nips nips2005 nips2005-80 nips2005-80-reference knowledge-graph by maker-knowledge-mining

80 nips-2005-Gaussian Process Dynamical Models


Source: pdf

Author: Jack Wang, Aaron Hertzmann, David M. Blei

Abstract: This paper introduces Gaussian Process Dynamical Models (GPDM) for nonlinear time series analysis. A GPDM comprises a low-dimensional latent space with associated dynamics, and a map from the latent space to an observation space. We marginalize out the model parameters in closed-form, using Gaussian Process (GP) priors for both the dynamics and the observation mappings. This results in a nonparametric model for dynamical systems that accounts for uncertainty in the model. We demonstrate the approach on human motion capture data in which each pose is 62-dimensional. Despite the use of small data sets, the GPDM learns an effective representation of the nonlinear dynamics in these spaces. Webpage: http://www.dgp.toronto.edu/∼ jmwang/gpdm/ 1


reference text

[1] M. Brand and A. Hertzmann. Style machines. Proc. SIGGRAPH, pp. 183-192, July 2000.

[2] Z. Ghahramani and S. T. Roweis. Learning nonlinear dynamical systems using an EM algorithm. Proc. NIPS 11, pp. 431-437, 1999.

[3] A. Girard, C. E. Rasmussen, J. G. Candela, and R. Murray-Smith. Gaussian process priors with uncertain inputs - application to multiple-step ahead time series forecasting. Proc. NIPS 15, pp. 529-536, 2003.

[4] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovi´ . Style-based inverse kinematics. ACM c Trans. Graphics, 23(3):522-531, Aug. 2004.

[5] N. D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional data. Proc. NIPS 16, 2004.

[6] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive control of avatars animated with human motion data. ACM Trans. Graphics, 21(3):491-500, July 2002.

[7] W. E. Leithead, E. Solak, and D. J. Leith. Direct identification of nonlinear structure using Gaussian process prior models. Proc. European Control Conference, 2003.

[8] D. MacKay. Information Theory, Inference, and Learning Algorithms. 2003.

[9] R. Murray-Smith and B. A. Pearlmutter. Transformations of Gaussian process priors. Technical Report, Department of Computer Science, Glasgow University, 2003

[10] R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, 1996.

[11] V. Pavlovi´ , J. M. Rehg, and J. MacCormick. Learning switching linear models of human c motion. Proc. NIPS 13, pp. 981-987, 2001.

[12] L. Ralaivola and F. d’Alch´ -Buc. Dynamical modeling with kernels for nonlinear time series e prediction. Proc. NIPS 16, 2004.

[13] C. E. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. Proc. NIPS 16, 2004.

[14] H. Sidenbladh, M. J. Black, and D. J. Fleet. Stochastic tracking of 3D human figures using 2D motion. Proc. ECCV, volume 2, pp. 702-718, 2000.

[15] E. Solak, R. Murray-Smith, W. Leithead, D. Leith, and C. E. Rasmussen. Derivative observations in Gaussian process models of dynamic systems. Proc. NIPS 15, pp. 1033-1040, 2003.