nips nips2013 nips2013-148 nips2013-148-reference knowledge-graph by maker-knowledge-mining

148 nips-2013-Latent Maximum Margin Clustering


Source: pdf

Author: Guang-Tong Zhou, Tian Lan, Arash Vahdat, Greg Mori

Abstract: We present a maximum margin framework that clusters data using latent variables. Using latent representations enables our framework to model unobserved information embedded in the data. We implement our idea by large margin learning, and develop an alternating descent algorithm to effectively solve the resultant non-convex optimization problem. We instantiate our latent maximum margin clustering framework with tag-based video clustering tasks, where each video is represented by a latent tag model describing the presence or absence of video tags. Experimental results obtained on three standard datasets show that the proposed method outperforms non-latent maximum margin clustering as well as conventional clustering approaches. 1


reference text

[1] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2002.

[2] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265–292, 2001.

[3] T. M. T. Do and T. Arti` res. Large margin training for hidden Markov models with partially observed e states. In ICML, 2009.

[4] A. Farhadi and M. K. Tabrizi. Learning to recognize activities from the wrong view point. In ECCV, 2008.

[5] P. F. Felzenszwalb, D. A. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008.

[6] R. Gopalan and J. Sankaranarayanan. Max-margin clustering: Detecting margins from projections of points on lines. In CVPR, 2011.

[7] J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Applied Statistics, 28:100–108, 1979.

[8] M. Hoai and A. Zisserman. Discriminative sub-categorization. In CVPR, 2013.

[9] C.-F. Hsu, J. Caverlee, and E. Khabiri. Hierarchical comments-based clustering. In SAC, 2011.

[10] H. Izadinia and M. Shah. Recognizing complex events using large margin joint low-level event model. In ECCV, 2012.

[11] A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

[12] T. Joachims. Transductive inference for text classification using support vector machines. In ICML, 1999.

[13] A. Kl¨ ser, M. Marszalek, and C. Schmid. A spatio-temporal descriptor based on 3d-gradients. In BMVC, a 2008.

[14] M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, 2010.

[15] T. O. Kvalseth. Entropy and correlation: Some comments. IEEE Transactions on Systems, Man and Cybernetics, 17(3):517–519, 1987.

[16] Y.-F. Li, I. W. Tsang, J. T.-Y. Kwok, and Z.-H. Zhou. Tighter and convex maximum margin clustering. In AISTATS, 2009.

[17] J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In CVPR, 2011.

[18] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, 2001.

[19] P. Over, G. Awad, J. Fiscus, A. F. Smeaton, W. Kraaij, and G. Quenot. TRECVID 2011 – an overview of the goals, tasks, data, evaluation mechanisms and metrics. In TRECVID, 2011.

[20] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, T. Mei, and H.-J. Zhang. Correlative multi-label video annotation. In ACM Multimedia, 2007.

[21] W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846–850, 1971.

[22] R. Redner and H. Walker. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2):195–239, 1984.

[23] M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH a spatio-temporal maximum average correlation height filter for action recognition. In CVPR, 2008.

[24] S. Sadanand and J. J. Corso. Action Bank: A high-level representation of activity in video. In CVPR, 2012.

[25] F. Schroff, C. L. Zitnick, and S. Baker. Clustering videos by location. In BMVC, 2009.

[26] C. Sch¨ ldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM approach. In ICPR, u 2004.

[27] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[28] A. Vahdat and G. Mori. Handling uncertain tags in visual recognition. In ICCV, 2013.

[29] H. Valizadegan and R. Jin. Generalized maximum margin clustering and unsupervised kernel learning. In NIPS, 2006.

[30] Y. Wang and L. Cao. Discovering latent clusters from geotagged beach images. In MMM, 2013.

[31] Y. Wang and G. Mori. Max-margin hidden conditional random fields for human action recognition. In CVPR, 2009.

[32] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. In NIPS, 2004.

[33] L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector machines. In AAAI, 2005.

[34] W. Yang and G. Toderici. Discriminative tag learning on YouTube videos with latent sub-tags. In CVPR, 2011.

[35] W. Yang, Y. Wang, A. Vahdat, and G. Mori. Kernel latent SVM for visual recognition. In NIPS, 2012.

[36] C.-N. J. Yu and T. Joachims. Learning structural SVMs with latent variables. In ICML, 2009.

[37] K. Zhang, I. W. Tsang, and J. T. Kwok. Maximum margin clustering made practical. In ICML, 2007.

[38] B. Zhao, F. Wang, and C. Zhang. Efficient multiclass maximum margin clustering. In ICML, 2008. 9