nips nips2012 nips2012-94 nips2012-94-reference knowledge-graph by maker-knowledge-mining

94 nips-2012-Delay Compensation with Dynamical Synapses


Source: pdf

Author: Chi Fung, K. Wong, Si Wu

Abstract: Time delay is pervasive in neural information processing. To achieve real-time tracking, it is critical to compensate the transmission and processing delays in a neural system. In the present study we show that dynamical synapses with shortterm depression can enhance the mobility of a continuous attractor network to the extent that the system tracks time-varying stimuli in a timely manner. The state of the network can either track the instantaneous position of a moving stimulus perfectly (with zero-lag) or lead it with an effectively constant time, in agreement with experiments on the head-direction systems in rodents. The parameter regions for delayed, perfect and anticipative tracking correspond to network states that are static, ready-to-move and spontaneously moving, respectively, demonstrating the strong correlation between tracking performance and the intrinsic dynamics of the network. We also find that when the speed of the stimulus coincides with the natural speed of the network state, the delay becomes effectively independent of the stimulus amplitude.


reference text

[1] J. P. Bassett, M. B. Zugaro, G. M. Muir, E. J. Golob, R. U. Muller and J. S. Taube. Passive Movements of the Head Do Not Abolish Anticipatory Firing Properties of Head Direction Cells. J. Neurophysiol. 93, 1304-1316 (2005).

[2] R. Ben-Yishai, R. Lev. Bar-Or, and H. Sompolinsky. Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. U.S.A. 92, 3844-3848 (1995).

[3] H. T. Blair and P. E. Sharp. Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J. Neurosci. 15, 6260-6270 (1995).

[4] M. C. Fuhs and D. S. Touretzky. J. Neurosci. 26, A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex . 4266-4276 (2006).

[5] C. C. A. Fung, K. Y. Wong and S. Wu. Neural Comput. Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks. 22, 752-792 (2010).

[6] C. C. A. Fung, K. Y. M. Wong, H. Wang and S. Wu. Dynamical Synapses Enhance Neural Information Processing: Gracefulness, Accuracy and Mobility. Neural Comput. 24, 1147-1185 (2012).

[7] A. P. Georgopoulos, J. T. Lurito, M. Petrides, Mental rotation of the neuronal population vector. A. B. Schwartz, and J. T. Massey, Science 243, 234-236 (1989).

[8] J. P. Goodridge and D. S. Touretzky. Modeling attractor deformation in the rodent head direction system. J. Neurophysiol.83, 3402-3410 (2000).

[9] Z. P. Kilpatrick and P. C. Bressloff. Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network. Physica D 239, 547-560 (2010).

[10] B. L. McNaughton, F. P. Battaglia, O. Jensen, E. I. Moser and M.-B. Moser. Path integration and the neural basis of the ‘cognitive map’. Nature Rev. Neurosci. 7, 663-678 (2006).

[11] H. Markram and M. Tsodyks. Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382, 807-810, 1996.

[12] R. Nijhawan. Motion extrapolation in catching. Nature 370, 256-257 (1994).

[13] R. Nijhawan and S. Wu. Phil. Compensating time delays with neural predictions: are predictions sensory or motor? Trans. R. Soc. A 367, 1063-1078 (2009).

[14] J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Res. 34, 171-175 (1971).

[15] A. Samsonovich and B. L. McNaughton. Path integration and cognitive mappping in a continuous attractor neural network model. J. Neurosci. 17, 5900-5920 (1997).

[16] M. A. Sommer and R. H. Wurtz. Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444, 374-377 (2006).

[17] J. S. Taube, R. U. Muller and J. B. Ranck Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420-435 (1990).

[18] J. S. Taube and R. I. Muller. Comparisons of head direction cell activity in the postsubiculum and anterior thalamus of freely moving rats. Hippocampus 8, 87-108 (1998).

[19] M. Tsodyks, K. Pawelzik, and H. Markram. Neural Networks with Dynamic Synapses. Neural Comput. 10, 821-835 (1998).

[20] S. Wu and S. Amari. Computing with Continuous Attractors: Stability and Online Aspects no access. Neural Comput. 17, 2215-2239 (2005).

[21] L. C. York and M. C. W. van Rossum. Recurrent networks with short term synaptic depression. J. Comput. Neurosci 27, 707-620 (2009).

[22] K. Zhang. Representation of spatial orientation bythe intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112-2126 (1996). 9