nips nips2013 nips2013-63 nips2013-63-reference knowledge-graph by maker-knowledge-mining

63 nips-2013-Cluster Trees on Manifolds


Source: pdf

Author: Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, Larry Wasserman

Abstract: unkown-abstract


reference text

S. Balakrishnan, A. Rinaldo, D. Sheehy, A. Singh, and L. Wasserman. Minimax rates for homology inference. AISTATS, 2012. P. Bickel and B. Li. Local polynomial regression on unknown manifolds. In Technical report, Department of Statistics, UC Berkeley. 2006. K. Chaudhuri and S. Dasgupta. Rates of convergence for the cluster tree. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 343–351. 2010. F. Chazal. An upper bound for the volume of geodesic balls in submanifolds of euclidean spaces. Personal Communication, available at http://geometrica.saclay.inria.fr/team/Fred.Chazal/BallVolumeJan2013.pdf, 2013. A. Cuevas and R. Fraiman. A plug-in approach to support estimation. Annals of Statistics, 25(6):2300–2312, 1997. A. Cuevas, W. González-Manteiga, and A. Rodríguez-Casal. Plug-in estimation of general level sets. Aust. N. Z. J. Stat., 48(1):7–19, 2006. S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds. In STOC, pages 537–546. 2008. C. R. Genovese, M. Perone-Pacifico, I. Verdinelli, and L. Wasserman. Minimax manifold estimation. Journal of Machine Learning Research, 13:1263–1291, 2012. J. A. Hartigan. Consistency of single linkage for high-density clusters. Journal of the American Statistical Association, 76(374):pp. 388–394, 1981. S. Kpotufe and S. Dasgupta. A tree-based regressor that adapts to intrinsic dimension. J. Comput. Syst. Sci., 78(5):1496–1515, 2012. S. Kpotufe and U. von Luxburg. Pruning nearest neighbor cluster trees. In L. Getoor and T. Scheffer, editors, Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML ’11, pages 225– 232. ACM, New York, NY, USA, 2011. M. Maier, M. Hein, and U. von Luxburg. Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters. Theor. Comput. Sci., 410(19):1749–1764, 2009. P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419–441, 2008. W. Polonik. Measuring mass concentrations and estimating density contour clusters: an excess mass approach. Annals of Statistics, 23(3):855–882, 1995. P. Rigollet and R. Vert. Fast rates for plug-in estimators of density level sets. Bernoulli, 15(4):1154–1178, 2009. A. Rinaldo, A. Singh, R. Nugent, and L. Wasserman. Stability of density-based clustering. Journal of Machine Learning Research, 13:905–948, 2012. A. Rinaldo and L. Wasserman. Generalized density clustering. The Annals of Statistics, 38(5):2678–2722, 2010. 0907.3454. A. Singh, C. Scott, and R. Nowak. Adaptive {H}ausdorff estimation of density level sets. Ann. Statist., 37(5B):2760–2782, 2009. B. K. Sriperumbudur and I. Steinwart. Consistency and rates for clustering with dbscan. Journal of Machine Learning Research - Proceedings Track, 22:1090–1098, 2012. I. Steinwart. Adaptive density level set clustering. Journal of Machine Learning Research - Proceedings Track, 19:703–738, 2011. W. Stuetzle. Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample. J. Classification, 20(1):025–047, 2003. W. Stuetzle and N. R. A generalized single linkage method for estimating the cluster tree of a density. Journal of Computational and Graphical Statistics, 19(2):397–418, 2010. A. B. Tsybakov. On nonparametric estimation of density level sets. Ann. Statist., 25(3):948–969, 1997. G. Walther. Granulometric smoothing. Annals of Statistics, 25(6):2273–2299, 1997. D. Wishart. Mode analysis: a generalization of nearest neighbor which reduces chaining. In Proceedings of the Colloquium on Numerical Taxonomy held in the University of St. Andrews, pages 282–308. 1969. 9