nips nips2006 nips2006-103 nips2006-103-reference knowledge-graph by maker-knowledge-mining

103 nips-2006-Kernels on Structured Objects Through Nested Histograms


Source: pdf

Author: Marco Cuturi, Kenji Fukumizu

Abstract: We propose a family of kernels for structured objects which is based on the bag-ofcomponents paradigm. However, rather than decomposing each complex object into the single histogram of its components, we use for each object a family of nested histograms, where each histogram in this hierarchy describes the object seen from an increasingly granular perspective. We use this hierarchy of histograms to define elementary kernels which can detect coarse and fine similarities between the objects. We compute through an efficient averaging trick a mixture of such specific kernels, to propose a final kernel value which weights efficiently local and global matches. We propose experimental results on an image retrieval experiment which show that this mixture is an effective template procedure to be used with kernels on histograms.


reference text

Amari, S.-I., & Nagaoka, H. (2001). Methods of information geometry. AMS vol. 191. Berg, C., Christensen, J. P. R., & Ressel, P. (1984). Harmonic analysis on semigroups. No. 100 in Graduate Texts in Mathematics. Springer Verlag. Catoni, O. (2004). Statistical learning theory and stochastic optimization. No. 1851 in Lecture Notes in Mathematics. Springer Verlag. Chapelle, O., Haffner, P., & Vapnik, V. (1999). SVMs for histogram based image classification. IEEE Transactions on Neural Networks, 10, 1055. Cuturi, M., Fukumizu, K., & Vert, J.-P. (2005). Semigroup kernels on measures. JMLR, 6, 1169– 1198. Cuturi, M., & Vert, J.-P. (2005). The context-tree kernel for strings. Neural Networks, 18, 1111 – 1123. Grauman, K., & Darrell, T. (2005). The pyramid match kernel: Discriminative classification with sets of image features. ICCV (pp. 1458–1465). IEEE Computer Society. Haussler, D. (1999). Convolution kernels on discrete structures (Technical Report). UC Santa Cruz. CRL-99-10. Hein, M., & Bousquet, O. (2005). Hilbertian metrics and positive definite kernels on probability measures. Proceedings of AISTATS. Joachims, T. (2002). Learning to classify text using support vector machines: Methods, theory, and algorithms. Kluwer Academic Publishers. Kondor, R., & Jebara, T. (2003). A kernel between sets of vectors. Proc. of ICML’03 (pp. 361–368). Lafferty, J., & Lebanon, G. (2005). Diffusion kernels on statistical manifolds. JMLR, 6, 129–163. Lanckriet, G., Cristianini, N., Bartlett, P., El Ghaoui, L., & Jordan, M. (2004). Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5, 27–72. Leslie, C., Eskin, E., Weston, J., & Noble, W. S. (2003). Mismatch string kernels for svm protein classification. NIPS 15. MIT Press. Matsuda, A., Vert, J.-P., Saigo, H., Ueda, N., Toh, H., & Akutsu, T. (2005). A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci., 14, 2804–2813. R¨ tsch, G., & Sonnenburg, S. (2004). Accurate splice site prediction for caenorhabditis elegans, a 277–298. MIT Press series on Computational Molecular Biology. MIT Press. Sch¨ lkopf, B., Tsuda, K., & Vert, J.-P. (2004). Kernel methods in computational biology. MIT o Press. Vert, J.-P., Saigo, H., & Akutsu, T. (2004). Local alignment kernels for protein sequences. In B. Sch¨ lkopf, K. Tsuda and J.-P. Vert (Eds.), Kernel methods in computational biology. MIT o Press.