nips nips2011 nips2011-23 nips2011-23-reference knowledge-graph by maker-knowledge-mining

23 nips-2011-Active dendrites: adaptation to spike-based communication


Source: pdf

Author: Balazs B. Ujfalussy, Máté Lengyel

Abstract: Computational analyses of dendritic computations often assume stationary inputs to neurons, ignoring the pulsatile nature of spike-based communication between neurons and the moment-to-moment fluctuations caused by such spiking inputs. Conversely, circuit computations with spiking neurons are usually formalized without regard to the rich nonlinear nature of dendritic processing. Here we address the computational challenge faced by neurons that compute and represent analogue quantities but communicate with digital spikes, and show that reliable computation of even purely linear functions of inputs can require the interplay of strongly nonlinear subunits within the postsynaptic dendritic tree. Our theory predicts a matching of dendritic nonlinearities and synaptic weight distributions to the joint statistics of presynaptic inputs. This approach suggests normative roles for some puzzling forms of nonlinear dendritic dynamics and plasticity. 1


reference text

1. Koch, C. Biophysics of computation (Oxford University Press, 1999). 2. Stuart, G., Spruston, N. & Hausser, M. Dendrites (Oxford University Press, 2007). 3. Poirazi, P. & Mel, B.W. Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29, 779–96 (2001). 4. Poirazi, P., Brannon, T. & Mel, B.W. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–87 (2003). 5. Crochet, S., Poulet, J.F., Kremer, Y. & Petersen, C.C. Synaptic mechanisms underlying sparse coding of active touch. Neuron 69, 1160–75 (2011). 6. Maass, W. & Bishop, C. Pulsed Neural Networks (MIT Press, 1998). 7. Gerstner, W. & Kistler, W. Spiking Neuron Models (Cambridge University Press, 2002). 8. Rieke, F., Warland, D., de Ruyter van Steveninck, R. & Bialek, W. Spikes (MIT Press, 1996). 9. Deneve, S. Bayesian spiking neurons I: inference. Neural Comput. 20, 91–117 (2008). 10. Dayan, P. & Abbot, L.F. Theoretical neuroscience (The MIT press, 2001). 11. Pfister, J., Dayan, P. & Lengyel, M. Know thy neighbour: a normative theory of synaptic depression. Adv. Neural Inf. Proc. Sys. 22, 1464–1472 (2009). 12. Pfister, J., Dayan, P. & Lengyel, M. Synapses with short-term plasticity are optimal estimators of presynaptic membrane potentials. Nat. Neurosci. 13, 1271–1275 (2010). 13. Poulet, J.F. & Petersen, C.C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–5 (2008). 14. Doucet, A., De Freitas, N. & Gordon, N. Sequential Monte Carlo Methods in Practice (Springer, New York, 2001). 15. Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1, 491–527 (1959). 16. Hoffman, D.A., Magee, J.C., Colbert, C.M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–75 (1997). 17. Cash, S. & Yuste, R. Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22, 383–94 (1999). 18. Gasparini, S., Migliore, M. & Magee, J.C. On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J. Neurosci. 24, 11046–56 (2004). 19. Polsky, A., Mel, B.W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nat. Neurosci. 7, 621–7 (2004). 20. Margulis, M. & Tang, C.M. Temporal integration can readily switch between sublinear and supralinear summation. J. Neurophysiol. 79, 2809–13 (1998). 21. Hausser, M., Spruston, N. & Stuart, G.J. Diversity and dynamics of dendritic signaling. Science 290, 739–44 (2000). 22. Poirazi, P., Brannon, T. & Mel, B.W. Pyramidal neuron as two-layer neural network. Neuron 37, 989–99 (2003). 23. Huys, Q.J., Zemel, R.S., Natarajan, R. & Dayan, P. Fast population coding. Neural Comput. 19, 404–41 (2007). 24. Natarajan, R., Huys, Q.J.M., Dayan, P. & Zemel, R.S. Encoding and decoding spikes for dynamics stimuli. Neural Computation 20, 2325–2360 (2008). 25. Gerwinn, S., Macke, J. & Bethge, M. Bayesian population decoding with spiking neurons. Frontiers in Computational Neuroscience 3 (2009). 26. Losonczy, A. & Magee, J.C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006). 27. Bock, D.D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–82 (2011). 28. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature (2011). 29. Losonczy, A., Makara, J.K. & Magee, J.C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–41 (2008). 30. Makara, J.K., Losonczy, A., Wen, Q. & Magee, J.C. Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons. Nat. Neurosci. 12, 1485–7 (2009). 31. Butz, M., Worgotter, F. & van Ooyen, A. Activity-dependent structural plasticity. Brain Res. Rev. 60, 287–305 (2009). 9