nips nips2008 nips2008-180 nips2008-180-reference knowledge-graph by maker-knowledge-mining

180 nips-2008-Playing Pinball with non-invasive BCI


Source: pdf

Author: Matthias Krauledat, Konrad Grzeska, Max Sagebaum, Benjamin Blankertz, Carmen Vidaurre, Klaus-Robert Müller, Michael Schröder

Abstract: Compared to invasive Brain-Computer Interfaces (BCI), non-invasive BCI systems based on Electroencephalogram (EEG) signals have not been applied successfully for precisely timed control tasks. In the present study, however, we demonstrate and report on the interaction of subjects with a real device: a pinball machine. Results of this study clearly show that fast and well-timed control well beyond chance level is possible, even though the environment is extremely rich and requires precisely timed and complex predictive behavior. Using machine learning methods for mental state decoding, BCI-based pinball control is possible within the first session without the necessity to employ lengthy subject training. The current study shows clearly that very compelling control with excellent timing and dynamics is possible for a non-invasive BCI. 1


reference text

[1] J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M. Santucci, D. F. Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. Nicolelis. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol, E42, 2003.

[2] D. M. Taylor, S. I. Tillery, and A. B. Schwartz. Direct cortical control of 3D neuroprosthetic devices. Science, 296:1829–1832, 2002.

[3] L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, and J.P. Donoghue. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099):164–171, July 2006.

[4] J. R. Wolpaw and D. J. McFarland. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA, 101(51):17849–17854, 2004.

[5] Andrea K¨ bler and Klaus-Robert M¨ ller. An introduction to brain computer interfacing. In Guido Dornu u hege et al., editors, Toward Brain-Computer Interfacing, pages 1–25. MIT press, Cambridge, MA, 2007.

[6] W. A. IJsselsteijn, H. H. Nap, Y. A. W. de Kort, K. Poels andA. Jurgelionis, and F. Bellotti. Characterizing and measuring user experiences in digital games. In Proceedings of the ACE, Salzburg, 2007.

[7] C. Jennett, A. L. Cox, P. Cairns, S. Dhoparee, A. Epps, T. Tijs, and A. Walton. Measuring and defining the experience of immersion in games. International Journal of Human Computer Studies, 2008. 7

[8] H. Jasper and H.L. Andrews. Normal differentiation of occipital and precentral regions in man. Arch. Neurol. Psychiat. (Chicago), 39:96–115, 1938.

[9] Gert Pfurtscheller and F.H. Lopes da Silva. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol, 110(11):1842–1857, Nov 1999.

[10] G. Pfurtscheller, C. Brunner, A. Schl¨ gl, and F.H. Lopes da Silva. Mu rhythm (de)synchronization and o EEG single-trial classification of different motor imagery tasks. NeuroImage, 31(1):153–159, 2006.

[11] C. Neuper and G. Pfurtscheller. Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas. Clin Neurophysiol, 112:2084–2097, 2001.

[12] Benjamin Blankertz, Ryota Tomioka, Steven Lemm, Motoaki Kawanabe, and Klaus-Robert M¨ ller. Opu timizing spatial filters for robust EEG single-trial analysis. IEEE Signal Proc Magazine, 25(1):41–56, January 2008.

[13] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Academic Press, Boston, 2nd edition edition, 1990.

[14] Z. J. Koles. The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalogr Clin Neurophysiol, 79(6):440–447, 1991.

[15] Steven Lemm, Benjamin Blankertz, Gabriel Curio, and Klaus-Robert M¨ ller. Spatio-spectral filters for u improving classification of single trial EEG. IEEE Trans Biomed Eng, 52(9):1541–1548, 2005.

[16] Guido Dornhege, Benjamin Blankertz, Matthias Krauledat, Florian Losch, Gabriel Curio, and KlausRobert M¨ ller. Optimizing spatio-temporal filters for improving brain-computer interfacing. In Advances u in Neural Inf. Proc. Systems (NIPS 05), volume 18, pages 315–322, Cambridge, MA, 2006. MIT Press.

[17] B. Sch¨ lkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002. o

[18] K.-R. M¨ ller, S. Mika, G. R¨ tsch, K. Tsuda, and B. Sch¨ lkopf. An introduction to kernel-based learning u a o algorithms. IEEE Neural Networks, 12(2):181–201, May 2001.

[19] Klaus-Robert M¨ ller, Charles W. Anderson, and Gary E. Birch. Linear and non-linear methods for brainu computer interfaces. IEEE Trans Neural Sys Rehab Eng, 11(2):165–169, 2003.

[20] S. Haykin. Neural Networks : A Comprehensive Foundation. Macmillan, New York, 1994.

[21] N.J. Hill, T. N. Lal, M. Tangermann, T. Hinterberger, G. Widman, C. E. Elger, B. Sch¨ lkopf, and N. Biro baumer. Classifying event-related desynchronization in EEG, ECoG and MEG signals. In Guido Dornhege et al., editors, Toward Brain-Computer Interfacing, pages 235–260. MIT press, Cambridge, MA, 2007.

[22] Benjamin Blankertz, Florian Losch, Matthias Krauledat, Guido Dornhege, Gabriel Curio, and KlausRobert M¨ ller. The Berlin Brain-Computer Interface: Accurate performance from first-session in BCIu naive subjects. IEEE Trans Biomed Eng, 2008. in press.

[23] Matthias Krauledat, Michael Schr¨ der, Benjamin Blankertz, and Klaus-Robert M¨ ller. Reducing calibrao u tion time for brain-computer interfaces: A clustering approach. In B. Sch¨ lkopf, J. Platt, and T. Hoffman, o editors, Advances in Neural Information Processing Systems 19, pages 753–760, Cambridge, MA, 2007. MIT Press.

[24] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert M¨ ller. Covariate shift adaptation by imporu tance weighted cross validation. Journal of Machine Learning Research, 8:1027–1061, 2007.

[25] Pradeep Shenoy, Matthias Krauledat, Benjamin Blankertz, Rajesh P. N. Rao, and Klaus-Robert M¨ ller. u Towards adaptive classification for BCI. J Neural Eng, 3(1):R13–R23, 2006.

[26] Guido Dornhege, Matthias Krauledat, Klaus-Robert M¨ ller, and Benjamin Blankertz. General signal u processing and machine learning tools for BCI. In Guido Dornhege et al., editors, Toward Brain-Computer Interfacing, pages 207–233. MIT Press, Cambridge, MA, 2007.

[27] Matthias Krauledat, Guido Dornhege, Benjamin Blankertz, and Klaus-Robert M¨ ller. Robustifying EEG u data analysis by removing outliers. Chaos and Complexity Letters, 2(3):259–274, 2007.

[28] Klaus-Robert M¨ ller, Michael Tangermann, Guido Dornhege, Matthias Krauledat, Gabriel Curio, and u Benjamin Blankertz. Machine learning for real-time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring. J Neurosci Methods, 167(1):82–90, 2008.

[29] Benjamin Blankertz, Guido Dornhege, Matthias Krauledat, Klaus-Robert M¨ ller, and Gabriel Curio. The u non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects. NeuroImage, 37(2):539–550, 2007.

[30] Matthias Krauledat, Pradeep Shenoy, Benjamin Blankertz, Rajesh P. N. Rao, and Klaus-Robert M¨ ller. u Adaptation in CSP-based BCI systems. In Guido Dornhege et al., editors, Toward Brain-Computer Interfacing, pages 305–309. MIT Press, Cambridge, MA, 2007.

[31] J.D. Haynes and G. Rees. Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7:523–534, 2006. 8