nips nips2005 nips2005-138 nips2005-138-reference knowledge-graph by maker-knowledge-mining

138 nips-2005-Non-Local Manifold Parzen Windows


Source: pdf

Author: Yoshua Bengio, Hugo Larochelle, Pascal Vincent

Abstract: To escape from the curse of dimensionality, we claim that one can learn non-local functions, in the sense that the value and shape of the learned function at x must be inferred using examples that may be far from x. With this objective, we present a non-local non-parametric density estimator. It builds upon previously proposed Gaussian mixture models with regularized covariance matrices to take into account the local shape of the manifold. It also builds upon recent work on non-local estimators of the tangent plane of a manifold, which are able to generalize in places with little training data, unlike traditional, local, non-parametric models.


reference text

Bengio, Y., Delalleau, O., and Le Roux, N. (2005). The curse of dimensionality for local kernel machines. Technical Report 1258, D´ partement d’informatique et recherche e op´ rationnelle, Universit´ de Montr´ al. e e e Bengio, Y. and Larochelle, H. (2005). Non-local manifold parzen windows. Technical report, D´ partement d’informatique et recherche op´ rationnelle, Universit´ de Montr´ al. e e e e Bengio, Y. and Monperrus, M. (2005). Non-local manifold tangent learning. In Saul, L., Weiss, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems 17. MIT Press. Decoste, D. and Scholkopf, B. (2002). Training invariant support vector machines. Machine Learning, 46:161–190. Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. (2005). Neighbourhood component analysis. In Saul, L., Weiss, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems 17. MIT Press. Vincent, P. (2003). Mod` les a Noyaux a Structure Locale. PhD thesis, Universit´ de e e ` ` Montr´ al, D´ partement d’informatique et recherche op´ rationnelle, Montreal, Qc., e e e Canada. Vincent, P. and Bengio, Y. (2003). Manifold parzen windows. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing Systems 15, Cambridge, MA. MIT Press.