nips nips2011 nips2011-200 nips2011-200-reference knowledge-graph by maker-knowledge-mining

200 nips-2011-On the Analysis of Multi-Channel Neural Spike Data


Source: pdf

Author: Bo Chen, David E. Carlson, Lawrence Carin

Abstract: Nonparametric Bayesian methods are developed for analysis of multi-channel spike-train data, with the feature learning and spike sorting performed jointly. The feature learning and sorting are performed simultaneously across all channels. Dictionary learning is implemented via the beta-Bernoulli process, with spike sorting performed via the dynamic hierarchical Dirichlet process (dHDP), with these two models coupled. The dHDP is augmented to eliminate refractoryperiod violations, it allows the “appearance” and “disappearance” of neurons over time, and it models smooth variation in the spike statistics. 1


reference text

[1] A. Bar-Hillel, A. Spiro, and E. Stark. Spike sorting: Bayesian clustering of non-stationary data. J. Neuroscience Methods, 2006.

[2] A. Calabrese and L. Paniski. Kalman filter mixture model for spike sorting of non-stationary data. J. Neuroscience Methods, 2010.

[3] T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1973.

[4] Y. Gao, M. J. Black, E. Bienenstock, S. Shoham, and J. P. Donoghue. Probabilistic inference of arm motion from neural activity in motor cortex. Proc. Advances in NIPS, 2002.

[5] J. Gasthaus, F. Wood, D. Gorur, and Y.W. Teh. Dependent Dirichlet process spike sorting. In Advances in Neural Information Processing Systems, 2009.

[6] D. Gorur, C. Rasmussen, A. Tolias, F. Sinz, and N. Logothetis. Modelling spikes with mixtures of factor analysers. Pattern Recognition, 2004.

[7] D. A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K. D. Harris, and G. Buzsaki. Intracellular feautures predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiology, 2010.

[8] J.A. Herbst, S. Gammeter, D. Ferrero, and R.H.R. Hahnloser. Spike sorting with hidden Markov models. J. Neuroscience Methods, 2008.

[9] M.D. Hoffman, D.M. Blei, and F. Bach. Online learning for latent Dirichlet allocation. Proc. NIPS, 2010.

[10] H. Ishwaran and L.F. James. Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Ass., 2001.

[11] J. C. Letelier and P. P. Weber. Spike sorting based on discrete wavelet transform coefficients. J. Neuroscience Methods, 2000.

[12] M. S. Lewicki. A review of methods for spike sorting: the detection and classification of neural action potentials. Network: Computation in Neural Systems, 1998.

[13] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. J. Machine Learning Research, 2010.

[14] M.A. Nicolelis. Brain-machine interfaces to restore motor function and probe neural circuits. Nature reviews: Neuroscience, 2003.

[15] O. Papaspiliopoulos and G. O. Roberts. Retrospective Markov Chain Monte Carlo methods for Dirichlet process hierarchiacal models. Biometrika, 2008.

[16] C. Pouzat, M. Delescluse, P. Viot, and J. Diebolt. Improved spike-sorting by modeling firing statistics and burst-dependent spike amplitude attenuation: A Markov Chain Monte Carlo approach. J. Neurophysiology, 2004.

[17] L. Ren, D. B. Dunson, and L. Carin. The dynamic hierarchical dirichlet process. International Conference on Machine Learning, 2008.

[18] G. Santhanam, S.I. Ryu, B.M. Yu, A. Afshar, and K.V. Shenoy. A high-performance braincomputer interface. Nature, 2006.

[19] J. Sethuraman. A constructive definition of dirichlet priors. Statistica Sinica, 4:639–650, 1994.

[20] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical dirichlet processes. J. Am. Stat. Ass., 2005.

[21] F. Wood, S. Roth, and M. J. Black. Modeling neural population spiking activity with Gibbs distributions. Proc. Advances in Neural Information Processing Systems, 2005.

[22] W. Wu, M. J. Black, Y. Gao, E. Bienenstock, M. Serruya, A. Shaikhouni, and J. P. Donoghue. Neural decoding of cursor motion using a Kalman filter. Proc. Advances in NIPS, 2003. 9