nips nips2009 nips2009-47 nips2009-47-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Yongxin Xi, Uri Hasson, Peter J. Ramadge, Zhen J. Xiang
Abstract: By adding a spatial regularization kernel to a standard loss function formulation of the boosting problem, we develop a framework for spatially informed boosting. From this regularized loss framework we derive an efficient boosting algorithm that uses additional weights/priors on the base classifiers. We prove that the proposed algorithm exhibits a “grouping effect”, which encourages the selection of all spatially local, discriminative base classifiers. The algorithm’s primary advantage is in applications where the trained classifier is used to identify the spatial pattern of discriminative information, e.g. the voxel selection problem in fMRI. We demonstrate the algorithm’s performance on various data sets. 1
[1] K.J. Friston, J. Ashburner, J. Heather, et al. Statistical parametric mapping. Neuroscience Databases: A Practical Guide, page 237, 2003.
[2] R. Heller, D. Stanley, D. Yekutieli, N. Rubin, and Y. Benjamini. Cluster-based analysis of FMRI data. NeuroImage, 33(2):599–608, 2006.
[3] D. Van De Ville, T. Blu, and M. Unser. Integrated wavelet processing and spatial statistical testing of fMRI data. NeuroImage, 23(4):1472–1485, 2004.
[4] D. Van De Ville, M.L. Seghier, F. Lazeyras, T. Blu, and M. Unser. WSPM: Wavelet-based statistical parametric mapping. NeuroImage, 37(4):1205–1217, 2007.
[5] Z. Harmany, R. Willett, A. Singh, and R. Nowak. Controlling the error in fmri: Hypothesis testing or set estimation? In Biomedical Imaging, 5th IEEE International Symposium on, pages 552–555, 2008.
[6] R.M. Willett and R.D. Nowak. Minimax optimal level-set estimation. IEEE Transactions on Image Processing, 16(12):2965–2979, 2007.
[7] J.V. Haxby, M.I. Gobbini, M.L. Furey, A. Ishai, J.L. Schouten, and P. Pietrini. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539):2425–2430, 2001.
[8] K.A. Norman, S.M. Polyn, G.J. Detre, and J.V. Haxby. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9):424–430, 2006.
[9] N. Kriegeskorte, R. Goebel, and P. Bandettini. Information-based functional brain mapping. Proceedings of the National Academy of Sciences, 103(10):3863–3868, 2006.
[10] V. Koltchinskii, M. Martınez-Ramon, and S. Posse. Optimal aggregation of classifiers and boosting maps in functional magnetic resonance imaging. Advances in Neural Information Processing Systems, 17:705– 712, 2005.
[11] M. Mart´nez-Ram´ n, V. Koltchinskii, G.L. Heileman, and S. Posse. fMRI pattern classification using ı o neuroanatomically constrained boosting. NeuroImage, 31(3):1129–1141, 2006.
[12] Melissa K. Carroll, Kenneth A. Norman, James V. Haxby, and Robert E. Schapire. Exploiting spatial information to improve fmri pattern classification. In 12th Annual Meeting of the Organization for Human Brain Mapping, Florence, Italy, 2006.
[13] J.H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5):1189–1232, 2001.
[14] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. In European Conference on Computational Learning Theory, pages 23–37, 1995.
[15] C. Rudin, I. Daubechies, and R.E. Schapire. The dynamics of adaboost: Cyclic behavior and convergence of margins. Journal of Machine Learning Research, 5(2):1557, 2005.
[16] Z.J. Xiang and P.J. Ramadge. Sparse boosting. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2009.
[17] T. Zhang. Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models. In Proc. Neural Information Processing Systems, 2008.
[18] H. Zou and T. Hastie. Regression shrinkage and selection via the elastic net, with applications to microarrays. JR Statist. Soc. B, 2004.
[19] M.M. Nordstrøm, M. Larsen, J. Sierakowski, and M.B. Stegmann. The IMM face database-an annotated dataset of 240 face images. Technical report, DTU Informatics, Building 321, 2004.
[20] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.
[21] N. Kanwisher, J. McDermott, and M.M. Chun. The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11):4302–4311, 1997.
[22] U. Hasson, M. Harel, I. Levy, and R. Malach. Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron, 37(6):1027–1041, 2003.
[23] U. Hasson, Y. Nir, I. Levy, G. Fuhrmann, and R. Malach. Intersubject synchronization of cortical activity during natural vision. Science, 303(5664):1634–1640, 2004. 9