nips nips2009 nips2009-190 nips2009-190-reference knowledge-graph by maker-knowledge-mining

190 nips-2009-Polynomial Semantic Indexing


Source: pdf

Author: Bing Bai, Jason Weston, David Grangier, Ronan Collobert, Kunihiko Sadamasa, Yanjun Qi, Corinna Cortes, Mehryar Mohri

Abstract: We present a class of nonlinear (polynomial) models that are discriminatively trained to directly map from the word content in a query-document or documentdocument pair to a ranking score. Dealing with polynomial models on word features is computationally challenging. We propose a low-rank (but diagonal preserving) representation of our polynomial models to induce feasible memory and computation requirements. We provide an empirical study on retrieval tasks based on Wikipedia documents, where we obtain state-of-the-art performance while providing realistically scalable methods. 1


reference text

[1] B. Bai, J. Weston, R. Collobert, and D. Grangier. Supervised Semantic Indexing. In European Conference on Information Retrieval, pages 761–765, 2009.

[2] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3:993–1022, 2003.

[3] D. M. Blei and J. D. McAuliffe. Supervised topic models. In NIPS, pages 121–128, 2007.

[4] C. Burges, R. Ragno, and Q. Le. Learning to Rank with Nonsmooth Cost Functions. In NIPS, pages 193–200, 2007.

[5] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to Rank Using Gradient Descent. In ICML, pages 89–96, 2005.

[6] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise approach. In ICML, pages 129–136, 2007.

[7] G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale online learning of image similarity through ranking. In (Snowbird) Learning Workshop, 2009.

[8] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by latent semantic analysis. JASIS, 41(6):391–407, 1990.

[9] S. Dumais, T. Letsche, M. Littman, and T. Landauer. Automatic cross-language retrieval using latent semantic indexing. In AAAI Spring Symposium on Cross-Language Text and Speech Retrieval, pages 15–21, 1997.

[10] E. Gabrilovich and S. Markovitch. Computing semantic relatedness using wikipedia-based explicit semantic analysis. In IJCAI, pages 1606–1611, 2007.

[11] P. Gehler, A. Holub, and M. Welling. The rate adapting poisson (rap) model for information retrieval and object recognition. In ICML, pages 337–344, 2006.

[12] A. Globerson and S. Roweis. Visualizing pairwise similarity via semidefinite programming. In AISTATS, 2007.

[13] S. Goel, J. Langford, and A. Strehl. Predictive indexing for fast search. In NIPS, pages 505–512, 2008.

[14] D. Grangier and S. Bengio. Inferring document similarity from hyperlinks. In CIKM, pages 359–360, 2005.

[15] D. Grangier and S. Bengio. A discriminative kernel-based approach to rank images from text queries. IEEE Transactions on Pattern Analysis and Machine Intelligence., 30(8):1371–1384, 2008.

[16] G. Grefenstette. Cross-Language Information Retrieval. Kluwer, Norwell, MA, USA, 1998.

[17] R. Herbrich, T. Graepel, and K. Obermayer. Advances in Large Margin Classifiers, chapter Large margin rank boundaries for ordinal regression. MIT Press, Cambridge, MA, 2000.

[18] T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50–57, 1999.

[19] P. Jain, B. Kulis, I. S. Dhillon, and K. Grauman. Online metric learning and fast similarity search. In NIPS, pages 761–768, 2008.

[20] T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD, pages 133–142, 2002.

[21] M. Keller and S. Bengio. A Neural Network for Text Representation. In International Conference on Artificial Neural Networks, 2005. IDIAP-RR 05-12.

[22] T. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark dataset for research on learning to rank for information retrieval. In Proceedings of SIGIR 2007 Workshop on Learning to Rank, 2007.

[23] R. Salakhutdinov and G. Hinton. Semantic Hashing. Proceedings of the SIGIR Workshop on Information Retrieval and Applications of Graphical Models, 2007.

[24] G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1986.

[25] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, A. Strehl, and V. Vishwanathan. Hash Kernels. In AISTATS, 2009.

[26] A. Vinokourov, J. Shawe-Taylor, and N. Cristianini. Inferring a Semantic Representation of Text via Cross-Language Correlation Analysis. In NIPS, pages 1497–1504, 2003.

[27] K. Weinberger and L. Saul. Fast solvers and efficient implementations for distance metric learning. In ICML, pages 1160–1167, 2008.

[28] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In SIGIR, pages 271–278, 2007.

[29] L. Zighelnic and O. Kurland. Query-drift prevention for robust query expansion. In SIGIR, pages 825– 826, 2008. 9