nips nips2011 nips2011-275 nips2011-275-reference knowledge-graph by maker-knowledge-mining

275 nips-2011-Structured Learning for Cell Tracking


Source: pdf

Author: Xinghua Lou, Fred A. Hamprecht

Abstract: We study the problem of learning to track a large quantity of homogeneous objects such as cell tracking in cell culture study and developmental biology. Reliable cell tracking in time-lapse microscopic image sequences is important for modern biomedical research. Existing cell tracking methods are usually kept simple and use only a small number of features to allow for manual parameter tweaking or grid search. We propose a structured learning approach that allows to learn optimum parameters automatically from a training set. This allows for the use of a richer set of features which in turn affords improved tracking compared to recently reported methods on two public benchmark sequences. 1


reference text

[1] S. Avidan. Ensemble Tracking. In CVPR, 2005.

[2] G. Bakir, T. Hofmann, B. Schoelkopf, A. J. Smola, B. Taskar, and S. Vishwanathan. Predicting Structured Data. MIT Press, Cambridge, MA, 2006.

[3] L. Bertelli, T. Yu, D. Vu, and B. Gokturk. Kernelized Structural SVM Learning for Supervised Object Segmentation. In CVPR, 2011.

[4] L. Breiman. Random Forests. Mach Learn, 45(1):5–32, 2001.

[5] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. V. Gool. Robust Trackingby-Detection using a Detector Confidence Particle Filter. In ICCV, 2009.

[6] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola. Learning Graph Matching. IEEE T Pattern Anal, 31(6):1048–1058, 2009.

[7] R. Caruana and A. Niculescu-Mizil. An Empirical Comparison of Supervised Learning Algorithms. In ICML, pages 161–168, 2006. 8

[8] O. Dzyubachyk, W. A. van Cappellen, J. Essers, et al. Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy. IEEE T Med Imag, 29(3):852, 2010.

[9] Y. Freund. An adaptive version of the boost by majority algorithm. Mach Learn, 43(3):293– 318, 2001.

[10] Y. Freund, R. Iyer, R. E. Schapire, , and Y. Singer. An Efficient Boosting Algorithm for Combining Preferences. J Mach Learn Res, 4:933–969, 2003.

[11] H. Grabner and H. Bischof. On-line Boosting and Vision. In CVPR, 2006.

[12] M. Held, M. H. A. Schmitz, et al. CellCognition: time-resolved phenotype annotation in highthroughput live cell imaging. Nature Methods, 7(9):747–754, 2010.

[13] T. Kanade, Z. Yin, R. Bise, S. Huh, S. E. Eom, M. Sandbothe, and M. Chen. Cell Image Analysis: Algorithms, System and Applications. In WACV, 2011.

[14] N. Karampatziakis. Static Analysis of Binary Executables Using Structural SVMs. In NIPS, 2010.

[15] C.-H. Kuo, C. Huang, , and R. Nevatia. Multi-Target Tracking by On-Line Learned Discriminative Appearance Models. In CVPR, 2010.

[16] F. Li, X. Zhou, J. Ma, and S. Wong. Multiple Nuclei Tracking Using Integer Programming for Quantitative Cancer Cell Cycle Analysis. IEEE T Med Imag, 29(1):96, 2010.

[17] K. Li, E. D. Miller, M. Chen, et al. Cell population tracking and lineage construction with spatiotemporal context. Med Image Anal, 12(5):546–566, 2008.

[18] Y. Li, C. Huang, and R. Nevatia. Learning to Associate: HybridBoosted Multi-Target Tracker for Crowded Scene. CVPR, 2009.

[19] X. Lou, F. O. Kaster, M. S. Lindner, et al. DELTR: Digital Embryo Lineage Tree Reconstructor. In ISBI, 2011.

[20] E. Meijering, O. Dzyubachyk, I. Smal, and W. A. van Cappellen. Tracking in cell and developmental biology. Semin Cell Dev Biol, 20(8):894 – 902, 2009.

[21] D. Padfield, J. Rittscher, and B. Roysam. Coupled Minimum-Cost Flow Cell Tracking for High-Throughput Quantitative Analysis. Med Image Anal, 2010.

[22] B. Taskar, S. Lacoste-Julien, and M. I. Jordan. Structured Prediction, Dual Extragradient and Bregman Projections. J Mach Learn Res, 7:1627–1653, 2006.

[23] C. H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods for regularized risk minimization. J Mach Learn Res, 11:311–365, 2010.

[24] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large Margin Methods for Structured and Interdependent Output Variables. J Mach Learn Res, 6(2):1453, 2006.

[25] X. Wang, G. Hua, and T. X. Han. Discriminative Tracking by Metric Learning. In ECCV, 2010.

[26] B. Yang, C. Huang, and R. Nevatia. Learning Affinities and Dependencies for Multi-Target Tracking using a CRF Model. In CVPR, 2011.

[27] B. Zhong, H. Yao, S. Chen, et al. Visual Tracking via Weakly Supervised Learning from Multiple Imperfect Oracles. In CVPR, 2010. 9