nips nips2011 nips2011-180 nips2011-180-reference knowledge-graph by maker-knowledge-mining

180 nips-2011-Multiple Instance Filtering


Source: pdf

Author: Kamil A. Wnuk, Stefano Soatto

Abstract: We propose a robust filtering approach based on semi-supervised and multiple instance learning (MIL). We assume that the posterior density would be unimodal if not for the effect of outliers that we do not wish to explicitly model. Therefore, we seek for a point estimate at the outset, rather than a generic approximation of the entire posterior. Our approach can be thought of as a combination of standard finite-dimensional filtering (Extended Kalman Filter, or Unscented Filter) with multiple instance learning, whereby the initial condition comes with a putative set of inlier measurements. We show how both the state (regression) and the inlier set (classification) can be estimated iteratively and causally by processing only the current measurement. We illustrate our approach on visual tracking problems whereby the object of interest (target) moves and evolves as a result of occlusions and deformations, and partial knowledge of the target is given in the form of a bounding box (training set). 1


reference text

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the integral histogram. In Proc. CVPR, 2006.

[2] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In Proc. NIPS, 2003.

[3] S. Avidan. Ensemble tracking. PAMI, 29:261–271, 2007.

[4] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with online multiple instance learning. In Proc. CVPR, 2009.

[5] Y. Bar-Shalom and X.-R. Li. Estimation and tracking: principles, techniques and software. YBS Press, 1998.

[6] A. Doucet, N. de Freitas, and N. Gordon. Sequential monte carlo methods in practice. Springer Verlag, New York, 2001.

[7] J. Fan, X. Shen, and Y. Wu. Closed-loop adaptation for robust tracking. In Proc. ECCV, 2010.

[8] P. Felzenszwalb, D. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. In PAMI, 2010.

[9] L. El Ghaoui and G. Calafiore. Robust filtering for discrete-time systems with structured uncertainty. In IEEE Transactions on Automatic Control, 2001.

[10] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. In Proc. ECCV, 2008.

[11] P.J. Huber. Robust Statistics. Wiley, New York, 1981.

[12] J. Jackson, A. J. Yezzi, and S. Soatto. Dynamic shape and appearance modeling via moving and deforming layers. IJCV, 79(1):71–84, August 2008.

[13] Z. Kalal, J. Matas, and K. Mikolajczyk. P-n learning: Bootstrapping binary classifiers by structural constraints. In Proc. CVPR, 2010.

[14] H. Li and M. Fu. A linear matrix inequality approach to robust h∞ filtering. IEEE Transactions on Signal Processing, 45(9):2338–2350, September 1997.

[15] H. Lim, V. Morariu, O. Camps, and M. Sznaier. Dynamic appearance modeling for human tracking. In Proc. CVPR, 2006.

[16] J. Liu. Monte carlo strategies in scientific computing. SPringer Verlag, 2001.

[17] X. Ren and J. Malik. Tracking as repeated figure/ground segmentation. In Proc. CVPR, 2007.

[18] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. PROST Parallel Robust Online Simple Tracking. In Proc. CVPR, 2010.

[19] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In Proc. ICML, 2007.

[20] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 6:1453–1484, September 2005.

[21] A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In Proc. CVPR, 2010.

[22] Z. Yin and R. T. Collins. Shape constrained figure-ground segmentation and tracking. In Proc. CVPR, 2009. 9