hunch_net hunch_net-2010 knowledge-graph by maker-knowledge-mining

hunch_net 2010 knowledge graph


similar blogs computed by tfidf model


similar blogs computed by lsi model


similar blogs computed by lda model


blogs list:

1 hunch net-2010-12-26-NIPS 2010

Introduction: I enjoyed attending NIPS this year, with several things interesting me. For the conference itself: Peter Welinder , Steve Branson , Serge Belongie , and Pietro Perona , The Multidimensional Wisdom of Crowds . This paper is about using mechanical turk to get label information, with results superior to a majority vote approach. David McAllester , Tamir Hazan , and Joseph Keshet Direct Loss Minimization for Structured Prediction . This is about another technique for directly optimizing the loss in structured prediction, with an application to speech recognition. Mohammad Saberian and Nuno Vasconcelos Boosting Classifier Cascades . This is about an algorithm for simultaneously optimizing loss and computation in a classifier cascade construction. There were several other papers on cascades which are worth looking at if interested. Alan Fern and Prasad Tadepalli , A Computational Decision Theory for Interactive Assistants . This paper carves out some

2 hunch net-2010-12-04-Vowpal Wabbit, version 5.0, and the second heresy

Introduction: I’ve released version 5.0 of the Vowpal Wabbit online learning software. The major number has changed since the last release because I regard all earlier versions as obsolete—there are several new algorithms & features including substantial changes and upgrades to the default learning algorithm. The biggest changes are new algorithms: Nikos and I improved the default algorithm. The basic update rule still uses gradient descent, but the size of the update is carefully controlled so that it’s impossible to overrun the label. In addition, the normalization has changed. Computationally, these changes are virtually free and yield better results, sometimes much better. Less careful updates can be reenabled with –loss_function classic, although results are still not identical to previous due to normalization changes. Nikos also implemented the per-feature learning rates as per these two papers . Often, this works better than the default algorithm. It isn’t the defa

3 hunch net-2010-12-02-Traffic Prediction Problem

Introduction: Slashdot points out the Traffic Prediction Challenge which looks pretty fun. The temporal aspect seems to be very common in many real-world problems and somewhat understudied.

4 hunch net-2010-11-18-ICML 2011 – Call for Tutorials

Introduction: I would like to encourage people to consider giving a tutorial at next years ICML. The ideal tutorial attracts a wide audience, provides a gentle and easily taught introduction to the chosen research area, and also covers the most important contributions in depth. Submissions are due January 14  (about two weeks before paper deadline). http://www.icml-2011.org/tutorials.php Regards, Ulf

5 hunch net-2010-10-29-To Vidoelecture or not

Introduction: (update: cross-posted on CACM ) For the first time in several years, ICML 2010 did not have videolectures attending. Luckily, the tutorial on exploration and learning which Alina and I put together can be viewed , since we also presented at KDD 2010 , which included videolecture support. ICML didn’t cover the cost of a videolecture, because PASCAL didn’t provide a grant for it this year. On the other hand, KDD covered it out of registration costs. The cost of videolectures isn’t cheap. For a workshop the baseline quote we have is 270 euro per hour, plus a similar cost for the cameraman’s travel and accomodation. This can be reduced substantially by having a volunteer with a camera handle the cameraman duties, uploading the video and slides to be processed for a quoted 216 euro per hour. Youtube is the most predominant free video site with a cost of $0, but it turns out to be a poor alternative. 15 minute upload limits do not match typical talk lengths.

6 hunch net-2010-10-28-NY ML Symposium 2010

Introduction: About 200 people attended the 2010 NYAS ML Symposium this year. (It was about 170 last year .) I particularly enjoyed several talks. Yann has a new live demo of (limited) real-time object recognition learning. Sanjoy gave a fairly convincing and comprehensible explanation of why a modified form of single-linkage clustering is consistent in higher dimensions, and why consistency is a critical feature for clustering algorithms. I’m curious how well this algorithm works in practice. Matt Hoffman ‘s poster covering online LDA seemed pretty convincing to me as an algorithmic improvement. This year, we allocated more time towards posters & poster spotlights. For next year, we are considering some further changes. The format has traditionally been 4 invited Professor speakers, with posters and poster spotlight for students. Demand from other parties to participate is growing, for example from postdocs and startups in the area. Another growing concern is the fa

