nips nips2004 nips2004-74 nips2004-74-reference knowledge-graph by maker-knowledge-mining

74 nips-2004-Harmonising Chorales by Probabilistic Inference


Source: pdf

Author: Moray Allan, Christopher Williams

Abstract: We describe how we used a data set of chorale harmonisations composed by Johann Sebastian Bach to train Hidden Markov Models. Using a probabilistic framework allows us to create a harmonisation system which learns from examples, and which can compose new harmonisations. We make a quantitative comparison of our system’s harmonisation performance against simpler models, and provide example harmonisations. 1


reference text

[1] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis. Cambridge University Press, 1998.

[2] J.-P. Rameau. Trait´ de l’Harmonie reduite a ses principes naturels. Paris, 1722. e `

[3] J. J. Fux. Gradus ad Parnassum. Vienna, 1725.

[4] F. Pachet and P. Roy. Musical harmonization with constraints: A survey. Constraints, 6(1): 7–19, 2001.

[5] B. Schottstaedt. CCRMA, 1989. Automatic species counterpoint. Technical report, Stanford University

[6] R. A. McIntyre. Bach in a box: The evolution of four-part baroque harmony using the genetic algorithm. In Proceedings of the IEEE Conference on Evolutionary Computation, 1994.

[7] S. Phon-Amnuaisuk and G. A. Wiggins. The four-part harmonisation problem: a comparison between genetic algorithms and a rule-based system. In Proceedings of the AISB’99 Symposium on Musical Creativity, 1999.

[8] H. Hild, J. Feulner, and W. Menzel. HARMONET: A neural net for harmonizing chorales in the style of J.S. Bach. In R.P. Lippman, J.E. Moody, and D.S. Touretzky, editors, Advances in Neural Information Processing 4, pages 267–274. Morgan Kaufmann, 1992.

[9] D. Ponsford, G. Wiggins, and C. Mellish. Statistical learning of harmonic movement. Journal of New Music Research, 1999.

[10] M. M. Allan. Harmonising Chorales in the Style of Johann Sebastian Bach. Master’s thesis, School of Informatics, University of Edinburgh, 2002.

[11] T. Kawakami. Hidden Markov Model for Automatic Harmonization of Given Melodies. Master’s thesis, School of Information Science, JAIST, 2000. In Japanese.

[12] K. Sugawara, T. Nishimoto, and S. Sagayama. Automatic harmonization for melodies based on HMMs including note-chain probability. Technical Report 2003-MUS-53, Acoustic Society of Japan, December 2003. In Japanese.

[13] P. C. Woodland. Hidden Markov Models using vector linear prediction and discriminative output distributions. In Proc ICASSP, volume I, pages 509–512, 1992.

[14] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional Random Fields: probabilistic models for segmenting and labeling sequence data. In Proc ICML, pages 282–289, 2001.