nips nips2009 nips2009-162 nips2009-162-reference knowledge-graph by maker-knowledge-mining

162 nips-2009-Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling


Source: pdf

Author: Lei Shi, Thomas L. Griffiths

Abstract: The goal of perception is to infer the hidden states in the hierarchical process by which sensory data are generated. Human behavior is consistent with the optimal statistical solution to this problem in many tasks, including cue combination and orientation detection. Understanding the neural mechanisms underlying this behavior is of particular importance, since probabilistic computations are notoriously challenging. Here we propose a simple mechanism for Bayesian inference which involves averaging over a few feature detection neurons which fire at a rate determined by their similarity to a sensory stimulus. This mechanism is based on a Monte Carlo method known as importance sampling, commonly used in computer science and statistics. Moreover, a simple extension to recursive importance sampling can be used to perform hierarchical Bayesian inference. We identify a scheme for implementing importance sampling with spiking neurons, and show that this scheme can account for human behavior in cue combination and the oblique effect. 1


reference text

[1] K. K¨ rding and D. M. Wolpert. Bayesian integration in sensorimotor learning. Nature, 427:244–247, o 2004.

[2] M. O. Ernst and M. S. Banks. Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870):429–433, 2002.

[3] A. Stocker and E. Simoncelli. A bayesian model of conditioned perception. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1409– 1416. MIT Press, Cambridge, MA, 2008.

[4] A. P. Blaisdell, K. Sawa, K. J. Leising, and M. R. Waldmann. Causal reasoning in rats. Science, 311(5763):1020–1022, 2006.

[5] D. C. Van Essen, C. H. Anderson, and D. J. Felleman. Information processing in the primate visual system: an integrated systems perspective. Science, 255(5043):419–423, 1992 Jan 24.

[6] T. S. Lee and D. Mumford. Hierarchical bayesian inference in the visual cortex. J.Opt.Soc.Am.A Opt.Image Sci.Vis., 20(7):1434–1448, 2003.

[7] R. S. Zemel, P. Dayan, and A. Pouget. Probabilistic interpretation of population codes. Neural Comput, 10(2):403–430, 1998.

[8] W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget. Bayesian inference with probabilistic population codes. Nat.Neurosci., 9(11):1432–1438, 2006.

[9] L. Shi, N. H. Feldman, and T. L. Griffiths. Performing bayesian inference with exemplar models. In Proceedings of the 30th Annual Conference of the Cognitive Science Society, 2008.

[10] M. Kouh and T. Poggio. A canonical neural circuit for cortical nonlinear operations. Neural Comput, 20(6):1427–1451, 2008.

[11] J. K. Kruschke. Alcove: An exemplar-based connectionist model of category learning. Psychological Review, 99:22–44, 1992.

[12] M. J. D. Powell. Radial basis functions for multivariable interpolation: a review. Clarendon Press, New York, NY, USA, 1987.

[13] R. L. De Valois, E. W. Yund, and N. Hepler. The orientation and direction selectivity of cells in macaque visual cortex. Vision Res, 22(5):531–544, 1982.

[14] D. M. Coppola, L. E. White, D. Fitzpatrick, and D. Purves. Unequal representation of cardinal and oblique contours in ferret visual cortex. Proc Natl Acad Sci U S A, 95(5):2621–2623, 1998 Mar 3.

[15] C. S. Furmanski and S. A. Engel. An oblique effect in human primary visual cortex. Nat Neurosci, 3(6):535–536, 2000.

[16] A. Hodzic, R. Veit, A. A. Karim, M. Erb, and B. Godde. Improvement and decline in tactile discrimination behavior after cortical plasticity induced by passive tactile coactivation. J Neurosci, 24(2):442–446, 2004.

[17] M. L. Platt and P. W. Glimcher. Neural correlates of decision variables in parietal cortex. Nature, 400:233– 238, 1999.

[18] M. A. Basso and R. H. Wurtz. 389(6646):66–69, 1997. Modulation of neuronal activity by target uncertainty. Nature,

[19] J. H. Reynolds and D. J. Heeger. The normalization model of attention. Neuron, 61(2):168–185, 2009 Jan 29.

[20] J. Lee and J. H. R. Maunsell. A normalization model of attentional modulation of single unit responses. PLoS ONE, 4(2):e4651, 2009.

[21] S. J. Mitchell and R. A. Silver. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron, 38(3):433–445, 2003.

[22] J. S. Rothman, L. Cathala, V. Steuber, and R A. Silver. Synaptic depression enables neuronal gain control. Nature, 457(7232):1015–1018, 2009 Feb 19.

[23] H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci, 5(10):793–807, 2004 Oct.

[24] K. Friston. Hierarchical models in the brain. PLoS Comput Biol, 4(11):e1000211, 2008 Nov.

[25] G. A. Orban, E. Vandenbussche, and R. Vogels. Human orientation discrimination tested with long stimuli. Vision Res, 24(2):121–128, 1984. 9