7 hunch net-2010-10-17-Partha Niyogi has died

Introduction: from brain cancer. I asked Misha who worked with him to write about it. Partha Niyogi, Louis Block Professor in Computer Science and Statistics at the University of Chicago passed away on October 1, 2010, aged 43. I first met Partha Niyogi almost exactly ten years ago when I was a graduate student in math and he had just started as a faculty in Computer Science and Statistics at the University of Chicago. Strangely, we first talked at length due to a somewhat convoluted mathematical argument in a paper on pattern recognition. I asked him some questions about the paper, and, even though the topic was new to him, he had put serious thought into it and we started regular meetings. We made significant progress and developed a line of research stemming initially just from trying to understand that one paper and to simplify one derivation. I think this was typical of Partha, showing both his intellectual curiosity and his intuition for the serendipitous; having a sense and focus fo

8 hunch net-2010-10-08-An easy proof of the Chernoff-Hoeffding bound

Introduction: Textbooks invariably seem to carry the proof that uses Markov’s inequality, moment-generating functions, and Taylor approximations. Here’s an easier way. For , let be the KL divergence between a coin of bias and one of bias : Theorem: Suppose you do independent tosses of a coin of bias . The probability of seeing heads or more, for , is at most . So is the probability of seeing heads or less, for . Remark: By Pinsker’s inequality, . Proof Let’s do the case; the other is identical. Let be the distribution over induced by a coin of bias , and likewise for a coin of bias . Let be the set of all sequences of tosses which contain heads or more. We’d like to show that is unlikely under . Pick any , with say heads. Then: Since for every , we have and we’re done.

9 hunch net-2010-09-28-Machined Learnings

Introduction: Paul Mineiro has started Machined Learnings where he’s seriously attempting to do ML research in public. I personally need to read through in greater detail, as much of it is learning reduction related, trying to deal with the sorts of complex source problems that come up in practice.

10 hunch net-2010-09-21-Regretting the dead

Introduction: Nikos pointed out this new york times article about poor clinical design killing people . For those of us who study learning from exploration information this is a reminder that low regret algorithms are particularly important, as regret in clinical trials is measured by patient deaths. Two obvious improvements on the experimental design are: With reasonable record keeping of existing outcomes for the standard treatments, there is no need to explicitly assign people to a control group with the standard treatment, as that approach is effectively explored with great certainty. Asserting otherwise would imply that the nature of effective treatments for cancer has changed between now and a year ago, which denies the value of any clinical trial. An optimal experimental design will smoothly phase between exploration and exploitation as evidence for a new treatment shows that it can be effective. This is old tech, for example in the EXP3.P algorithm (page 12 aka 59) although

11 hunch net-2010-09-17-New York Area Machine Learning Events

Introduction: On Sept 21, there is another machine learning meetup where I’ll be speaking. Although the topic is contextual bandits, I think of it as “the future of machine learning”. In particular, it’s all about how to learn in an interactive environment, such as for ad display, trading, news recommendation, etc… On Sept 24, abstracts for the New York Machine Learning Symposium are due. This is the largest Machine Learning event in the area, so it’s a great way to have a conversation with other people. On Oct 22, the NY ML Symposium actually happens. This year, we are expanding the spotlights, and trying to have more time for posters. In addition, we have a strong set of invited speakers: David Blei , Sanjoy Dasgupta , Tommi Jaakkola , and Yann LeCun . After the meeting, a late hackNY related event is planned where students and startups can meet. I’d also like to point out the related CS/Econ symposium as I have interests there as well.

12 hunch net-2010-09-13-AIStats

Introduction: Geoff Gordon points out AIStats 2011 in Ft. Lauderdale, Florida. The call for papers is now out, due Nov. 1. The plan is to experiment with the review process to encourage quality in several ways. I expect to submit a paper and would encourage others with good research to do likewise.

13 hunch net-2010-08-24-Alex Smola starts a blog

Introduction: Adventures in Data Land .

14 hunch net-2010-08-23-Boosted Decision Trees for Deep Learning

Introduction: About 4 years ago, I speculated that decision trees qualify as a deep learning algorithm because they can make decisions which are substantially nonlinear in the input representation. Ping Li has proved this correct, empirically at UAI by showing that boosted decision trees can beat deep belief networks on versions of Mnist which are artificially hardened so as to make them solvable only by deep learning algorithms. This is an important point, because the ability to solve these sorts of problems is probably the best objective definition of a deep learning algorithm we have. I’m not that surprised. In my experience, if you can accept the computational drawbacks of a boosted decision tree, they can achieve pretty good performance. Geoff Hinton once told me that the great thing about deep belief networks is that they work. I understand that Ping had very substantial difficulty in getting this published, so I hope some reviewers step up to the standard of valuing wha

