research Society International Conference (FLAIRS), Coconut Grove, FL, USA. Blei, D. M. and Lafferty, J. D. (2006). Dynamic topic models. In Proceedings of ICML. Blei, D. M. and Lafferty, J. D. (2007). A correlated topic model of science. Annals of Applied Statistics, 1(1), 17– 35. Boschee, E., Natarajan, P., and Weischedel, R. (2013). Automatic extraction of events from open source text for predictive forecasting. Handbook of Computational Ap- proaches to Counterterrorism, page 5 1. Brandt, P. T., Freeman, J. R., and Schrodt, P. A. (201 1). Real time, time series forecasting of inter-and intra-state political conflict. Conflict Management and Peace Science, 28(1), 41–64. Brandt, P. T., Freeman, J. R., Lin, T.-m., and Schrodt, P. A. (2012). A Bayesian time series approach to the comparison of conflict dynamics. In APSA 2012 Annual Meeting Paper. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E. R., and Mitchell, T. M. (2010). Toward an architecture for never-ending language learning. In Proceedings of the Conference on Artificial Intelligence (AAAI), pages 1306– 1313. Carter, C. K. and Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika, 81(3), 541–553. Chambers, N. and Jurafsky, D. (2009). Unsupervised learning of narrative schemas and their participants. In Proceedings of ACL-IJCNLP. Association for Computational Linguistics. Chambers, N. and Jurafsky, D. (201 1). Template-based information extraction without the templates. In Proceedings of ACL. Chang, J., Boyd-Graber, J., and Blei, D. M. (2009). Connections between the lines: augmenting social networks with text. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 169–178. ACM. Cheung, J. C. K., Poon, H., and Vanderwende, L. (2013). Probabilistic frame induction. In Proceedings of NAACL. arXiv preprint arXiv: 1302.4813. de Marneffe, M.-C. and Manning, C. D. (2008). Stanford typed dependencies manual. Technical report, Stanford University. Diesner, J. and Carley, K. M. (2005). Revealing social structure from texts: meta-matrix text analysis as a novel method for network text analysis. In Causal mapping for information systems and technology research, pages 81– 108. Harrisburg, PA: Idea Group Publishing. Eisenstein, J., O’Connor, B., Smith, N. A., and Xing, E. P. (2010). A latent variable model for geographic lexical variation. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1277—1287. Eisenstein, J., Ahmed, A., and Xing, E. (201 1). Sparse additive generative models of text. In Proceedings of ICML, pages 1041–1048. Friedman, C., Kra, P., Yu, H., Krauthammer, M., and Rzhetsky, A. (2001). GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles. Bioinformatics, 17(suppl 1), S74–S82. Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1). Gerner, D. J., Schrodt, P. A., Yilmaz, O., and Abu-Jabr, R. (2002). The Creation of CAMEO (Conflict and Mediation Event Observations): An Event Data Framework for a Post Cold War World. Annual Meeting of the American Political Science Association. Gerrish, S. M. (2013). Applications of Latent Variable Models in Modeling Influence and Decision Making. Ph.D. thesis, Princeton University. Gerrish, S. M. and Blei, D. M. (201 1). Predicting legislative roll calls from text. In Proceedings of ICML. Ghosn, F., Palmer, G., and Bremer, S. A. (2004). The MID3 data set, 1993–2001 : Procedures, coding rules, and description. Conflict Management and Peace Science, 21(2), 133–154. Gildea, D. (2002). Probabilistic models of verb-argument structure. In Proceedings of COLING. Goldstein, J. S. (1992). A conflict-cooperation scale for WEIS events data. Journal of Conflict Resolution, 36, 369–385. Goldstein, J. S., Pevehouse, J. C., Gerner, D. J., and Telhami, S. (2001). Reciprocity, triangularity, and cooperation in the middle east, 1979-97. Journal of Conflict Resolution, 45(5), 594–620. Grenager, T. and Manning, C. D. (2006). Unsupervised discovery of a statistical verb lexicon. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, page 18. Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. PNAS, 101(suppl. 1), 5228–5235. Harrison, J. and West, M. (1997). Bayesian forecasting and dynamic models. Springer Verlag, New York. Hobbs, J. R., Appelt, D., Bear, J., Israel, D., Kameyama, M., Stickel, M., and Tyson, M. (1997). FASTUS: A cascaded finite-state transducer for extracting information from natural-language text. Finite-State Language Processing, page 383. Hoff, P. D. (2003). Nonparametric modeling of hierarchically exchangeable data. University of Washington Statistics Department, Technical Report, 421. Holmes, C. C. and Held, L. (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1(1), 145–168. Jones, D., Bremer, S., and Singer, J. (1996). Militarized interstate disputes, 1816–1992: Rationale, coding rules, and empirical patterns. Conflict Management and Peace Science, 15(2), 163–213. King, G. and Lowe, W. (2003). An automated information extraction tool for international conflict data with performance as good as human coders: A rare events evaluation design. International Organization, 57(3), 617–642. Lang, J. and Lapata, M. (2010). Unsupervised induction of semantic roles. