nips nips2013 nips2013-213 nips2013-213-reference knowledge-graph by maker-knowledge-mining

213 nips-2013-Nonparametric Multi-group Membership Model for Dynamic Networks


Source: pdf

Author: Myunghwan Kim, Jure Leskovec

Abstract: unkown-abstract


reference text

[1] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic blockmodels. JMLR, 9, 2008.

[2] L. Backstrom and J. Leskovec. Supervised random walks: Predicting and recommending links in social networks. In WSDM, 2011. 8

[3] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth. 195(2):216–222, 1987. Hybrid monte carlo. Physics Letter B,

[4] J. Foulds, A. U. Asuncion, C. DuBois, C. T. Butts, and P. Smyth. A dynamic relational infinite feature model for longitudinal social networks. In AISTATS, 2011.

[5] W. Fu, L. Song, and E. P. Xing. Dynamic mixed membership blockmodel for evolving networks. In ICML, 2009.

[6] J. V. Gael, Y. W. Teh, , and Z. Ghahramani. The infinite factorial hidden markov model. In NIPS, 2009.

[7] S. J. Gershman, P. I. Frazier, and D. M. Blei. arXiv:1110.5454, 2012. Distance dependent infinite latent feature models.

[8] Z. Ghahramani and M. I. Jordan. Factorial hidden markov models. Machine Learning, 29(2-3):245–273, 1997.

[9] F. Guo, S. Hanneke, W. Fu, and E. P. Xing. Recovering temporally rewiring networks: a model-based approach. In ICML, 2007.

[10] S. Hanneke, W. Fu, and E. P. Xing. Discrete temporal models of social networks. Electron. J. Statist., 4:585–605, 2010.

[11] C. Heaukulani and Z. Ghahramani. Dynamic probabilistic models for latent feature propagation in social networks. In ICML, 2013.

[12] Q. Ho, L. Song, and E. P. Xing. Evolving cluster mixed-membership blockmodel for time-varying networks. In AISTATS, 2011.

[13] P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent space approaches to social network analysis. JASA, 97(460):1090 – 1098, 2002.

[14] K. Ishiguro, T. Iwata, N. Ueda, and J. Tenenbaum. Dynamic infinite relational model for time-varying relational data analysis. In NIPS, 2010.

[15] S. Kairam, D. Wang, and J. Leskovec. The life and death of online groups: Predicting group growth and longevity. In WSDM, 2012.

[16] M. Kim and J. Leskovec. Modeling social networks with node attributes using the multiplicative attribute graph model. In UAI, 2011.

[17] M. Kim and J. Leskovec. Latent multi-group membership graph model. In ICML, 2012.

[18] M. Kim and J. Leskovec. Multiplicative attribute graph model of real-world networks. Internet Mathematics, 8(1-2):113–160, 2012.

[19] M. Kim and J. Leskovec. arXiv:1311.2079, 2013. Nonparametric multi-group membership model for dynamic networks.

[20] J. R. Lloyd, P. Orbanz, Z. Ghahramani, and D. M. Roy. Random function priors for exchangeable arrays with applications to graphs and relational data. In NIPS, 2012.

[21] K. T. Miller, T. L. Grifths, and M. I. Jordan. Nonparametric latent feature models for link prediction. In NIPS, 2009.

[22] M. Mørup, M. N. Schmidt, and L. K. Hansen. Infinite multiple membership relational modeling for complex networks. In MLSP, 2011.

[23] K. Palla, D. A. Knowles, and Z. Ghahramani. An infinite latent attribute model for network data. In ICML, 2012.

[24] P. Sarkar and A. W. Moore. Dynamic social network analysis using latent space models. In NIPS, 2005.

[25] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau. CRAWDAD data set cambridge/haggle (v. 2009-05-29), May 2009.

[26] S. L. Scott. Bayesian methods for hidden markov models. JASA, 97(457):337–351, 2002.

[27] T. A. B. Snijders, G. G. van de Bunt, and C. E. G. Steglich. Introduction to stochastic actor-based models for network dynamics. Social Networks, 32(1):44–60, 2010.

[28] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: Extraction and mining of academic social networks. In KDD’08, 2008.

[29] J. Yang and J. Leskovec. Community-affiliation graph model for overlapping community detection. In ICDM, 2012. 9