nips nips2008 nips2008-44 nips2008-44-reference knowledge-graph by maker-knowledge-mining

44 nips-2008-Characteristic Kernels on Groups and Semigroups


Source: pdf

Author: Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, Bharath K. Sriperumbudur

Abstract: Embeddings of random variables in reproducing kernel Hilbert spaces (RKHSs) may be used to conduct statistical inference based on higher order moments. For sufficiently rich (characteristic) RKHSs, each probability distribution has a unique embedding, allowing all statistical properties of the distribution to be taken into consideration. Necessary and sufficient conditions for an RKHS to be characteristic exist for Rn . In the present work, conditions are established for an RKHS to be characteristic on groups and semigroups. Illustrative examples are provided, including characteristic kernels on periodic domains, rotation matrices, and Rn . + 1


reference text

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17] F. R. Bach and M. I. Jordan. Kernel independent component analysis. JMLR, 3:1–48, 2002. C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups. Springer, 1984. M. Cuturi, K. Fukumizu, and J.-P. Vert. Semigroup kernels on measures. JMLR, 6:1169–1198, 2005. B. B. Folland. A course in abstract harmonic analysis. CRC Press, 1995. K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. JMLR, 5:73–99, 2004. K. Fukumizu, A. Gretton, X. Sun, and B. Sch¨ lkopf. Kernel measures of conditional dependence. Ado vances in NIPS 20, 489–496. MIT Press, 2008. K. Fukumizu, F. R.Bach, and M. I. Jordan. Kernel dimension reduction in regression. The Annals of Statistics, 2009, in press. A. Gretton, K. M. Borgwardt, M. Rasch, B. Sch¨ lkopf, and A. Smola. A kernel method for the twoo sample-problem. Advances in NIPS 19. MIT Press, 2007. A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Sch¨ lkopf, and A. Smola. A kernel statistical test of o independence. Advances in NIPS 20, 585–592. MIT Press, 2008. M. S. Hanna and T. Chang. Fitting smooth histories to rotation data. Journal of Multivariate Analysis, 75:47–61, 2000. E. Hewitt and K. A. Ross. Abstract Harmonic Analysis II. 1970. W. Rudin. Fourier Analysis on Groups. Interscience, 1962. B. Sch¨ lkopf and A.J. Smola. Learning with Kernels. MIT Press. 2002. o B. K. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B. Sch¨ lkopf. Injective Hilbert space o embeddings of probability measures. In Proc. COLT 2008, to appear, 2008. O. Stavdahl, A. K. Bondhus, K. Y. Pettersen, and K. E. Malvig. Optimal statistical operators for 3dimensional rotational data: geometric interpretations and application to prosthesis kinematics. Robotica, 23(3):283–292, 2005. I. Steinwart. On the influence of the kernel on the consistency of support vector machines. JMLR, 2:67– 93, 2001. S. Wu and S-I. Amari. Conformal Transformation of Kernel Functions: A Data-Dependent Way to Improve Support Vector Machine Classifiers. Neural Process. Lett., 15(1):59–67, 2002. 8