nips nips2008 nips2008-75 nips2008-75-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Stefan Haufe, Vadim V. Nikulin, Andreas Ziehe, Klaus-Robert Müller, Guido Nolte
Abstract: We introduce a novel framework for estimating vector fields using sparse basis field expansions (S-FLEX). The notion of basis fields, which are an extension of scalar basis functions, arises naturally in our framework from a rotational invariance requirement. We consider a regression setting as well as inverse problems. All variants discussed lead to second-order cone programming formulations. While our framework is generally applicable to any type of vector field, we focus in this paper on applying it to solving the EEG/MEG inverse problem. It is shown that significantly more precise and neurophysiologically more plausible location and shape estimates of cerebral current sources from EEG/MEG measurements become possible with our method when comparing to the state-of-the-art. 1
[1] F.R. Bach, G.R.G. Lanckriet, and M.I. Jordan. Multiple kernel learning, conic duality and the SMO algorithm. In Proceedings of the Twenty-first International Conference on Machine Learning, 2004.
[2] M. Grant, S. Boyd, and Y. Ye. CVX: Matlab Software for Disciplined Convex Programming, October 2006. http://www.stanford.edu/˜boyd/cvx/, Version 1.0RC.
[3] S. Haufe, V.V. Nikulin, A. Ziehe, K.-R. M¨ ller, and G. Nolte. Combining sparsity and rotational invariu ance in EEG/MEG source reconstruction. NeuroImage, 42(2):26–738, 2008.
[4] C.J. Holmes, R. Hoge, L. Collins, R. Woods, A.W. Toga, and A.C. Evans. Enhancement of MR images using registration for signal averaging. J. Comput. Assist. Tomogr., 22(2):324–333, 1998.
[5] J. Huttunen, S. Komssi, and L. Lauronen. Spatial dynamics of population activities at S1 after median and ulnar nerve stimulation revisited: An MEG study. NeuroImage, 32:1024–1031, 2006.
[6] M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone programming. Lin. Alg. Appl., 284:193–228, 1998.
[7] K. Matsuura and Y. Okabe. Selective minimum-norm solution of the biomagnetic inverse problem. IEEE Trans. Biomed. Eng., 42:608–615, 1995.
[8] F.A. Mussa-Ivaldi. From basis functions to basis fields: vector field approximation from sparse data. Biol. Cybern., 67:479–489, 1992.
[9] G. Nolte and G. Dassios. Analytic expansion of the EEG lead field for realistic volume conductors. Phys. Med. Biol., 50:3807–3823, 2005.
[10] R.D. Pascual-Marqui. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Meth. Find. Exp. Clin. Pharmacol., 24(1):5–12, 2002.
[11] R.D. Pascual-Marqui, C.M. Michel, and D. Lehmann. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol., 18:49–65, 1994.
[12] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Method. Softw., 11–12:625–653, 1999.
[13] A. Tarantola. Inverse Problem Theory and Model Parameter Estimation. SIAM, Philadelphia, 2005.
[14] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B Meth., 58(1):267–288, 1996.
[15] R. Tomioka and S. Haufe. Combined classification and channel/basis selection with L1-L2 regularization with application to P300 speller system. In Proceedings of the 4th International Brain-Computer Interface Workshop and Training Course 2008. Verlag der Technischen Universit¨ t Graz, 2008. a
[16] M. Vega-Hern´ ndez, E. Mart´nez-Montes, J.M. S´ nchez-Bornot, A. Lage-Castellanos, and P.A. Vald´ sa ı a e Sosa. Penalized least squares methods for solving the EEG inverse problem. Stat. Sinica, 2008. In press.
[17] D.P. Wipf and B.D. Rao. An empirical bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Trans. Signal Proces., 55(7):3704–3716, 2007.
[18] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. B Meth., 68(1):49–67, 2006. 8