nips nips2011 nips2011-155 nips2011-155-reference knowledge-graph by maker-knowledge-mining

155 nips-2011-Learning to Agglomerate Superpixel Hierarchies


Source: pdf

Author: Viren Jain, Srinivas C. Turaga, K Briggman, Moritz N. Helmstaedter, Winfried Denk, H. S. Seung

Abstract: An agglomerative clustering algorithm merges the most similar pair of clusters at every iteration. The function that evaluates similarity is traditionally handdesigned, but there has been recent interest in supervised or semisupervised settings in which ground-truth clustered data is available for training. Here we show how to train a similarity function by regarding it as the action-value function of a reinforcement learning problem. We apply this general method to segment images by clustering superpixels, an application that we call Learning to Agglomerate Superpixel Hierarchies (LASH). When applied to a challenging dataset of brain images from serial electron microscopy, LASH dramatically improved segmentation accuracy when clustering supervoxels generated by state of the boundary detection algorithms. The naive strategy of directly training only supervoxel similarities and applying single linkage clustering produced less improvement. 1


reference text

[1] B. Andres, J. H. Kappes, U. Köthe, C. Schnörr, and F. A. Hamprecht. An empirical comparison of inference algorithms for graphical models with higher order factors using opengm. In M. Goesele, S. Roth, A. Kuijper, B. Schiele, and K. Schindler, editors, Pattern Recognition, volume 6376 of Lecture Notes in Computer Science, pages 353–362. Springer, 2010.

[2] B. Andres, U. Koethe, M. Helmstaedter, W. Denk, and F. Hamprecht. Segmentation of SBFSEM volume data of neural tissue by hierarchical classification. In Proceedings of the 30th DAGM symposium on Pattern Recognition, pages 142–152. Springer, 2008.

[3] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. From contours to regions: An empirical evaluation. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 0:2294–2301, 2009.

[4] K. L. Briggman and W. Denk. Towards neural circuit reconstruction with volume electron microscopy techniques. Current opinion in neurobiology, 16(5):562–570, 2006.

[5] O. Chapelle, B. Schlkopf, and A. Zien. Semi-supervised learning. The MIT Press, page 528, 2010.

[6] D. Chklovskii, S. Vitaladevuni, and L. Scheffer. Semi-automated reconstruction of neural circuits using electron microscopy. Current Opinion in Neurobiology, 2010.

[7] M. Collins, R. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances. Machine Learning, 48(1):253–285, 2002.

[8] H. Daumé, III, J. Langford, and D. Marcu. Search-based structured prediction. Machine Learning, 75:297–325, 2009. 10.1007/s10994-009-5106-x.

[9] W. Denk and H. Horstmann. Serial block-face scanning electron microscopy to reconstruct threedimensional tissue nanostructure. PLoS Biol, 2(11):e329, 2004.

[10] P. Dollar, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 2:1964–1971, 2006.

[11] K. J. Hayworth, N. Kasthuri, R. Schalek, and J. W. Lichtman. Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microscopy and Microanalysis, 12(S02):86–87, 2006.

[12] M. Helmstaedter, K. L. Briggman, and W. Denk. 3D structural imaging of the brain with photons and electrons. Current Opinion in Neurobiology, 18(6):633–641, 2008.

[13] V. Jain, B. Bollmann, M. Richardson, D. Berger, M. Helmstaedter, K. Briggman, W. Denk, J. Bowden, J. Mendenhall, W. Abraham, K. Harris, N. Kasthuri, K. Hayworth, R. Schalek, J. Tapia, J. Lichtman, and H. Seung. Boundary Learning by Optimization with Topological Constraints. In Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 2010.

[14] V. Jain, J. F. Murray, F. Roth, S. C. Turaga, V. Zhigulin, K. L. Briggman, M. N. Helmstaedter, W. Denk, and H. S. Seung. Supervised learning of image restoration with convolutional networks. Computer Vision, IEEE International Conference on, 0:1–8, 2007.

[15] V. Jain, H. Seung, and S. Turaga. Machines that learn to segment images: a crucial technology for connectomics. Current opinion in neurobiology, 2010.

[16] E. Jurrus, R. Whitaker, B. W. Jones, R. Marc, and T. Tasdizen. An optimal-path approach for neural circuit reconstruction. In Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on, pages 1609–1612, May 2008.

[17] V. Kaynig, T. Fuchs, and J. M. Buhmann. Neuron geometry extraction by perceptual grouping in sstem images. In Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 2010.

[18] V. Kolmogorov and R. Zabih. What energy functions can be minimizedvia graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 147–159, 2004.

[19] A. Kulesza, F. Pereira, et al. Structured learning with approximate inference. Advances in neural information processing systems, 20, 2007. 8

[20] J. W. Lichtman and J. R. Sanes. Ome sweet ome: what can the genome tell us about the connectome? Curr. Opin. Neurobiol., 18(3):346–353, Jun 2008.

[21] F. Maes, L. Denoyer, and P. Gallinari. Structured prediction with reinforcement learning. Machine learning, 77(2):271–301, 2009.

[22] M. Maire, P. Arbeláez, C. Fowlkes, and J. Malik. Using contours to detect and localize junctions in natural images. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[23] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Patt. Anal. Mach. Intell., pages 530–549, 2004.

[24] J. Mutch, U. Knoblich, and T. Poggio. CNS: a GPU-based framework for simulating cortically-organized networks. Technical report, Massachussetts Institute of Technology, 2010.

[25] W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association, 66(336):846–850, 1971.

[26] X. Ren. Multi-scale improves boundary detection in natural images. In Proceedings of the 10th European Conference on Computer Vision: Part III, pages 533–545. Springer-Verlag, Springer, 2008.

[27] X. Ren and J. Malik. Learning a Classification Model for Segmentation. In Proceedings of the Ninth IEEE International Conference on Computer Vision-Volume 2, page 10. IEEE Computer Society, 2003.

[28] H. Seung. Reading the Book of Memory: Sparse Sampling versus Dense Mapping of Connectomes. Neuron, 62(1):17–29, 2009.

[29] E. Sharon, A. Brandt, and R. Basri. Fast multiscale image segmentation. In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 1, pages 70–77. IEEE, 2000.

[30] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt. Hierarchy and adaptivity in segmenting visual scenes. Nature, 442(7104):810–813, 2006.

[31] C. Sommer, C. Straehle, U. Köthe, and F. A. Hamprecht.

[32] S. C. Turaga, K. L. Briggman, M. Helmstaedter, W. Denk, and H. S. Seung. Maximin affinity learning of image segmentation. In NIPS, 2009.

[33] S. C. Turaga, J. F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman, W. Denk, and H. S. Seung. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Computation, 22(2):511–538, 2010.

[34] R. Unnikrishnan, C. Pantofaru, and M. Hebert. Toward objective evaluation of image segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):929, 2007.

[35] S. N. Vitaladevuni and R. Basri. Co-clustering of image segments using convex optimization applied to EM neuronal reconstruction. In Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 2010.

[36] M. Wainwright. Estimating the wrong graphical model: Benefits in the computation-limited setting. The Journal of Machine Learning Research, 7:1829–1859, 2006. 9