15 hunch net-2010-08-22-KDD 2010

Introduction: There were several papers that seemed fairly interesting at KDD this year . The ones that caught my attention are: Xin Jin , Mingyang Zhang, Nan Zhang , and Gautam Das , Versatile Publishing For Privacy Preservation . This paper provides a conservative method for safely determining which data is publishable from any complete source of information (for example, a hospital) such that it does not violate privacy rules in a natural language. It is not differentially private, so no external sources of join information can exist. However, it is a mechanism for publishing data rather than (say) the output of a learning algorithm. Arik Friedman Assaf Schuster , Data Mining with Differential Privacy . This paper shows how to create effective differentially private decision trees. Progress in differentially private datamining is pretty impressive, as it was defined in 2006 . David Chan, Rong Ge, Ori Gershony, Tim Hesterberg , Diane Lambert , Evaluating Online Ad Camp

16 hunch net-2010-08-21-Rob Schapire at NYC ML Meetup

Introduction: I’ve been wanting to attend the NYC ML Meetup for some time and hope to make it next week on the 25th . Rob Schapire is talking about “Playing Repeated Games”, which in my experience is far more relevant to machine learning than the title might indicate.

17 hunch net-2010-08-20-The Workshop on Cores, Clusters, and Clouds

Introduction: Alekh , John , Ofer , and I are organizing a workshop at NIPS this year on learning in parallel and distributed environments. The general interest level in parallel learning seems to be growing rapidly, so I expect quite a bit of attendance. Please join us if you are parallel-interested. And, if you are working in the area of parallel learning, please consider submitting an abstract due Oct. 17 for presentation at the workshop.

18 hunch net-2010-07-18-ICML & COLT 2010

Introduction: The papers which interested me most at ICML and COLT 2010 were: Thomas Walsh , Kaushik Subramanian , Michael Littman and Carlos Diuk Generalizing Apprenticeship Learning across Hypothesis Classes . This paper formalizes and provides algorithms with guarantees for mixed-mode apprenticeship and traditional reinforcement learning algorithms, allowing RL algorithms that perform better than for either setting alone. István Szita and Csaba Szepesvári Model-based reinforcement learning with nearly tight exploration complexity bounds . This paper and another represent the frontier of best-known algorithm for Reinforcement Learning in a Markov Decision Process. James Martens Deep learning via Hessian-free optimization . About a new not-quite-online second order gradient algorithm for learning deep functional structures. Potentially this is very powerful because while people have often talked about end-to-end learning, it has rarely worked in practice. Chrisoph

19 hunch net-2010-07-02-MetaOptimize

Introduction: Joseph Turian creates MetaOptimize for discussion of NLP and ML on big datasets. This includes a blog , but perhaps more importantly a question and answer section . I’m hopeful it will take off.

20 hunch net-2010-06-20-2010 ICML discussion site

Introduction: A substantial difficulty with the 2009 and 2008 ICML discussion system was a communication vacuum, where authors were not informed of comments, and commenters were not informed of responses to their comments without explicit monitoring. Mark Reid has setup a new discussion system for 2010 with the goal of addressing this. Mark didn’t want to make it to intrusive, so you must opt-in. As an author, find your paper and “Subscribe by email” to the comments. As a commenter, you have the option of providing an email for follow-up notification.

21 hunch net-2010-06-13-The Good News on Exploration and Learning

22 hunch net-2010-05-20-Google Predict

23 hunch net-2010-05-10-Aggregation of estimators, sparsity in high dimension and computational feasibility

24 hunch net-2010-05-02-What’s the difference between gambling and rewarding good prediction?

25 hunch net-2010-04-28-CI Fellows program renewed

26 hunch net-2010-04-26-Compassionate Reviewing

27 hunch net-2010-04-24-COLT Treasurer is now Phil Long

28 hunch net-2010-04-14-MLcomp: a website for objectively comparing ML algorithms

29 hunch net-2010-03-26-A Variance only Deviation Bound

30 hunch net-2010-03-15-The Efficient Robust Conditional Probability Estimation Problem

31 hunch net-2010-03-12-Netflix Challenge 2 Canceled

32 hunch net-2010-02-26-Yahoo! ML events

33 hunch net-2010-01-24-Specializations of the Master Problem

34 hunch net-2010-01-19-Deadline Season, 2010

35 hunch net-2010-01-13-Sam Roweis died