nips nips2011 nips2011-221 nips2011-221-reference knowledge-graph by maker-knowledge-mining

221 nips-2011-Priors over Recurrent Continuous Time Processes


Source: pdf

Author: Ardavan Saeedi, Alexandre Bouchard-côté

Abstract: We introduce the Gamma-Exponential Process (GEP), a prior over a large family of continuous time stochastic processes. A hierarchical version of this prior (HGEP; the Hierarchical GEP) yields a useful model for analyzing complex time series. Models based on HGEPs display many attractive properties: conjugacy, exchangeability and closed-form predictive distribution for the waiting times, and exact Gibbs updates for the time scale parameters. After establishing these properties, we show how posterior inference can be carried efficiently using Particle MCMC methods [1]. This yields a MCMC algorithm that can resample entire sequences atomically while avoiding the complications of introducing slice and stick auxiliary variables of the beam sampler [2]. We applied our model to the problem of estimating the disease progression in multiple sclerosis [3], and to RNA evolutionary modeling [4]. In both domains, we found that our model outperformed the standard rate matrix estimation approach. 1


reference text

[1] C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. Journal Of The Royal Statistical Society Series B, 2010.

[2] J. Van Gael, Y. Saatci, Y. W. Teh, and Z. Ghahramani. Beam sampling for the infinite hidden Markov model. In ICML, 2008.

[3] M. Mandel. Estimating disease progression using panel data. Biostatistics, 2010.

[4] J.J. Cannone, S. Subramanian, M.N. Schnare, J.R. Collett, L.M. D’Souza, Y. Du, B. Feng, N. Lin, L.V. Madabusi, K.M. Muller, N. Pande, Z. Shang, N. Yu, and R.R. Gutell. The comparative RNA web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BioMed Central Bioinformatics, 2002.

[5] S.N. MacEachern. Dependent nonparametric processes. In Section on Bayesian Statistical Science, American Statistical Association, 1999.

[6] J.E. Griffin. The Ornstein-Uhlenbeck Dirichlet process and other time-varying processes for Bayesian nonparametric inference. Journal of Statistical Planning and Inference, 2008.

[7] J.E. Griffin and M.F.J. Steel. Stick-breaking autoregressive processes. Journal of Econometrics, 2011.

[8] M. F. J. Steel. The New Palgrave Dictionary of Economics, chapter Bayesian time series analysis. Palgrave Macmillan, 2008.

[9] S. Heiler. A survey on nonparametric time series analysis. CoFE Discussion Paper 99-05, Center of Finance and Econometrics, University of Konstanz, 1999.

[10] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. The infinite hidden Markov model. In Machine Learning. MIT Press, 2002.

[11] E.B. Fox, E.B. Sudderth, M.I. Jordan, and A.S. Willsky. An hdp-hmm for systems with state persistence. In Proceedings of the International Conference on Machine Learning, 2008.

[12] J. Van Gael, Y. W. Teh, and Z. Ghahramani. The infinite factorial hidden Markov model. In NIPS’08, 2008.

[13] P.A.P. Moran. The Theory of Storage. Methuen, 1959.

[14] M. Friesl. Estimation in the Koziol-Green model using a gamma process prior. Austrian Journal of Statistics, 2008.

[15] V. Rao and Y. W. Teh. Spatial normalized gamma processes. In Advances in Neural Information Processing Systems, 2009.

[16] L. Kuo and S. K. Ghosh. Bayesian nonparametric inference for nonhomogeneous Poisson processes. Technical report, University of Connecticut, Department of Statistics, 1997.

[17] J. F. C. Kingman. Poisson Processes. The Clarendon Press Oxford University Press, 1993.

[18] M. Schroder. Risk-neutral parameter shifts and derivatives pricing in discrete time. The Journal of Finance, 2004.

[19] D. Dufresne. G distributions and the beta-gamma algebra. Electronic Journal of Probability, 2010.

[20] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 2004.

[21] R. Neal. Markov chain sampling methods for Dirichlet process mixture models. Technical report, U of T, 2000.

[22] P. Liang, S. Petrov, M. I. Jordan, and D. Klein. The infinite PCFG using hierarchical Dirichlet processes. In Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP/CoNLL), 2007.

[23] A. Hobolth and J.L. Jensen. Statistical inference in evolutionary models of DNA sequences via the EM algorithm. Statistical applications in Genetics and Molecular Biology, 2005.

[24] L. Mateiu and B. Rannala. Inferring complex DNA substitution processes on phylogenies using uniformization and data augmentation. Syst. Biol., 2006. 9