nips nips2008 nips2008-59 nips2008-59-reference knowledge-graph by maker-knowledge-mining

59 nips-2008-Dependent Dirichlet Process Spike Sorting


Source: pdf

Author: Jan Gasthaus, Frank Wood, Dilan Gorur, Yee W. Teh

Abstract: In this paper we propose a new incremental spike sorting model that automatically eliminates refractory period violations, accounts for action potential waveform drift, and can handle “appearance” and “disappearance” of neurons. Our approach is to augment a known time-varying Dirichlet process that ties together a sequence of infinite Gaussian mixture models, one per action potential waveform observation, with an interspike-interval-dependent likelihood that prohibits refractory period violations. We demonstrate this model by showing results from sorting two publicly available neural data recordings for which a partial ground truth labeling is known. 1


reference text

[1] M. S. Lewicki. A review of methods for spike sorting: the detection and classification of neural action potentials. Network: Computation in Neural Systems, 9(4):53–78, 1998.

[2] M. Sahani. Latent variable models for neural data analysis. PhD thesis, California Institute of Technology, Pasadena, California, 1999.

[3] D. P. Nguyen, L. M. Frank, and E. N. Brown. An application of reversible-jump Markov chain Monte Carlo to spike classification of multi-unit extracellular recordings. Network, 14(1):61–82, 2003.

[4] D. G¨ r¨ r, C. R. Rasmussen, A. S. Tolias, F. Sinz, and N.K. Logothetis. Modeling spikes with mixtures of ou factor analyzers. In Proceeding of the DAGM Symposium, pages 391–398. Springer, 2004.

[5] F. Wood, S. Goldwater, and M. J. Black. A non-parametric Bayesian approach to spike sorting. In Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1165–1168, 2006.

[6] F. Wood and M. J. Black. A nonparametric Bayesian alternative to spike sorting. Journal of Neuroscience Methods, 173:1–12, 2008.

[7] F. Caron. Inf´ rence Bay´ sienne pour la d´ termination et la s´ lection de mod` les stochastiques. PhD thesis, e e e e e ´ Ecole Centrale de Lille and Universit´ des Sciences et Technologiques de Lille, Lille, France, 2006. e

[8] F. Caron, M. Davy, and A. Doucet. Generalized Polya urn for time-varying Dirichlet process mixtures. In 23rd Conference on Uncertainty in Artificial Intelligence (UAI’2007), Vancouver, Canada, July 2007, 2007.

[9] A. Bar-Hillel, A. Spiro, and E. Stark. Spike sorting: Bayesian clustering of non-stationary data. Journal of Neuroscience Methods, 157(2):303–316, 2006.

[10] G. Santhanam, M. D. Linderman, V. Gilja, A. Afshar, S. I. Ryu, T. H. Meng, and K. V. Shenoy. HermesB: A continuous neural recording system for freely behaving primates. IEEE Transactions on Biomedical Engineering, 54(11):2037–2050, 2007.

[11] A. W. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.

[12] D. A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K. D. Harris, and G. Buzs´ ki. Intracellular features a predicted by extracellular recordings in the hippocampus in vivo. Journal of Neurophysiology, 84(1):390– 400, 2000.

[13] K. D. Harris, D. A. Henze, J. Csicsvari, H. Hirase, and G. Buzs´ ki. Accuracy of tetrode spike separation as a determined by simultaneous intracellular and extracellular measurements. Journal of Neurophysiology, 81(1):401–414, 2000.

[14] P. Fearnhead. Particle filters for mixture models with an unknown number of components. Journal of Statistics and Computing, 14:11–21, 2004.

[15] C. Pouzat, M. Delescluse, P. Viot, and J. Diebolt. Improved spike-sorting by modeling firing statistics and burst-dependent spike amplitude attenuation: A Markov Chain Monte Carlo approach. Journal of Neurophysiology, 91(6):2910–2928, 2004. 8