nips nips2008 nips2008-154 nips2008-154-reference knowledge-graph by maker-knowledge-mining

154 nips-2008-Nonparametric Bayesian Learning of Switching Linear Dynamical Systems


Source: pdf

Author: Alan S. Willsky, Erik B. Sudderth, Michael I. Jordan, Emily B. Fox

Abstract: Many nonlinear dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such models: the switching linear dynamical system (SLDS) and the switching vector autoregressive (VAR) process. Our nonparametric Bayesian approach utilizes a hierarchical Dirichlet process prior to learn an unknown number of persistent, smooth dynamical modes. We develop a sampling algorithm that combines a truncated approximation to the Dirichlet process with efficient joint sampling of the mode and state sequences. The utility and flexibility of our model are demonstrated on synthetic data, sequences of dancing honey bees, and the IBOVESPA stock index.


reference text

[1] M. Aoki and A. Havenner. State space modeling of multiple time series. Econ. Rev., 10(1):1–59, 1991.

[2] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. The infinite hidden Markov model. In NIPS, 2002.

[3] F. Caron, M. Davy, A. Doucet, E. Duflos, and P. Vanheeghe. Bayesian inference for dynamic models with Dirichlet process mixtures. In Int. Conf. Inf. Fusion, July 2006.

[4] C. Carvalho and H. Lopes. Simulation-based sequential analysis of Markov switching stochastic volatility models. Comp. Stat. & Data Anal., 2006.

[5] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. An HDP-HMM for systems with state persistence. In ICML, 2008.

[6] E. B. Fox, E. B. Sudderth, and A. S. Willsky. Hierarchical Dirichlet processes for tracking maneuvering targets. In Int. Conf. Inf. Fusion, July 2007.

[7] H. Ishwaran and M. Zarepour. Exact and approximate sum–representations for the Dirichlet process. Can. J. Stat., 30:269–283, 2002.

[8] S. Oh, J. Rehg, T. Balch, and F. Dellaert. Learning and inferring motion patterns using parametric segmental switching linear dynamic systems. IJCV, 77(1–3):103–124, 2008.

[9] J. M. Pavlovi´ , V. Rehg and J. MacCormick. Learning switching linear models of human motion. In c NIPS, 2000.

[10] X. Rong Li and V. Jilkov. Survey of maneuvering target tracking. Part V: Multiple-model methods. IEEE Trans. Aerosp. Electron. Syst., 41(4):1255–1321, 2005.

[11] J. Sethuraman. A constructive definition of Dirichlet priors. Stat. Sinica, 4:639–650, 1994.

[12] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. J. Amer. Stat. Assoc., 101(476):1566–1581, 2006.

[13] M. West and J. Harrison. Bayesian Forecasting and Dynamic Models. Springer, 1997.

[14] X. Xuan and K. Murphy. Modeling changing dependency structure in multivariate time series. In ICML, 2007.