nips nips2009 nips2009-257 nips2009-257-reference knowledge-graph by maker-knowledge-mining

257 nips-2009-White Functionals for Anomaly Detection in Dynamical Systems


Source: pdf

Author: Marco Cuturi, Jean-philippe Vert, Alexandre D'aspremont

Abstract: We propose new methodologies to detect anomalies in discrete-time processes taking values in a probability space. These methods are based on the inference of functionals whose evaluations on successive states visited by the process are stationary and have low autocorrelations. Deviations from this behavior are used to flag anomalies. The candidate functionals are estimated in a subspace of a reproducing kernel Hilbert space associated with the original probability space considered. We provide experimental results on simulated datasets which show that these techniques compare favorably with other algorithms.


reference text

[1] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Computing Surveys, 2009.

[2] B. Sch¨ lkopf, A. Smola, and K. M¨ ller. Nonlinear component analysis as a kernel eigenvalue problem. o u Neural Comput., 10(5):1299–1319, 1998.

[3] B. Sch¨ lkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of o a high-dimensional distribution. Neural Comput., 13:2001, 1999.

[4] A.B. Gardner, A.M. Krieger, G. Vachtsevanos, and B. Litt. One-class novelty detection for seizure analysis from intracranial EEG. J. Mach. Learn. Res., 7:1025–1044, 2006.

[5] H. Hoffmann. Kernel PCA for novelty detection. Pattern Recognit., 40(3):863–874, 2007.

[6] A. J. Fox. Outliers in time series. J. R. Stat. Soc. Ser. B, 34(3):350–363, 1972.

[7] R.S. Tsay, D. Pena, and A.E. Pankratz. Outliers in multivariate time series. Biometrika, 87(4):789–804, 2000.

[8] A. Laukaitis and A. Raˇ kauskas. Testing changes in Hilbert space autoregressive models. Lithuanian c Mathematical Journal, 42(4):343–354, 2002.

[9] G. S. Maddala and I. M. Kim. Unit roots, cointegration, and structural change. Cambridge Univ. Pr., 1998.

[10] P. Switzer and A.A. Green. Min/max autocorrelation factors for multivariate spatial imagery. Computer science and statistics, 16:13–16, 1985.

[11] G. Box and G. C. Tiao. A canonical analysis of multiple time series. Biometrika, 64(2):355–365, 1977.

[12] K. Fukumizu, F. R. Bach, and A. Gretton. Statistical consistency of kernel canonical correlation analysis. J. Mach. Learn. Res., 8:361–383, 2007.

[13] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers, 2003.

[14] D. Bosq. Linear Processes in Function Spaces: Theory and Applications. Springer, 2000.

[15] A. Mas. Asymptotic normality for the empirical estimator of the autocorrelation operator of an ARH (1) process. Compt. Rendus Acad. Sci. Math., 329(10):899–902, 1999.

[16] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[17] L. Zwald and G. Blanchard. Finite dimensional projection for classification and statistical learning. IEEE Trans. Inform. Theory, 54:4169, 2008.

[18] J. H. Stock and M. W. Watson. Testing for common trends. J. Am. Stat. Assoc., pages 1097–1107, 1988.

[19] P. Bossaerts. Common nonstationary components of asset prices. J. Econ. Dynam. Contr., 12(2-3):347– 364, 1988.

[20] J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel, and J. C. Sprott. Chaos in low-dimensional lotka-volterra models of competition. Nonlinearity, 19(10):2391–2404, 2006.

[21] M. Basseville and I.V Nikiforov. Detection of abrupt changes: theory and applications. Prentice-Hall, 1993. 9