nips nips2008 nips2008-61 nips2008-61-reference knowledge-graph by maker-knowledge-mining

61 nips-2008-Diffeomorphic Dimensionality Reduction


Source: pdf

Author: Christian Walder, Bernhard Schölkopf

Abstract: This paper introduces a new approach to constructing meaningful lower dimensional representations of sets of data points. We argue that constraining the mapping between the high and low dimensional spaces to be a diffeomorphism is a natural way of ensuring that pairwise distances are approximately preserved. Accordingly we develop an algorithm which diffeomorphically maps the data near to a lower dimensional subspace and then projects onto that subspace. The problem of solving for the mapping is transformed into one of solving for an Eulerian flow field which we compute using ideas from kernel methods. We demonstrate the efficacy of our approach on various real world data sets. 1


reference text

Bilmes, J., & et.al. (2006). The Vocal Joystick. Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal Processing. Toulouse, France. Cox, T., & Cox, M. (1994). Multidimensional scaling. London, UK: Chapman & Hall. DeMers, D., & Cottrell, G. (1993). Non-linear dimensionality reduction. NIPS 5 (pp. 580–587). Morgan Kaufmann, San Mateo, CA. Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification. New York: Wiley. 2nd Edition. Dupuis, P., & Grenander, U. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics, LVI, 587–600. Hinton, G., & Roweis, S. (2003). Stochastic neighbor embedding. In S. T. S. Becker and K. Obermayer (Eds.), Advances in neural information processing systems 15, 833–840. Cambridge, MA: MIT Press. Hull, J. J. (1994). A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell., 16, 550–554. Joshi, S. C., & Miller, M. I. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9, 1357–1370. Karacali, B., & Davatzikos, C. (2003). Topology preservation and regularity in estimated deformation fields. ¸ Information Processing in Medical Imaging (pp. 426–437). Lawrence, N. D. (2004). Gaussian process latent variable models for visualisation of high dimensional data. In S. Thrun, L. Saul and B. Sch¨ lkopf (Eds.), Nips 16. Cambridge, MA: MIT Press. o Lawrence, N. D., & Candela, J. Q. (2006). Local distance preservation in the GP-LVM through back constraints. In International conference on machine learning, 513–520. ACM. Sch¨ lkopf, B., Herbrich, R., & Smola, A. J. (2001). A generalized representer theorem. Proc. of the 14th o Annual Conf. on Computational Learning Theory (pp. 416–426). London, UK: Springer-Verlag. Song, L., Smola, A., Borgwardt, K., & Gretton, A. (2008). Colored maximum variance unfolding. In J. Platt, D. Koller, Y. Singer and S. Roweis (Eds.), Nips 20, 1385–1392. Cambridge, MA: MIT Press. Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319–2323. van der Maaten, L. J. P., Postma, E., & van den Herik, H. (2008). Dimensionality reduction: A comparative review. In T. Ertl (Ed.), Submitted to neurocognition. Elsevier. Venna, J. (2007). Dimensionality reduction for visual exploration of similarity structures. Doctoral dissertation, Helsinki University of Technology. 8