nips nips2010 nips2010-187 nips2010-187-reference knowledge-graph by maker-knowledge-mining

187 nips-2010-Occlusion Detection and Motion Estimation with Convex Optimization


Source: pdf

Author: Alper Ayvaci, Michalis Raptis, Stefano Soatto

Abstract: We tackle the problem of simultaneously detecting occlusions and estimating optical flow. We show that, under standard assumptions of Lambertian reflection and static illumination, the task can be posed as a convex minimization problem. Therefore, the solution, computed using efficient algorithms, is guaranteed to be globally optimal, for any number of independently moving objects, and any number of occlusion layers. We test the proposed algorithm on benchmark datasets, expanded to enable evaluation of occlusion detection performance. 1


reference text

[1] L. Alvarez, R. Deriche, T. Papadopoulo, and J. S´ nchez. Symmetrical dense optical flow estimation with a occlusions detection. International Journal of Computer Vision, 75(3):371–385, 2007.

[2] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski. A database and evaluation methodology for optical flow. In Proceedings of the International Conference on Computer Vision, volume 5, 2007.

[3] S. Becker, J. Bobin, and E. Candes. Nesta: A fast and accurate first-order method for sparse recovery. Arxiv preprint arXiv, 904, 2009.

[4] R. Ben-Ari and N. Sochen. Variational stereo vision with sharp discontinuities and occlusion handling. ICCV. IEEE Computer Society, pages 1–7, 2007.

[5] E. Candes, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted 1 minimization. Journal of Fourier Analysis and Applications, 14(5):877–905, 2008.

[6] T. Chan, S. Esedoglu, and M. Nikolova. Algorithms for finding global minimizers of denoising and segmentation models. SIAM J. Appl. Math, 66(1632-1648):1, 2006. 8

[7] J. Dahl, P. Hansen, S. Jensen, and T. Jensen. Algorithms and software for total variation image reconstruction via first-order methods. Numerical Algorithms, pages 67–92, 2009.

[8] J. J. Gibson. The ecological approach to visual perception. LEA, 1984.

[9] T. Goldstein and S. Osher. The split Bregman method for L1 regularized problems. SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

[10] P. Huber and E. Ronchetti. Robust statistics. John Wiley & Sons Inc, 2009.

[11] S. Ince and J. Konrad. Occlusion-aware optical flow estimation. IEEE Transactions on Image Processing, 17(8):1443–1451, 2008.

[12] J. Jackson, A. J. Yezzi, and S. Soatto. Dynamic shape and appearance modeling via moving and deforming layers. International Journal of Computer Vision, 2008.

[13] Y. Kim, A. Mart´nez, and A. Kak. Robust motion estimation under varying illumination. Image and ı Vision Computing, 23(4):365–375, 2005.

[14] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions via graph cuts. In International Conference on Computer Vision, volume 2, pages 508–515. Citeseer, 2001.

[15] K. Lim, A. Das, and M. Chong. Estimation of occlusion and dense motion fields in a bidirectional Bayesian framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 712–718, 2002.

[16] S. Negahdaripour. Revised definition of optical flow: Integration of radiometric and geometric cues for dynamic scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 961– 979, 1998.

[17] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence O (1/k2). In Doklady AN SSSR, volume 269, pages 543–547, 1983.

[18] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127– 152, 2005.

[19] M. Proesmans, L. Van Gool, and A. Oosterlinck. Determination of optical flow and its discontinuities using a non-linear diffusion. In European Conference on Computer Vision, 1994.

[20] M. Raptis, A. Ayvaci, and S. Soatto. Occlusion Detection and Motion Estimation via Convex Optimization. Technical report, UCLA CAM 10-36, June 2010.

[21] D. Shulman and J. Herve. Regularization of discontinuous flow fields. In Proc. of Workshop on Visual Motion, pages 81–86, 1989.

[22] S. Soatto. Steps Towards a Theory of Visual Information. Technical report, UCLA-CSD100028, September 2010.

[23] S. Soatto, A. J. Yezzi, and H. Jin. Tales of shape and radiance in multiview stereo. In Intl. Conf. on Comp. Vision, pages 974–981, October 2003.

[24] C. Strecha, R. Fransens, and L. Van Gool. A probabilistic approach to large displacement optical flow and occlusion detection. In ECCV Workshop SMVP, pages 71–82. Springer, 2004.

[25] J. Sun, Y. Li, S. Kang, and H. Shum. Symmetric stereo matching for occlusion handling. In IEEE Conference on Computer Vision and Pattern Recognition, volume 2, page 399, 2005.

[26] C. Teng, S. Lai, Y. Chen, and W. Hsu. Accurate optical flow computation under non-uniform brightness variations. Computer vision and image understanding, 97(3):315–346, 2005.

[27] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[28] A. Verri and T. Poggio. Motion field and optical flow: Qualitative properties. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(5):490–498, 1989.

[29] A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow. In Statistical and Geometrical Approaches to Visual Motion Analysis: International Dagstuhl Seminar. Springer, 2009.

[30] J. Xiao, H. Cheng, H. Sawhney, C. Rao, M. Isnardi, et al. Bilateral filtering-based optical flow estimation with occlusion detection. Lecture Notes in Computer Science, 3951:211, 2006. 9