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 939–947. Association for Computational Linguistics. Lehnert, W. G. (1994). Cognition, computers, and car bombs: How Yale prepared me for the 1990s. In Beliefs, Reasoning, and Decision-Making. Psycho-Logic in Honor of Bob Abelson, pages 143–173, Hillsdale, NJ, Hove, UK. Erlbaum. http : / / cii .c s .uma s s . edu /pub fil s / r e cognit i on3 .pdf. Li, H., Li, X., Ji, H., and Marton, Y. (2010). Domainindependent novel event discovery and semi-automatic 1103 event annotation. In Proceedings of the 24th Pacific Asia Conference on Language, Information and Computation, Sendai, Japan, November. Martin, A. D. and Quinn, K. M. (2002). Dynamic ideal point estimation via Markov chain Monte Carlo for the U.S. Supreme Court, 1953–1999. Political Analysis, 10(2), 134–153. McClelland, C. (1970). Some effects on theory from the international event analysis movement. Mimeo, University of Southern California. Mimno, D., Wallach, H., and McCallum, A. (2008). Gibbs sampling for logistic normal topic models with graphbased priors. In NIPS Workshop on Analyzing Graphs. Modi, A., Titov, I., and Klementiev, A. (2012). Unsupervised induction of frame-semantic representations. In Proceedings of the NAACL-HLT Workshop on the Induction of Linguistic Structure, pages 1–7. Association for Computational Linguistics. Murphy, K. P. (2012). Machine Learning: a Probabilistic Perspective. MIT Press. Neal, R. M. (2003). Slice sampling. Annals of Statistics, pages 705–741. Newman, D., Chemudugunta, C., and Smyth, P. (2006). Statistical entity-topic models. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 680–686. ACM. S ´eaghdha, D. (2010). Latent variable models of selectional preference. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 435–444. Association for Computational Linguistics. O’Brien, S. P. (2010). Crisis early warning and decision support: Contemporary approaches and thoughts on future research. International Studies Review, 12(1), 87–104. Parker, R., Graff, D., Kong, J., Chen, K., and Maeda, K. (2009). English Gigaword Fourth Edition. Linguistic Data O´ Consortium. LDC2009T13. Piskorski, J. and Atkinson, M. (201 1). Frontex real-time news event extraction framework. In Proceedings of the 1 ACM SIGKDD international conference on Knowl7th edge discovery and data mining, pages 749–752. ACM. Piskorski, J., Tanev, H., Atkinson, M., van der Goot, E., and Zavarella, V. (201 1). Online news event extraction for global crisis surveillance. Transactions on computational collective intelligence V, pages 182–212. Polson, N. G., Scott, J. G., and Windle, J. (2012). Bayesian inference for logistic models using Polya-Gamma latent variables. arXiv preprint arXiv:1205.0310. Poon, H. and Domingos, P. (2009). Unsupervised semantic parsing. In Proceedings of EMNLP, pages 1–10. Association for Computational Linguistics. Quinn, K. M., Monroe, B. L., Colaresi, M., Crespin, M. H., and Radev, D. R. (2010). How to analyze political attention with minimal assumptions and costs. American Journal of Political Science, 54(1), 209228. Rajaraman, A. and Ullman, J. D. (201 1). Mining of massive datasets. Cambridge University Press; http : / / info l . st an ford . edu / ˜ul lman /mmds .html. ab Ramshaw, L., Boschee, E., Freedman, M., MacBride, J., Weischedel, R., , and Zamanian, A. (201 1). SERIF language processing effective trainable language understanding. Handbook of Natural Language Processing and Machine Translation, pages 636–644. Regneri, M., Koller, A., and Pinkal, M. (2010). Learning script knowledge with web experiments. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’ 10, pages 979–988. Rooth, M., Riezler, S., Prescher, D., Carroll, G., and Beil, F. (1999). Inducing a semantically annotated lexicon via EM-based clustering. In Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics, page 1041 11. Rummel, R. (1968). The Dimensionality of Nations project. Rzhetsky, A., Iossifov, I., Koike, T., Krauthammer, M., Kra, P., Morris, M., Yu, H., Dubou ´e, P. A., Weng, W., Wilbur, W. J., Hatzivassiloglou, V., and Friedman, C. (2004). GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. Journal of Biomedical Informatics, 37(1), 43–53. Sandhaus, E. (2008). The New York Times Annotated Corpus. Linguistic Data Consortium. LDC2008T19. Sanfilippo, A., Franklin, L., Tratz, S., Danielson, G., Mileson, N., Riensche, R., and McGrath, L. (2008). Automating frame analysis. Social computing, behavioral modeling, and prediction, pages 239–248. Schrodt, P. (2012). Precedents, progress, and prospects in political event data. International Interactions, 38(4), 546– 569. Schrodt, P. and Leetaru, K. (2013). GDELT: Global data on events, location and tone, 1979-2012. In International Studies Association Conference. Schrodt, P. A. (2001). Automated coding of international event data using sparse parsing techniques. International Studies Association Conference. Schrodt, P. A. (2006). Twenty Years of the Kansas Event Data System Project. Political Methodologist. Schrodt, P. A. and Gerner, D. J. (1994). Validity assessment of a machine-coded event data set for the Middle East, 1982-1992. American Journal of Political Science. Schrodt, P. A. and Gerner, D. J. (2004). An event data analysis of third-party mediation in the middle east and balkans. Journal of Conflict Resolution, 48(3), 3 10–330. Shellman, S. M. (2004). Time series intervals and statistical inference: The effects of temporal aggregation on event data analysis. Political Analysis, 12(1), 97–104. Titov, I. and Klementiev, A. (201 1). A Bayesian model for unsupervised semantic parsing. In Proceedings of ACL. Titov, I. and Klementiev, A. (2012). A Bayesian approach to unsupervised semantic role induction. Proceedings of EACL. Wallach, H., Mimno, D., and McCallum, A. (2009). Rethinking lda: Why priors matter. Advances in Neural Information Processing Systems, 22, 1973–1981 . Yao, L., Haghighi, A., Riedel, S., and McCallum, A. (201 1). Structured relation discovery using generative models. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1456–1466. Association for Computational Linguistics. Zeger, S. L. and Karim, M. R. (1991). Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association, 86(413), 79–86. 1104