nips nips2009 nips2009-194 nips2009-194-reference knowledge-graph by maker-knowledge-mining

194 nips-2009-Predicting the Optimal Spacing of Study: A Multiscale Context Model of Memory


Source: pdf

Author: Harold Pashler, Nicholas Cepeda, Robert Lindsey, Ed Vul, Michael C. Mozer

Abstract: When individuals learn facts (e.g., foreign language vocabulary) over multiple study sessions, the temporal spacing of study has a significant impact on memory retention. Behavioral experiments have shown a nonmonotonic relationship between spacing and retention: short or long intervals between study sessions yield lower cued-recall accuracy than intermediate intervals. Appropriate spacing of study can double retention on educationally relevant time scales. We introduce a Multiscale Context Model (MCM) that is able to predict the influence of a particular study schedule on retention for specific material. MCM’s prediction is based on empirical data characterizing forgetting of the material following a single study session. MCM is a synthesis of two existing memory models (Staddon, Chelaru, & Higa, 2002; Raaijmakers, 2003). On the surface, these models are unrelated and incompatible, but we show they share a core feature that allows them to be integrated. MCM can determine study schedules that maximize the durability of learning, and has implications for education and training. MCM can be cast either as a neural network with inputs that fluctuate over time, or as a cascade of leaky integrators. MCM is intriguingly similar to a Bayesian multiscale model of memory (Kording, Tenenbaum, & Shadmehr, 2007), yet MCM is better able to account for human declarative memory. 1


reference text

Anderson, J. R., & Milson, R. (1989). Human memory: An adaptive perspective. Psych. Rev., 96, 703–719. Cepeda, N. J., Coburn, N., Rohrer, D., Wixted, J. T., Mozer, M. C., & Pashler, H. (in press). Optimizing distributed practice: Theoretical analysis and practical implications. Journal of Experimental Psychology. Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological Bulletin, 132, 354–380. Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T., & Pashler, H. (2008). Spacing effects in learning: A temporal ridgeline of optimal retention. Psychological Science, 19, 1095–1102. Kording, K. P., Tenenbaum, J. B., & Shadmehr, R. (2007). The dynamics of memory as a consequence of optimal adaptation to a changing body. Nature Neuroscience, 10, 779–786. Pavlik, P. I., & Anderson, J. R. (2005). Practice and forgetting effects on vocabulary memory: An activation-based model of the spacing effect. Cognitive Science, 29(4), 559-586. Raaijmakers, J. G. W. (2003). Spacing and repetition effects in human memory: application of the SAM model. Cognitive Science, 27, 431–452. Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. Psych. Rev., 88, 93–134. Staddon, J. E. R., Chelaru, I. M., & Higa, J. J. (2002). Habituation, memory and the brain: The dynamics of interval timing. Behavioural Processes, 57, 71-88. Wixted, J. T., & Carpenter, S. K. (2007). The Wickelgren power law and the Ebbinghaus savings function. Psychological Science, 18, 133–134. 9